Maria Skłodowska-Curie i sukcesorki jej odkryć

17 maja 2019 dr hab. Tomasz Pospieszny miał przyjemność wygłosić wykład przeznaczony dla słuchaczy Uniwersytetu Trzeciego Wieku w Złotowie. Tematem wykładu było życie i dzieło Marii Skłodowskiej-Curie. Chciałbym serdecznie podziękować za zaproszenie pani Annie Marciniak oraz za możliwość wygłoszenia wykładu przed Wspaniałymi Studentami!

 

 

Z kolei 18 maja 2019 roku w Nadnoteckim Instytucie UAM w Pile odbyła się Ogólnopolska Interdyscyplinarna Konferencja Edukacyjna XI Galaktyka Edukacji pt. Interdyscyplinarność w edukacji przyszłości – inspiracje postacią Marii Skłodowskiej-Curie organizowana przez Centrum Doskonalenia Nauczycieli w Pile oraz Nadnotecki Instytut UAM w Pile.

Patronat honorowy objęli Marszałek Województwa Wielkopolskiego – Marek Woźniak, Prezydent Piły – dr inż. Piotr Głowski oraz Wielkopolski Kurator Oświaty – Elżbieta Leszczyńska.

Patronat naukowy JM Rektor Uniwersytetu im. Adama Mickiewicza w Poznaniu – Prof. UAM dr hab. Andrzej Lesicki.

Patronat medialny Portal Superbelfrzy oraz „Sygnał – Magazyn Wychowawcy”.

Dr hab. Tomasz Pospieszny miał zaszczyt i przyjemność wygłosić wykład pt. Maria Skłodowska-Curie i sukcesorki jej odkryć oraz poprowadzić warsztaty pt. Blaski i cienie promieniotwórczości.

Serdecznie zapraszamy do obejrzenia nagrania z wykładu na naszym kanale

Chciałbym w tym miejscu złożyć podziękowania Organizatorom za wspaniałe przyjęcie, okazaną serdeczność i gościnność. Cieszę się niezmiernie, że Maria Skłodowska-Curie stała się inspiracją dla wielu osób, które uczestniczyły w konferencji.

Szczególnie chciałbym podziękować Pani dr Danucie Kitowskiej, Pani Katarzynie Kwaśnik, Pani Joannie Blajchert oraz Panu dr Pawłowi M. Owsiannemu. Pobyt w Pile na długo pozostanie w mojej pamięci.

Tomasz Pospieszny

Rosalind Franklin — Pierwsza dama DNA

Jaka jest korzyść z wykonywania tej całej pracy, jeśli nie czerpiemy z niej radości?

(Rosalind Franklin)

Rosalind Franklin, 1946, National Portrait Gallery, sygn. NPGx 76928
Rosalind Franklin, 1946, National Portrait Gallery, sygn. NPGx 76928

Historia odkrycia struktury kwasu deoksyrybonukleinowego (DNA) wiąże się nierozerwalnie z nazwiskami Jamesa D. Watsona (ur. 1928) i Francisca Cricka (1916–2004). Mało kto wie, że ich praca nie byłaby możliwa bez wyników eksperymentalnych, które otrzymała jedna z najwybitniejszych krystalografów angielskich Rosalind Elsie Franklin. To właśnie dzięki jej przenikliwości umysłu i precyzyjnym badaniom poznaliśmy nie tylko tajemnicę życia związaną z DNA, ale także strukturę kwasu rybonukleinowego (RNA) czy wirusów.

***

Rosalind w wieku 3 lat, ok. 1923, fotografia z Kolekcji Jennifer Glynn, [za:] U.S. Library of Medicine
Przyszła uczona urodziła się 25 lipca 1920 roku w Londynie w zamożnej i wpływowej rodzinie żydowskiej. Ojciec Rosalind, Ellis Arthur Franklin (1894–1964), wykładał w miejskim College’u dla chłopców elektryczność, magnetyzm, a także historię Wielkiej Wojny. Matka, Muriel Frances Waley (1894–1976), była raczej skupiona na prowadzeniu domu oraz wychowywaniu dzieci: najstarszego Davida oraz młodszych od Rosalind Colina, Rolanda i Jenifer. Ponieważ jej siostra była młodsza od Ros (uczona lubiła, aby tak ją nazywać, nie cierpiała zdrobnienia Rosy, którego używali jej koledzy z uniwersytetu) dziewięć lat wychowywała się ona głównie wśród braci. Przejęła od nich wiele cech między innymi zamiłowanie do rywalizacji, sportu czy fotografii. Warto zauważyć, że członkowie rodziny Franklinów byli zaangażowani politycznie, np. jej wuj Herbert Samuel był ministrem spraw wewnętrznych w 1916 roku i pierwszym praktykującym Żydem, który był członkiem w brytyjskim gabinecie. Franklinowie angażowali się społecznie i byli wrażliwi na ludzkie nieszczęście. Podczas drugiej wojny światowej pomagali znaleźć mieszkanie oraz pracę dla żydowskich uchodźców z kontynentu, którzy uciekli przed nazistami. Sami zaopiekowali się dwójką żydowskich dzieci i zapewnili im schronienie we własnym domu.

 

12-letnia Rosalind z rodzeństwem, ok. 1923, fotografia z Kolekcji Jennifer Glynn, [za:] U.S. Library of Medicine
Od wczesnego dzieciństwa Franklin wykazywała wyjątkowe zdolności do nauki. Fascynował ją świat i zjawiska przyrodnicze. Będąc na spacerze z rodzicami ciągle zadawała pytania. Kiedy rodzice zaprowadzili ją do biblioteki odkryła świat nauki, który zafascynował ją bez reszty. Mając sześć lat rozpoczęła naukę w prywatnej szkole dziennej w zachodnim Londynie w Norland Place School. Jej ciotka Helen Bentwich w iście do męża pisała: Rosalind jest niezwykle mądra – cały czas dla własnej przyjemności rozwiązuje zadania z arytmetyki niezmiennie otrzymując prawidłowe wyniki. Od wczesnych lat wykazywała wątpliwości względem religii. Już jako mała dziewczynka pytała matkę: W każdym razie, skąd wiesz, że On [Bóg] nie jest Nią?

Nie skupiała jednak całej uwagi na nauce. Zafascynowała się sportem zwłaszcza krykietem i hokejem. W wieku dziewięciu lat przyjęto ją do szkoły z internatem Lindwood School for Young Ladies w Sussex. Było to spowodowane także częstymi kłopotami zdrowotnymi dziewczynki. Zmiana klimatu miała sprzyjać poprawie zdrowia. W gruncie rzeczy przyszła uczona nauczyła się ignorować ból i choroby. Dwa lata później przeniosła się do szkoły dla dziewcząt w St. Paul w zachodnim Londynie. Była to jedna z nielicznych szkół dla dziewcząt w Londynie, w której nauczano fizyki i chemii. Nie trudno odgadnąć, że była najlepsza z nauk ścisłych, ale przodowała także w studiowaniu łaciny, niemieckiego, francuskiego oraz w sporcie. Ros była frankofilką i przez całe życie rozwijała swoje pasje związane z kulturą i językiem francuskim. Uważała francuski styl życia za znacznie lepszy od angielskiego. W liście do matki napisała: Jestem pewna, że zawsze będę mogła szczęśliwie wędrować po Francji, kocham [tych] ludzi, [ich] kraj i jedzenie.

Jej jedyną słabą stroną była muzyka. Nauczyciel tego przedmiotu uważał nawet, że może ona mieć jakieś kłopoty ze słuchem spowodowane infekcjami migdałków. W 1938 roku z wyróżnieniem zdała maturę i zdobyła stypendium uniwersyteckie. Na prośbę ojca przekazała je uzdolnionemu uczniowi uchodźcy. Jak się wydaje pieniądze w jej życiu nigdy nie odgrywały większej roli. Utrzymywała się ze skromnego stypendium, a później pensji i nigdy nie pozwalała ojcu, aby jej pomagał finansowo. Była świetnym organizatorem. Podróżując po Europie czy Stanach Zjednoczonych zawsze wybierała trzecią klasę komunikacji publicznej.

Rosalind w schronisku podczas wędrówki po Alpach, fot. Vittorio Luzzati, ok. 1949, fotografia z Kolekcji Jennifer Glynn, [za:] U.S. Library of Medicine
Po maturze Franklin rozpoczęła naukę w Newnham College w Cambridge, gdzie studiowała chemię w Natural Sciences Tripos. Tutaj poznała i zaprzyjaźniła się ze specjalistą z zakresu spektroskopii Billem Price’m (1909–1993). Jego prace okazały się później bezcenne w udowodnieniu tworzenia wiązań wodorowych pomiędzy parami zasad azotowych w DNA. Rosalind była niezwykle pilną studentką, osiągającą bardzo dobre wyniki w nauce. Miała spore szanse na uzyskanie stypendium. Niestety utrudniły to skomplikowane relacje z późniejszym laureatem Nagrody Nobla z chemii profesorem Ronaldem Norrishem (1897–1978). Norrish był uparty, apodyktyczny i niezwykle wrażliwy na krytykę, nie podzielał też entuzjazmu Franklin względem równouprawnienia kobiet w nauce i spowalniał realizację ambicji naukowych wyjątkowo zdolnej studentki. Sytuacja stawała się napięta i bardzo niemiła dla młodej uczonej. W 1941 roku Franklin z wyróżnieniem zdała egzaminy końcowe, które jednocześnie przyjęto jako licencjat (w Cambridge przyznawano kobietom licencjaty i magisterium od 1947 roku; wcześniejszym absolwentkom przyznano je z mocą wsteczną). Franklin zrezygnowała z dalszej pracy w laboratorium Norrisha i zatrudniła się jako asystentka w brytyjskim Stowarzyszeniu Badań nad Wykorzystywaniem Węgla (BCURA). Jej badania polegały głównie na określeniu mikrostruktury rożnych próbek węgla. Uczona badała porowatość węgla za pomocą helu, aby określić jego gęstość. Odkryła związek pomiędzy drobnymi przewężeniami w porach węgla i przepuszczalnością porowatej przestrzeni. Jej prace przyczyniły się między innymi w przemyśle paliwowym, a także w produkcji masek gazowych. Badania te stały się podstawą pracy doktorskiej Franklin pt. Chemia fizyczna stałych koloidów organicznych ze szczególnym uwzględnieniem węgla, którą obroniła w 1945 roku. Jeden z jej profesorów powiedział, że jej praca wprowadziła porządek w dziedzinie, która wcześniej była w chaosie. Wyniki uzyskanych prac zostały publikowane w pięciu artykułach, które wciąż są regularnie cytowane.

Franklin w trakcie wspinaczki w Norwegii, ok. 1940, fotografia z Kolekcji Jennifer Glynn, [za:] U.S. Library of Medicine. Rosalind uwielbiała podróże. Wakacje spędzała zazwyczaj zwiedzając Europę.
W czasie wojny Franklin poznała Adrienne Weill, byłą studentkę Marii Skłodowskiej-Curie. Weill wywarła ogromny wpływ na życie Rosalind pomagając jej między innymi w znajomości francuskiego. W tym czasie uczona wraz ze swoją kuzynką Irene zgłosiła się na ochotnika do patrolowania okolic narażonych na naloty.

Po drugiej wojnie światowej Franklin w liście do Weill pisała: Jeśli usłyszysz o kimkolwiek potrzebującym usług chemika fizycznego, który niewiele wie o chemii fizycznej, ale dość dużo o dziurach w węglu, powiadom mnie jak najszybciej. Dzięki pomocy przyjaciółki otrzymała posadę w Paryżu w Narodowym Centrum Naukowo-Technicznym (CNRS). To właśnie tutaj Rosalind Franklin nauczyła się praktycznych aspektów zastosowania krystalografii rentgenowskiej do badania substancji amorficznych. Technika ta stosowana była z dużym powodzeniem przy badaniu związków organicznych. Początkowo zastosowała tę metodę do badania grafitu (odmiany alotropowej węgla). Po czterech latach pracy w laboratorium w Paryżu otrzymała upragnione stypendium i zgodę odpowiednich władz, po czym przeniosła się do King’s College w Londynie. W styczniu 1951 roku wróciła do Londynu i na prośbę Sir Johna Randalla (1905–1984), dyrektora King’s College rozpoczęła badania nad DNA.

DNA jako cząsteczka fascynował uczonych od dawna. Pobudzał do intelektualnej przygody, każdego kto marzył o międzynarodowej sławie w świecie chemii czy biologii. DNA został wyizolowany przez szwajcarskiego lekarza Friedricha Mieschera (1844–1895) w 1869 roku. W 1878 Albrecht Kossel (1853–1927) wyizolował niebiałkowy składnik, a następnie wyizolował pięć podstawowych zasad azotowych (puryny – adeninę i guaninę oraz pirymidyny – cytozynę, tyminę i uracyl). W 1909 roku Phoebus Levene (1869–1940) zidentyfikował nukleotydową jednostkę składającą się z zasady azotowej, cukru (deoksyrybozy w DNA lub rybozy w RNA) i fosforanowej. Zasugerował on, że DNA składa się z szeregu czterech jednostek nukleotydowych połączonych ze sobą grupami fosforanowymi. W 1937 roku William Astbury (1898–1961) opracował pierwsze dyfraktogramy rentgenowskie, które wykazały, że DNA ma strukturę regularną. Nikt jednak nie wiedział jaką DNA ma konkretnie budowę. W latach 1951–1953 Erwin Chargaff (1905–2002) ogłosił tzw. reguły Chargaffa, w myśl których ilość zasad pirymidynowych jest równa ilości zasad purynowych. Ponadto ilość adeniny jest równa ilości tyminy, ilość guaniny jest równa ilości cytozyny.

Franklin w trakcie letniej podróży po Toskanii, fot. Vittorio Luzzati, ok. 1950, fotografia z Kolekcji Jennifer Glynn, [za:] U.S. Library of Medicine
Maurice Wilkins, b.d., The Nobel Foundation Archive, [za:] https://www.nobelprize.org/prizes/medicine/1962/summary/
Randall poprosił Franklin, aby zajęła się badaniem DNA, mimo iż wiedział, że problemem tym zajmuje się Maurice Wilkins (1916–2004). Historycy nauki wskazują, że antagonizmy pomiędzy Wilkinsem i Franklin wynikały z nieporozumienia i niedopatrzenia Randalla, który nie poinformował żadnej z zainteresowanych stron o pracach nad DNA. Uczona wraz ze swoim doktorantem Raymondem Goslingiem (1926–2015) użyła nowej lampy rentgenowskiej z precyzyjnym ogniskiem i mikrokamery zamówionej wcześniej przez Wilkinsa. Sama jednak niezwykle starannie dopracowała i dostosowała ją do swoich potrzeb. Kiedy Wilkins zapytał o technikę, Franklin miała mu odpowiedzieć zdawkowo i dość chłodno. Uczona była postrzegana jako silna, asertywna i niezależna kobieta. Wyrażała swoje poglądy stanowczo i konkretnie, przez co nie zawsze była lubiana. Jednak pod pozornym chłodem kryła się wrażliwa kobieta. Potrafiła także świetnie kierować grupą, czego dowodem są jej liczne zespołowe publikacje. Pomimo wszechobecnej dyskryminacji kobiet Franklin prowadziła badania w zakresie rentgenografii strukturalnej. W listopadzie 1951 roku uczona zanotowała:

Wyniki sugerują, że to struktura helikalna (która musi być bardzo ściśle upakowana) zawierająca 2, 3 lub 4 współosiowe łańcuchy kwasu nukleinowego na jednostkę helikalną i posiada w pobliżu grupy fosforanowe ulokowane na zewnątrz.

James Watson, b.d., The Nobel Foundation Archive, [za:] https://www.nobelprize.org/prizes/medicine/1962/summary/
Franklin wraz z Goslingiem szybko doszli do wniosku, że DNA istnieje w dwóch formach – przy dużej wilgotności włókna kwasu są długie i cienkie, zaś kiedy jest suchy włókna są krótkie i grube. Uczona nazwała je formami B i A. Konflikt pomiędzy stanowczą i dynamiczną Franklin oraz cichym i skromnym Wilkinsem narastał. James Watson wspominał:

Niemal od chwili pojawienia się jej w laboratorium obydwoje działali sobie na nerwy. Konflikt był tak poważny, że wymagał radykalnych rozwiązań – odejścia Rosy z laboratorium bądź przywołania jej do porządku.

W końcu Randall zdecydował, że Franklin skupi się na formie A-DNA, zaś Wilkins na formie B-DNA. Na sukcesy nie musiała długo czekać. Słynne dziś zdjęcie 51 wykonane prze Franklin uważane jest przez wielu za najpiękniejsze zdjęcie rentgenowskie jakie kiedykolwiek wykonano. W styczniu 1953 roku, po uprzednich wątpliwościach, Franklin doszła do wniosku, że obie formy DNA są strukturami helikalnymi. Wydaje się, że temat całkowicie pochłoną uczoną. Według opinii jej siostrzeńca Stephena zainteresowanie [uczonej] […] kwasami nukleinowymi zaczęło się wcześnie. Pod koniec 1939 roku, gdy Rosalind była dziewiętnastoletnią studentką w Newnham College w Cambridge, […] sporządziła w swoim skoroszycie szkic spekulacji o formie kwasu nukleinowego. Biografka Rosalind, Brenda Maddox […] odnotowała, że forma „przedstawia helikalną strukturę”, a uczona zanotowała: „Geometryczne podstawy dziedziczenia?”

Francis Crick, b.d., The Nobel Foundation Archive, [za:] https://www.nobelprize.org/prizes/medicine/1962/summary/
W styczniu 1953 roku Franklin zaczęła pisać serię artykułów. Wynika z tego jasno, że jej prace były gotowe wcześniej niż prace Jamesa D. Watsona i Francisca Cricka, którzy swój model budowali w oparciu o… fotografię wykonaną przez Franklin. Wilkins za pośrednictwem Maxa Perutz’a (1914–2002) i cichą zgodą się Williama Bragga (1890–1971) przekazał zdjęcie wykonane przez Franklin Watsonowi i Crickowi. Nie ma najmniejszej wątpliwości, że dzięki zdjęciu wykonanym przez Franklin Watson i Crick zbudowali swój słynny model DNA. Watson wspominał – Kiedy tylko zobaczyłem to zdjęcie, szczęka mi opadła, a puls raptownie przyspieszył. Sam Wilkins po latach przyznał – Być może powinienem był poprosić Rosalind o zgodę. Cóż…

Do 28 lutego 1953 roku Watson i Crick uznali, że rozwiązali problem na tyle, że Crick w pubie publicznie stwierdził iż wraz z Watsonem znaleźli sekret życia. Watson i Crick zakończyli budowę swojego modelu 7 marca 1953 roku. Wyniki pracy opublikowali w prestiżowym Nature 25 kwietnia 1953 roku. Stephen Franklin twierdzi, że gdyby [Franklin] pozostała w King’s, nie ma wątpliwości, że […] poprawnie ukończyłaby analizę struktury w pierwszej połowie 1953 roku bez żadnego wkładu Cricka lub Watsona, oni zaś nie zrobiliby tego na początku 1953 roku bez pracy Rosalind.

Konflikt z Wilkinsem, zła atmosfera w pracy i brak akceptacji względem uczonej, spowodował, że pod koniec swojej kariery naukowej przeniosła się do Birkbeck College. Jej siostrzeniec wspominał, że Rosalind była tak niezadowolona z [pracy w] King’s College, że wynegocjowała przeniesienie do Birkbeck [College], innej uczelni na Uniwersytecie Londyńskim. Tam w ciszy i spokoju, z dala od niezdrowej konkurencji oddała się pracy związanej z wirusologią. Szczególnie zainteresowała się wirusem mozaiki tytoniowej.

Laboratorium Rosalind Franklin w Birkbeck College (sfotografowane krótko po jej śmierci). Mieściło się na piątym piętrze zniszczonej przez bomby XVIII-wiecznej kamienicy przy Torrington Square – w dawnych kwaterach dla służby. Aparatura rentgenowska znajdowała się w piwnicy, fot. John Finch, ok. 1958, fotografia z Kolekcji Jennifer Glynn, [za:] U.S. Library of Medicine
Rosalind Franklin nigdy nie wyszła za mąż, zdaje się, że unikała bliższych kontaktów damsko-męskich. Była oddana pracy i nauce, chociaż podobno pod koniec życia się zakochała. James Watson w swojej książce pisał:

Zdecydowanie nie starała się podkreślać swej kobiecości. Choć miała dość ostre rysy, nie była zupełnie nieatrakcyjna, mogłaby się nawet podobać, gdyby wykazała choć niewielkie zainteresowanie kwestią swego wyglądu zewnętrznego. Nie poświęcała temu jednak najmniejszej uwagi. Nigdy nie używała kredki do ust, która mogłaby podkreślić czerń jej prostych włosów, a w 31. roku życia nosiła stroje odzwierciedlające całkowity brak fantazji właściwy młodej angielskiej intelektualistce.

Sądzę, że jej oddanie nauce wynikało jednak z przekonania, że nie można poświęcić się kilku sprawom jednocześnie. Kiedy jej koleżanka wróciła po porodzie do pracy Franklin powiedziała, że to nie w porządku w względem dziecka. Nie można robić źle dwóch rzeczy – powiedziała kiedyś.

Rosalind Franklin podczas pracy, ok. 1955, fotografia z Kolekcji Jennifer Glynn, [za:] U.S. Library of Medicine
W połowie 1956 roku, podczas podróży służbowej do Stanów Zjednoczonych uczona zaczęła odczuwać pewne fizyczne dolegliwości. W Nowym Jorku nabrzmiał jej brzuch tak bardzo, że miała trudność w zapięciu spódnicy. Po powrocie do Londynu poddała się badaniom. Okazało się, że ma dwa duże guzy w jamie brzusznej. Po operacji spędzała czas z przyjaciółmi, którzy wspierali ją w trudnej rekonwalescencji. Dużo czasu spędzała także z rodzicami. W trakcie leczenia nowotworu Franklin kontynuował pracę. W 1956 roku opublikowała siedem artykułów, a rok później kolejnych sześć. W sumie w ciągu czterech lat pracy w Birkbeck College Franklin była współautorką siedemnastu prac naukowych poświęconych wirusom. Trzy z nich ukazały się już po jej śmierci.

Choroba powróciła pod koniec 1957 roku. W styczniu 1958 roku wróciła do pracy. Niestety 30 marca poczuła się bardzo źle. Jej przyjaciółka Anne Sayre wspominała:

Walczyła ze śmiercią uparcie i z odwagą, planowała życie, kiedy plany były już kpiną. Umarła tak, jak żyła, z pasją do życia, z którego nigdy nie zrezygnowała. 16 kwietnia 1958 roku, w wieku trzydziestu siedmiu lat, Rosalind Franklin przegrała bitwę.

Przyczyną śmierci był zaawansowany rak jajnika z przerzutami. Została pochowana w 17 kwietnia 1958 roku.

***

Rok po jej śmierci Watson, Crick i Wilkins otrzymali Nagrodę Collinsa Warrena. Dwa lata po jej śmierci przyznano im Nagrodę Laskera. Cztery lata po jej śmierci otrzymali Nagrodę Nobla z medycyny. Podczas noblowskiego wykładu jedynie Wilkins wspomniał uczoną. Watson i Crick nie wspomnieli o Rosalind Franklin świadomie skazując ja na zapomnienie.

***

Wiara Rosalind Franklin w naukę i postęp były drogowskazem w jej życiu. W liście do ojca pisała: Nauka i życie codzienne nie mogą i nie powinny być rozdzielane. Nauka, dla mnie, daje częściowe wyjaśnienie życia… Nie akceptuję twojej definicji wiary, tj. wiary w życie po śmierci… Twoja wiara opiera się na przyszłości Twojej i innych jednostek, moja na przyszłości i losie naszych następców. Wydaje mi się, że Twoja jest bardziej samolubna… […] Nie widzę powodu, aby wierzyć, że twórca protoplazmy lub materii pierwotnej, jeśli taki istnieje, ma powody, by interesować się naszą nieistotną rasą w maleńkim zakątku wszechświata.

 

Zalecana literatura:

  1. B. Maddox, Rosalind Franklin: The Dark Lady of DNA, Harper Perennial, 2002.
  2. B. Maddox, The double helix and the ‘wronged heroine’, Nature, vol. 421, 2003, str. 407–408.
  3. J. Glynn, My Sister Rosalind Franklin, Oxford University Press, 2012.
  4. A. Sayre, Rosalind Franklin and DNA, W. W. Norton & Company 2000.
  5. S. Franklin, My aunt, the DNA pioneer, http://news.bbc.co.uk/2/hi/science/nature/2895681.stm
  6. J. Watson, Podwójna helisa. Historia odkrycia struktury DNA, Prószyński i S-ka, 1996.
  7. F. Crick, Szalona pogoń. W poszukiwaniu tajemnicy życia, Marabut, 1996.

Stefania Horovitz i tajemnica izotopów

Portret Stefanii Horowitz, prawdopodobnie namalowany przez ojca, b.d., [za:] https://www.geni.com/people/Stefania-Horowitz/6000000009579527822, dostęp z 17 lutego 2018
Odkrycie polonu i radu w 1898 roku przez Marię Skłodowską-Curie spowodowało prawdziwą lawinę odkryć kolejnych nowych pierwiastków. Profesor Józef Hurwic przedstawił to chyba najtrafniej:

Na początku drugiego dziesięciolecia naszego wieku znano około trzydziestu różnych substancji promieniotwórczych, które uważano za odrębne pierwiastki chemiczne, w układzie okresowym zaś między ołowiem i uranem było tylko kilka miejsc nie obsadzonych. Wydawało się więc, że prawo okresowości nie stosuje się do substancji promieniotwórczych. Ich zespół stanowił istną dżunglę.

Tajemnica Natury została wyjaśniona przez Fredericka Soddy’ego w 1913 roku. Uczony zauważył, że jeden pierwiastek chemiczny może mieć kilka odmian różniących się masą atomową. W prestiżowym czasopiśmie „Nature” napisał – Są one [pierwiastki] identyczne pod względem chemicznym, a także fizycznym, z wyjątkiem kilku właściwości zależących wprost od masy atomowej. Ponieważ właściwości chemiczne izotopów są takie same, można je jedynie rozdzielić metodami fizycznymi. Dzięki koncepcji Soddy’ego liczba odkrytych pierwiastków promieniotwórczych nagle zmalała i w układzie okresowym pozostały tylko polon (84Po), radon (86Rn), rad (88Ra), aktyn (89Ac), tor (90Th) i uran (92U). Osiem innych „różnych pierwiastków” (izotopów) tak naprawdę było odmianami umiejscowionych już w układzie okresowym czterech pierwiastków. W tej niezwykłej łamigłówce istotną rolę odegrała uczona urodzona w Warszawie – Stefania Horovitz. Była ona trzecią kobietą z Polski, która po Marii Skłodowskiej-Curie i Alicji Dorabialskiej odegrała istotną rolę w nauce o promieniotwórczości.

Leopold Horovitz, Autoportret, 1915, Domena Publiczna

Stefania Renata Horovitz urodziła się 17 kwietnia 1887 roku w Warszawie. Jej ojciec, Leopold Horovitz (1838–1917), był znanym i cenionym artystą skupionym wokół dworu cesarza Józefa I. Leopold słynął ze zdolności do malowania portretów. W 1873 roku w Wiedniu na międzynarodowej wystawie zdobył złoty metal za jeden ze swoich obrazów. Apogeum jego sławy przypadło na 1896 rok, kiedy został poproszony o namalowanie portretu cesarza Franciszka Józefa I. Dzięki tak szybko rozwijającej się karierze jego rodzina nie narzekała na niedostatki. Mniej więcej w tym samym czasie Leopold wraz z żoną Rozą z Londonów (1853–1920) oraz dziećmi Jerzym (1875–1948), Zofią (1877–1941), Arminem (1880–1965), Janiną (1882–1941) i najmłodszą Stefanią przenieśli się do Wiednia. Stefania pobierała nauki w domu. Nauka była jednak na najwyższym możliwym poziomie. W 1907 roku zainteresowała się chemią i zapisała na Wydział Filozoficzny Uniwersytetu Wiedeńskiego. Sukcesy przychodziły stosunkowo łatwo i już w 1914 roku ukończyła studia doktoranckie specjalizując się w chemii organicznej. Promotorem dysertacji był znany chemik organik profesor Guido Goldschmiedt (1850–1915). Do jego największych osiągnięć naukowych należało między innymi określenie struktury kilku związków pochodzenia naturalnego, w tym papaweryny i kwasu elagowego. Praca Horowitz dotyczyła przegrupowania chinonu pod wpływem kwasu siarkowego. Dysertacja została oceniona bardzo dobrze, a jej wynik opublikowano w dwóch pracach naukowych. Po obronie pracy doktorskiej Stefania zwróciła uwagę na chemię jądrową.

Otto Hönigschmid, przed 1921, [za:] https://badw.de/en/community-of-scholars/deceased.html?tx_badwdb_badwperson%5Bper_id%5D=1374&_badwdb_badwperson%5BpartialType%5D=BADWPersonDetailsPartial&tx_badwdb_badwperson%5BmemberType%5D=&tx_badwdb_badwperson%5Baction%5D=show&tx_badwdb_badwperson%5Bcontroller%5D=BADWPerson, dostęp z 17 lutego 2018
Pod koniec 1913 lub na początku 1914 roku rozpoczęła pracę w Instytucie Radowym w Wiedniu pod kierunkiem Ottona Hönigschmida (1878–1945). W latach 1904–1906 uczony pracował w laboratorium odkrywcy fluoru Henriego Moissana w Paryżu, a później u Theodore’a Richardsa na Uniwersytecie Harvarda. Uczony specjalizował się w badaniach węglików, krzemianów i pomiarach masy atomowej. Według opinii Kazimierza Fajansa był on mistrzem w oznaczaniu mas atomowych. Horovitz została jego protegowaną prawdopodobnie na prośbę Goldschmiedta, który był nauczycielem Hönigschmida. Co niezwykle istotne Hönigschmid miał pozytywne nastawienie do kobiet studiujących i zajmujących się nauką.

Historia rozpoczęcia ich współpracy jest niezwykła. Hönigschmid poszukując współpracownika zwrócił się z prośbą do przebywającej w Berlinie Lise Meitner, czy nie zna kogoś w Wiedniu kto kwalifikowałby się do pomocy w jego projekcie związanym z określaniem masy atomowej pierwiastków. Dzięki jej rekomendacji poznał Stefanię. Meitner i Horovitz najprawdopodobniej spotkały się w 1907 roku. Kilka miesięcy później napisał do Meitner: Przesyłam Ci pozdrowienia od panny Horovitz, która nie wierzy, że ją pamiętasz. Właśnie się z nią o to spieram. Od czerwca 1914 roku Horovitz i Hönigschmid rozpoczęli ścisłą współpracę. Otto Hönigschmid napisał do Lise Meitner – Z panną Horovitz pracujemy jak dobrzy koledzy. W tę piękną niedzielę nadal siedzimy w laboratorium od godziny szóstej. Uczeni zajęli się izolowaniem i oczyszczaniem ołowiu ze 100 kilogramów z siarczanu ołowiu pozyskanego z materiałów z Jachimowa. Praca ta była niezwykle czasochłonna i skrupulatna. Wszystkie ważone substancje musiały być izolowane w stanie czystym, a eksperymentator powinien być w stanie określić nawet najmniejszą ilość substancji, która może zostać utracona podczas eksperymentu ilościowego. Wkrótce stwierdzili, że masa atomowa ołowiu powstającego w szeregu uranowo-radowym wynosiła 206,73. Wykazali tym samym, że ołów z rozpadu jest lżejszy niż „zwykły” ołów (207,21). 23 maja 1914 roku Hönigschmid zaprezentował wyniki na kongresie Bunsena w Lipsku. Pracę wysłali także do „Monatshefte für Chemie”, a później także do „Comptes Rendus”. Uczeni wspólnie wykazali także, że odkryty przez Boltwooda i Hahna w 1906 roku pierwiastek jon to de facto izotop toru-230. Było to niezwykle ważne spostrzeżenie, bowiem wykazało, że jon i tor-230 mają takie same właściwości spektroskopowe i chemiczne, a jedyną różnicą jest ich masa atomowa. W jednym eksperymencie Horovitz podważyła istnienie pierwiastka i znalazła drugi dowód na istnienie izotopów.

Stefania Horowitz w Instytucie Radowym w Wiedniu, listopad 1915, [za:] M. Retenzi, Trafficking Materials and Gendered Experimental Practices. Radium Research in Early 20th Century Viena, http://www.gutenberg-e.org/rentetzi/index.html, dostęp z 17 lutego 2019
Ze współpracy Stefanii i Ottona wynika, że Horovitz była dojrzałym naukowcem i bliskim współpracownikiem swojego mentora. Potrafiła wyciągać słuszne wnioski z przeprowadzonych eksperymentów, często sama inicjowała prace nad nurtującym ją problemem. W 1914 roku Hönigschmid w liście do Meitner pisał: Teraz izolujemy ołów z czystej smółki z Jachimowa… Mamy nadzieję, że w ciągu najbliższych dwóch tygodni przed świętami przeanalizujemy te przygotowane [próbki] ołowiu… W 1922 roku w wykładzie noblowskim Frederick Soddy również podkreślił udział Stefanii Horovitz w pracach nad izotopami. Powiedział między innymi – Jednocześnie prace nad ołowiem z minerałów uranowych były prowadzone przez T. W. Richardsa i jego studentów na Harvardzie, a także przez Hönigschmida i Mlle. Horovitz, którzy podali prawidłowe wartości [masy atomowej ołowiu]. Historyk nauki Lawrence Badash podkreślił, że Hönigschmid i Horovitz przedstawili najbardziej przekonujące dowody potwierdzające istnienia izotopów, a ich prace eksperymentalne potwierdziły jednocześnie pracę wykonaną w trzech innych laboratoriach.

Niestety pod koniec pierwszej wojny światowej współpraca uczonych została przerwana. Hönigschmid przyjął etat na Uniwersytecie w Monachium i opuścił Wiedeń. Z niejasnych dziś powodów Horovitz opuściła Wiedeń i na krótki czas porzuciła karierę naukową. Według opinii członków rodziny chciała pocieszyć matkę po śmierci ojca i w 1917 roku wróciła do Warszawy. Siedem lat później, w 1924 roku wróciła do Wiednia i zafascynowała się psychologią adlerowską. Wspólnie z Alice Friedman zaczęła organizować dom zastępczy dla dzieci z trudnościami w nauce. W 1937 roku, prawdopodobnie z powodów politycznych, Horovitz opuściła Wiedeń i po raz kolejny przeprowadziła się do Warszawy. Wybitny polski radiochemik Kazimierz Fajans w liście do Elisabeth Rona (jedna z uczonych pracujących w Instytucie Radowym w Wiedniu) pisał:

Prawdopodobnie nie otrzymałaś z Wiednia żadnych informacji o losie dr Stefanii Horovitz. Dowiedziałem się o tym od wspólnego krewnego z Warszawy. Stefania przeprowadziła się tam [do Warszawy] po I wojnie światowej i po tym jak jej rodzice zmarli w Wiedniu, aby dołączyć do swojej zamężnej siostry [Zofii Natanson]. Nie była aktywna w chemii, a obie [siostry] zostały zlikwidowane przez nazistów w 1940 roku.

Kiedy Warszawa została okupowana przez nazistów, Horovitz i jej siostra miały szansę ucieczki z getta. Jednak w obawie przed prześladowaniem ukrywających się Żydów obie zdecydowała się udać na Umschlagplatz. Były wśród tysięcy Żydów, którzy zostali przetransportowani do obozu zagłady w Treblince. Obie zginęły. Ich losy są nieznane.

Pod koniec drugiej wojny światowej 14 października 1945 roku pod nazistowską administracją, z którą się nie zgadzali, Otto Hönigschmid wraz z żoną popełnili samobójstwo.

Reszta jest milczeniem…

 

Zalecana literatura:

  1. F. Rayner-Cnaham, G. W. Rayner-Canham, Stefanie Horovitz: A Crucial Role in the Discovery of Isotopes, [w]: A Devotion to Their Science: Pioneer Women of Radioactivity, red.: M. F. Rayner-Cnaham, G. W. Rayner-Canham, McGill-Queen’s University Press, Québec, 1997.
  2. M. Rentetzi, Stephanie Horovitz (1887–1942), [w]: European Women in Chemistry, red.: J. Apotheker, L. S. Sarkadi, Wiley, Verlag, 2011, str. 75–79.
  3. M. Rayner-Canham, G. Rayner-Canham, Stefanie Horovitz, Ellen Gleditsch, Ada Hitchins, and the Discovery of Isotopes, Bulletin for the History of Chemistry, 25(2), 2000, str. 103–108.
  4. B. Van Tiggelen, A. Lykknes, Celebrate the Women Behind the Periodic Table, Nature, 565, 2019, str. 559–561.

 

 

Do trzech razy sztuka – wyścig Ireny Joliot-Curie po Nagrodę Nobla

Irena Joliot-Curie, b.d., Muzeum Marii Skłodowskiej-Curie w Warszawie

Im dalej eksperyment jest od teorii, tym bliżej Nagrody Nobla.

Irena Joliot-Curie

 

Irena w Instytucie Radowym w Paryżu, 1942, reprodukcja pocztówki z Musée des artes et métiers

Odkrywca neutronu sir James Chadwick powiedział o niej:

Urodziła się w czasach tworzenia nauki o radioaktywności, gdy jej rodzice dokonywali wielkich odkryć, dorastała z radioaktywnością, a całe życie zawodowe poświęciła jej badaniu. Nosiła zaszczytne imię, do którego dodała blasku poprzez wielki wkład o dużej doniosłości w zakresie promieniotwórczości oraz rozwoju fizyki jądrowej… W ciągu tych lat kontynuowała i opublikowała prace nad różnymi aspektami promieniotwórczości, jednocześnie jej zapał do badań naukowych był taki, że ani obowiązki administracyjne, ani też pogarszający się stan zdrowia nie mógł powstrzymać jej z dala od laboratorium. Jej rodzice mieli zarówno silne osobowości jak i niezależne umysły i Madame Joliot-Curie odziedziczyła wiele cech z ich charakterów, jak również ich naukowy geniusz. Miała silną osobowość, była naturalna, bezpośrednia i samowystarczalna.

Irena Joliot-Curie dała się poznać jako genialna uczona, która potrafiła dumnie nosić nazwisko rodziców. Warto pamiętać, że jej prace doprowadziły do odkrycia neutronu, pozytonu (dodatniego elektronu), a także przeprowadziła reakcję rozszczepienia jądra atomowego. W 1935 roku, jako druga kobieta w historii, otrzymała Nagrodę Nobla z chemii za prace nad syntezą nowych pierwiastków promieniotwórczych. Sądzę, że mogła otrzymać kolejną Nagrodę Nobla, na którą z pewnością zasługiwała…

Lekcja pierwsza

Fryderk i Irena Joliot-Curie, 1936, NAC sygn. 1-E-3967

Historia wyścigu Ireny Joliot-Curie po Nagrodę Nobla rozpoczyna się w 1928 roku, kiedy Walther Bothe zapoczątkował bombardowanie pierwiastków lekkich cząstkami alfa. Uczony wraz ze swoim studentem Herbertem Beckerem zauważyli, że w wyniku bombardowania cząstkami alfa atomów boru, magnezu lub glinu, następuje emisja wysokoenergetycznego promieniowania gamma, co było zgodne z przewidywaniami. Niespodziewanie jednak zaobserwowali emisję promieniowania gamma emitowanego przez bombardowane atomy litu i berylu. Było to zaskakujące, bowiem atomy tych pierwiastków były zbyt małe, ażeby pod wpływem cząstek alfa mogły ulec rozbiciu. W komunikacie stwierdzili, że promieniowanie emitowane przez bombardowane cząstkami alfa atomy berylu ma większą energię niż cząstki alfa oraz że podczas reakcji nie następowała emisja protonów, a nadmiar energii promieniowania gamma pochodzi z rozpadu jądra. Badanie niemieckich uczonych zaintrygowały Irenę i jej męża Fryderyka Joliot-Curie. Uczona wspominała po latach – dysponowanie wielką ilością polonu pozwoliło Fryderykowi Joliot i mnie wykonać badania, które doprowadziły do odkrycia neutronu i sztucznej promieniotwórczości.

Irena w grudniu 1931 roku na posiedzeniu Francuskiej Akademii Nauk ogłosiła, że w wyniku przeprowadzonych eksperymentów może stwierdzić, iż energia badanego promieniowania jest aż trzykrotnie wyższa niż energia bombardujących cząstek alfa. Natomiast przepuszczając promieniowanie berylowe przez parafinę i celofan zauważyła, że wybija ono protony (atomy wodoru pozbawione elektronu). Było to niezwykle dziwne, bowiem promieniowanie berylowe zderzało się z jądrami atomowymi wodoru, tak jak dwie kule bilardowe! Mogło ono działać na maleńkie i lekkie elektrony, ale nie na protony. 18 stycznia 1932 roku małżonkowie Joliot-Curie opublikowali artykuł Emisja protonów o dużej prędkości z zawierającego wodór materiału napromieniowanego bardzo przenikliwym promieniowaniem gamma. W pracy zgodzili się z Niemcami, że promieniowanie berylowe pomimo ogromnej przenikliwości jest wysokoenergetycznym promieniowaniem gamma.

Irena i Fryderyk w swoim laboratorium w Paryżu, grudzień 1932, NAC sygn. 1-E-3968

Kiedy pracujący w Laboratorium Cavendisha na Uniwersytecie Cambridge James Chadwick przeczytał ich doniesienia, nie uwierzył w wyniki uzyskane w paryskim laboratorium. Chadwick zreferował prace Ireny Ernestowi Rutherfordowi. Po latach uczony pisał: Gdy opowiedziałem mu o obserwacjach Curie-Joliot i ich poglądach na ten temat, dostrzegłem jego rosnące zdziwienie, wreszcie wybuchnął: »Nie wierzę w to«. […] Oczywiście, Rutherford zgodził się, że należy wierzyć obserwacjom, ale wyjaśnienie to zupełnie inna sprawa. Kilka lat wcześniej Rutherford w słynnym Wykładzie Bakeriańskim przewidywał istnienie cząstki o masie zbliżonej do protonu, jednak pozbawionej ładunku. Irena i Fred nie zapoznali się z treścią wykładu. Siostrzeniec Lise Meitner, Otto Rober Frisch pisał:

Powiedziano mi, że Rutherford później spotkał Joliota i zapytał go: »Nie zdajesz sobie sprawy, że miałeś w ręce neutrony, które omawiałem w moim wykładzie Bakeriańskim w 1920 roku?« Joliot odpowiedział: »Nigdy nie czytałem tego wykładu; myślałem, że to będzie zwykły pokaz krasomówstwa, a nie nowych pomysłów«.

 

James Chadwick (1891–1974), [za:] https://www.nobelprize.org/prizes/physics/1935/chadwick/biographical/

James Chadwick rozpoczął eksperymenty 7 lutego 1932 roku. Zacząłem bez żadnych zbędnych założeń, choć oczywiście myślałem o neutronie. Byłem prawie pewien, że obserwacji Curie-Joliot nie da się wyjaśnić, odwołując się do czegoś w rodzaju zjawiska Comptona […] – wspominał. Uczony potwierdził wyniki francuskich kolegów, ale zmodyfikował ich eksperymenty. Zamiast parafiny i celofanu, promieniowanie berylowe kierował na płytki z litu, berylu, boru czy węgla. W każdym przypadku po zderzeniu promieniowania z folią, Chadwick obserwował emisję protonów. Wniosek nasuwał się sam: promieniowanie berylowe nie mogło mieć natury fali elektromagnetycznej lecz cząstki pozbawionej ładunku! 17 lutego 1932 roku James Chadwick przedstawił wyniki eksperymentów w „Nature” w artykule Możliwe istnienie neutronu. W kolejnym artykule zatytułowanym Istnienie neutronu już bez wątpliwości opisał nową cząstkę elementarną. To właśnie za to odkrycie James Chadwick otrzymał w 1935 roku Nagrodę Nobla z fizyki.

 

 

Lekcja druga

Teraz małżonkowie Joliot-Curie mając doskonały pocisk w ręku rozpoczęli prace z i nad neutronem. Bombardowali nim różne substancje, a wyniki zderzeń rejestrowali na fotografiach wykonywanych w komorze Wilsona. Na jednej z nich ujrzeli tor ruchu elektronu zakrzywiony w kierunku bieguna ujemnego pola magnetycznego zamiast do dodatniego. W kwietniu 1932 roku napisali, że kilka elektronów przechodzących przez komorę Wilsona, zostawiało ślady mające taki sam wygląd jak tory elektronów, tyle że wykazywały przeciwne krzywizny względem pozostałych. W miedzy czasie postanowili poradzić się Rutherforda i Bohra. Jednak jak się wydaje pierwszy z nich dyplomatycznie uchylił się od odpowiedzi, drugi zaś nie do końca umiał wyjaśnić dziwne zachowanie elektronów. Tymczasem młody fizyk z Kalifornijskiego Instytut Technologicznego Carl David Anderson badając za pomocą komory Wilsona umieszczonej w bardzo silnym polu magnetycznym promieniowanie kosmiczne spostrzegł nietypowy tor ruchu cząstek – ślad o długości pięciu centymetrów, przypominający włos, zakrzywiony w kierunku

Irena i Fryderyk, ok. 1937, NAC sygn. 1-E-3965

ujemnego bieguna magnesu. Co ciekawe wykonał 1300 fotografii, a jedynie na 15 zaobserwował dziwne krzywizny. Anderson w „Science” napisał, że konieczne wydaje się powołanie do życia dodatnio naładowanej cząstki o masie porównywalnej do

elektronu. Badacz odkrył pozyton czyli dodatni elektron. Córka Ireny i Fryderyka Helena Langevin-Joliot wspomina, że istnienie pozytonów wkrótce zostało potwierdzone nie tylko w promieniowaniu kosmicznym. Kilku fizyków, zwłaszcza Joliot-Curie, pamiętało dziwne trajektorie elektronów, przypisywane do elektronów […] odbijających się od ścian komory mglistej.

 

Irena i Fred po zapoznaniu się z praca Andersona wrócili do laboratorium, powtórzyli jego eksperymenty i na jednym ze zdjęć spostrzegli dwa tory: jeden odgięty w kierunku bieguna dodatniego i drugi do ujemnego. Odkryli tworzenie się pary pozyton–elektron. Powstawanie pary antycząstka–cząstka jest możliwe dzięki kwantom promieniowania gamma o wystarczająco dużej energii. Uczeni napisali: mamy tu po raz pierwszy do czynienia z przekształcaniem promieniowania elektromagnetycznego w materię. […] gdy foton gamma o wysokiej energii napotka ciężkie jądro, to w następstwie kolizji jest przekształcany w dwa elektrony o przeciwnych znakach. Maria Skłodowska-Curie zasugerował im, aby zjawisko nazwali materializacją elektronów. Niestety było to za mało na Nagrodę Nobla. Carl David Anderson za odkrycie pozytonu otrzymał Nagrodę Nobla z fizyki w 1936 roku. Wówczas Irena i Fryderyk Joliot-Curie od roku będą już laureatami tej prestiżowej nagrody.

Lekcja trzecia

Lise Meitner w laboratorium, ok. 1930, Archiv der Max-Planc-Gesellschaft, Berlin

W dniach 22–29 października 1933 roku w Brukseli odbyła się siódma konferencja Solvaya Struktura i właściwości jądra atomowego. Poza Marią Curie zaproszono także Lise Meitner i Irenę Joliot-Curie. Małżonkowie Joliot zreferowali wyniki eksperymentów polegających na bombardowaniu cząstkami alfa wysyłanymi z polonu różnych pierwiastków w tym aluminium, fluoru oraz sodu. Według uczonych powinny powstać odpowiednio izotopy: fosforu, sodu oraz glinu. Tymczasem w reakcji glinu z cząstkami alfa powstawał stabilny izotop krzemu, a w komorze Wilsona obok śladów neutronów pojawiły się ślady pozytonów. Podczas wystąpienia zatytułowanego Promieniowanie przenikliwe z atomów bombardowanych cząstkami alfa Fred opowiedział o badaniach nad neutronem, pozytonem oraz omówił eksperymenty i zdjęcia z komory Wilsona. Skomentował także najnowsze wyniki badań związane z bombardowaniem glinu i emisją neutronów oraz pozytonów. Eksperymenty małżonków skrytykowała m. in. Lise Meitner, która twierdziła, że w podobnych badaniach nie zaobserwowała obecności neutronów. Debiut na międzynarodowej scenie fizyki jądrowej był dla Joliotów dramatyczny. Fred wspominał:

Podana przez nas wiadomość wywołała żywą dyskusję. Panna Meitner oświadczyła, że robiła analogiczne doświadczenia, lecz nie uzyskała takich samych wyników. W końcu znaczna większość obecnych na zjeździe fizyków nabrała przekonania, że nasze doświadczenia nie były ścisłe. Wyszliśmy z posiedzenia z bardzo przykrym uczuciem. Wówczas przystąpił do nas profesor Bohr i biorąc moją żonę i mnie na bok, oświadczył, że uważa nasze wyniki za bardzo ważne. Wkrótce potem także Pauli zwrócił się do nas z kilku słowami otuchy.

VII Konferencja Slovayowska w Brukseli, październik 1933, Domena Publiczna

Po zakończeniu konferencji Lise Meitner w Berlinie oraz Joliot-Curie w Paryżu powtórzyli eksperymenty. Okazało się, że to Irena i Fred mieli rację! Lise należy oddać honor, gdyż napisała do Paryża i przyznała, że podczas obrad w Brukseli nie miała racji.

Irena i Fryderyk Joliot-Curie wykonali doświadczenia, w których postanowili wykazać, że neutrony i pozytony powstają w wyniku bombardowania atomów glinu cząstkami alfa o bardzo dużej energii emitowanymi przez polon. Kiedy odcięli źródło promieniowania (polon) ze zdziwieniem zauważyli, że aluminium nadal emitowało pozytony, które widzieli w komorze Wilsona i rejestrowali licznikiem Geigera. Aluminium stało się radioaktywne! Powtórzyli eksperyment, sprawdzili liczniki. Aluminium było radioaktywne! Po bombardowaniu tarczy cząstkami alfa i odłączeniu ich źródła materiał stawał się radioaktywny. Irena i Fryderyk Joliot-Curie odkryli sztuczną radioaktywność! Fred wspominał:

Nigdy nie zapomnę, jak wielka ogarnęła ją radość, gdy razem z Ireną pokazaliśmy jej w małej szklanej probówce pierwszy sztuczny pierwiastek promieniotwórczy. Ciągle mam przed oczami, jak ujmuje w swoje palce (które były spalone od radu) tę małą próbówkę zawierającą ów promieniotwórczy pierwiastek, którego aktywność wciąż jeszcze była bardzo mała. Aby zweryfikować to, co jej powiedzieliśmy, przysunęła probówkę w pobliże licznika Geigera-Műllera. Usłyszała jak wskaźnik licznika postukuje z dużą prędkością. Była to bez wątpienia jedna z najszczęśliwszych chwil w jej życiu. W kilka miesięcy później Maria Curie zmarła na białaczkę.

Po około dwóch i pół minutach natężenie promieniowania emitowanego przez pierwiastek umieszczony w probówce spadło o połowę. Podczas bombardowania aluminium cząstkami alfa powstał promieniotwórczy, nie występujący w przyrodzie izotop fosforu-30 i neutron. Fosfor-30 jako nietrwały izotop emitował z jądra pozyton (dodatni elektron) i przekształcał się w stabilny izotop krzemu-30. Cała trudność polegała na dowiedzeniu, że w trakcje reakcji jądrowej powstawał fosfor. Tego dowodu dostarczyła Irena.

Najpierw pokryła folię aluminiową niewielką ilością naturalnie występującego fosforu (naturalnie występujący izotop fosforu ma takie same właściwości chemiczne jak powstający radioaktywny izotop – nie można więc ich rozróżnić chemicznie, a jedynie metodami fizycznymi), a następnie bombardowała ją cząstkami alfa. Później uczona umieściła folię w szczelnie zamkniętym naczyniu wypełnionym kwasem solnym. Glin przereagował z kwasem, a powstający w czasie reakcji wodór reagował z fosforem tworząc lotną fosfinę, która przechodziła do cienkiej szklanej rurki. Gaz zbierał się w odwróconej do góry dnem próbówce wypychając z niej wodę. Kiedy Irena przyłożyła do probówki licznik Geigera, usłyszała charakterystyczny trzask. Fryderyk Joliot powiedział – Spóźniliśmy się z neutronem, spóźniliśmy się z pozytonem, ale tym razem zdążyliśmy. W ciągu kilku kolejnych dni Irena i Fryderyk powtórzyli doświadczenie bombardując cząstkami alfa folię z boru i magnezu otrzymując odpowiednio izotopy azotu-13 i krzemu-27. Azot-13 po czternastu minutach przekształcał się w izotop węgla-13, a krzem-27 po dwóch i pół minutach w izotop glinu-27.

Irena Joliot-Curie odbiera Nagrodę Nobla z rąk króla Szwecji Gustawa V, 11 grudnia 1935, NAC sygn. 1-E-3969

15 stycznia 1934 roku na posiedzeniu Académie des Sciences, Jean Perrin zaprezentował komunikat Ireny i Fryderyka Nowy typ radioaktywności. 29 stycznia ukazała się kolejna praca ich autorstwa Chemiczna separacja nowych pierwiastków emitujących pozytony. 10 lutego w numerze „Nature” Joliot-Curie opublikowali kolejną pracę Sztuczna produkcja nowego rodzaju radiopierwiastków. Irena wspominała:

Odkrycie sztucznej promieniotwórczości […] otworzyło przed nauką o promieniotwórczości nowe perspektywy. Obecnie znamy setki sztucznych radiopierwiastków, wytwarzanych przez przemiany atomów trwałych lub słabo promieniotwórczych, a badania większości z nich są zaledwie rozpoczęte. Środkami działania nowej dziedziny nauki były początkowo promieniowanie naturalnych pierwiastków promieniotwórczych oraz cząstki sztucznie przyspieszone w rurach wysokiego napięcia lub za pomocą cyklotronu.

W grudniu 1935 roku Irena i Fryderyk Joliot-Curie pojechali do Sztokholmu odebrać Nagrodę Nobla z chemii. Irena została drugą kobietą wyróżnioną tą nagrodą. Powtórzyła sukces swojej wybitnej matki. Za kilka lat miała okazję otrzymać kolejną nagrodę…

 

 

 

Bibliografia

[1] T. Pospieszny, Radowa księżniczka. Historia Ireny Joliot-Curie, Novae Res, Gdynia, 2017.

[2] R. McKown, She lived for science. Irène Joliot-Curie, Macmillan & Co Ltd., London, 1962.

[3] F. Joliot, I. Curie, Artificial Production of a New Kind of Radio-Element, „Nature”, 1934, nr 133, ss. 201–202.

[4] I. Joliot-Curie, Nobel Lecture: Artificial Production of Radioactive Elements. Nobelprize.org. Nobel Media AB 2014. Web.; http://www.nobelprize.org/nobel_prizes/chemistry/laureates/1935/joliot-curie-lecture.html.

[5] W. Conkling, Radioactive! How Irène Curie & Lise Meitner revolutionized science and changed the world, Algonquin Young Readers, USA, 2016.

[6] E. T. Crossfield, Irène Joliot-Curie: Following in Her Motherʼs Footsteps, [w]: A Devotion to Their Science: Pioneer Women of Radioactivity, red.: M. F. Rayner-Cnaham.

[7] P. Biquard, Frédéric Joliot-Curie – The Man and his Theories, Souvenir Press, London 1965.

[8] J. Chadwick, Possible Existence of a Neutron, „Nature”, 1932, nr 129, s. 312.

[9] J. Chadwick, The Existence of a Neutron, „Proceedings of the Royal Society of London”, 1932, A136, ss. 692–708.

[10] C. D. Anderson, The Apparent Existence of Easily Detectable Positives, „Science”, 1932, nr 76, ss. 238–239.

[11] C. D. Anderson, The Positive Electron, „Phisical Review”, 1933

Alicja Dorabialska

Alicja Dorabialska, b.d., domena publiczna.

Nie zwalczymy prawa natury. Możemy sobie jedynie — jako przestrogę — przypomnieć piękne słowa wypowiedziane ongiś przez Aleksandra Świętochowskiego: „Niech rzesze ludzkie będą uczone przez tych, którzy je kochają, a nie gnane przez tych, którzy nimi rządzić pragną”.

Alicja Dorabialska

W szary wieczór październikowy 1897 roku w Sosnowcu, w domu przy ulicy zwanej Czystą, prawdopodobnie dlatego, że była przeraźliwie brudna – narodziła się dziewczynka. Była okrutnie mała i bardzo wrzeszczała. To JA! Stworzonko nie było entuzjastycznie przez świat witane. Matka chciała mieć syna. Dopiero ojciec musiał jej wytłumaczyć, że „przecież i z córki można mieć jakąś pociechęˮ.

Tak opisała swoje narodziny jedna z najważniejszych postaci polskiej fizyki i chemii – Alicja Dorabialska. Pomimo – jak sama wspominała – wątłego zdrowia po urodzeniu okazała się bardzo silna i ciekawa świata. Dziewczynka była naprawdę wyjątkowa. Jej starsza o dwa lata siostra Lilka była dla małej Alicji wyrocznią. Nauczyła ją chodzić, mówić, czytać w wieku czterech lat i co ważniejsze śpiewać. Podobno jako jedenastomiesięczne dziecko śpiewała w wózku krakowiaka. W 1908 roku rodzina powiększyła się o brata panien Dorabialskich Stefana.

Ojciec Alicji Tomasz Dorabialski był urzędnikiem pocztowym. Jej matka Helena z Kamińskich– córka powstańca – bardzo dbała aby cały dom był pełen tradycji powstańczych. Alicja najpierw uczyła się w domu, a później w latach 1908–1913 uczęszczała do Szkoły Handlowej Żeńskiej. W 1913 roku wspólnie z matką wyjechała do Warszawy. Było to podyktowane faktem, że matura zdawana w stolicy znacznie ułatwi jej wstęp na studia. Przyjazd do Warszawy łączył się z wielką radością, gdyż Alicja mogła przebywać w towarzystwie Lilki, która już uczyła się w klasie fortepianu. W stolicy poza intensywną nauką Alicja poświęciła się działalności społecznej czego wyraźmy obrazem było współtworzenie przez nią tajnego skautingu. Po roku nauki i ukończeniu klasy VII w Siedmioklasowej Szkole Handlowej pani Teodory Raczkowskiej w Warszawie przyszła uczona uzyskała świadectwo dojrzałości. Ponieważ od początku nauki zdradzała intensywne zainteresowanie naukami ścisłymi, a w szczególności chemią, rozpoczęła studia w Towarzystwie Kursów Naukowych w Warszawie. Współpracowało ono z Towarzystwem Naukowym Warszawskim, przy którym istniała pracownia radiologiczna kierowała z Paryża przez Marię Skłodowską-Curie. Niestety wybuch pierwszej wojny światowej pokrzyżował plany Dorabialskiej. W 1915 roku cała rodzina przeprowadziła się do Moskwy, gdzie do 1918 roku Alicja kontynuowała studia na wydziale fizyko-chemicznym Wyższego Kursu Żeńskiego.

Alicja Dorabialska, b.d., [za:] http://zchf.ch.pw.edu.pl/files/historia_zchf.pdf, s. 15.
W wieku osiemnastu lat poznała w domu przyjaciółki profesora Wojciecha Świętosławskiego, z którym natychmiast podjęła polemikę, bowiem uważał on, że kobiety nie są zdolne do pracy naukowej. Alicja miała mu wówczas powiedzieć – Jeszcze w życiu pana znajdzie się kobieta, która dowiedzie, że kobiety mogą pracować naukowo! Nie mogła wiedzieć, że tą kobietą będzie ona. W maju 1918 roku Dorabialska wróciła do Warszawy, gdzie została asystentką profesora Świętosławskiego, który objął Katedrę Chemii Fizycznej na politechnice. Ich współpraca trwała szesnaście lat. Poza pracą naukową i dydaktyczną Dorabialska intensywnie działała społecznie m. in. w Lidze Akademickiej Obrony Państwa, Klubie Gazeciarzy, Straży Kresowej. Doskonaliła także swój warsztat wokalny uczęszczając na prywatne lekcje śpiewu. W 1922 roku Dorabialska uzyskała na Uniwersytecie Warszawskim tytuł doktora filozofii za pracę Badania termochemiczne nad stereoizomerią ketoksymów, którą wykonywała pod kierunkiem profesora Wiktora Lampego. W 1925 roku ziściło się jedno z największych marzeń Dorabialskiej. Z okazji położenia kamienia węgielnego pod budowę Instytutu Radowego do Warszawy przyjechała Maria Skłodowska-Curie. Obie panie spotkały się na bankiecie wydanym na cześć noblistki przez Polskie Towarzystwo Chemiczne. Wielka uczona zaprosiła wówczas do Paryża Dorabialską. Zmieniło to jej życie. W Paryżu została bliską współpracowniczką Madame Curie. Czasem odprowadzała ją do domu, przemywała także palce poparzone radem. Później była jedną z najważniejszych uczennic Marii działającą w Polsce. Zawsze podkreślała niezależność swojej mistrzyni mówiąc przecież to Maria, a nie Becquerel wpadła na pomysł aby zbadać promieniowanie ze starych preparatów uranowych z muzeum mineralogicznego. To ona stwierdziła, że niektóre preparaty wykazują silniejsze promieniowanie niż czysty uran. To ona samodzielnie wysunęła koncepcję, że muszą tam być inne promieniotwórcze pierwiastki. To ona w oparciu o doświadczenia zdobyte podczas zajęć w Towarzystwie Kursów Naukowych przeprowadziła własnoręcznie rozdział blendy smolistej na frakcje zawierające polon i rad. Marii i Piotrowi Curie Dorabialska poświeciła niewielką, ale bardzo urokliwą książeczkę. Kiedy spędziła rok 1931/1932 na Uniwersytecie Karola w Pradze koledzy nazywali ją pieszczotliwie „żaczkiem pani Curie”. W 1928 roku Dorabialska habilitowała się na Politechnice Warszawskiej w dziedzinie chemii fizycznej, a w 1934 roku uzyskała tytuł profesora nadzwyczajnego oraz nominację na kierownika Katedry Chemii Fizycznej Politechniki Lwowskiej. Została tym samym pierwszą kobietą profesorem Politechniki Lwowskiej. Wielu mężczyzn profesorów uważało, że kobieta na tym stanowisku doprowadzi do obniżenia poziomu i powagi uczelni. Po latach uczona wspominała: Na jakimś przyjęciu w Belwederze ówczesny minister wyznań religijnych i oświecenia publicznego Wacław Jędrzejewicz zwrócił się do marszałka: Panie Marszałku? Mamy kłopot. Kandydatką na katedrę Chemii Fizycznej na Politechnice Lwowskiej jest kobieta, Alicja Dorabialska. No to co? huknął marszałek. Niech się baba pokaże! Tak, ale jest jeszcze drugi szkopuł. Ona podpisała protest brzeski. No to co? Ma baba charakter! Więc pan Marszałek nie ma nic przeciwko temu, aby pan prezydent podpisał nominację? Oczywiście!
Delegacja Politechniki Lwowskiej przed uroczystością wręczenia Orderu Odrodzenia Polski Politechnice Lwowskiej i profesorowi Kazimierzowi Bartlowi na Zamku Królewskim w Warszawie; pierwsza z lewej profesor Alicja Dorabialska, 13 lutego 1937, NAC, sygn. 1-N-3209-1

Wybuch drugiej wojny światowej zastała uczoną wraz z rodziną w domku letniskowym w Wołominie pod Warszawą. Alicja zdecydowała się powrócić do Lwowa. Jej pociąg został trafiony pociskami. Uczona była w jednym z dalszych wagonów i nic jej się nie stało. W maju 1940 roku ogłoszono repatriację obywateli polskich z miasta, Dorabialska z niej skorzystała, co uratowało jej życie, bowiem, gdy Niemcy weszli w maju 1941 roku do Lwowa rozstrzelali wszystkich profesorów pod zarzutem współpracy z bolszewikami. Czas wojny uczona wraz z matką i Lilką spędziła w Warszawie. Była niezwykłą kobietą – w tajemnicy przed najbliższymi ukrywała w mieszkaniu Żydówkę, a także nauczała w tajnych kompletach. Przed wybuchem Powstania Warszawskiego spadła na uczoną wielka tragedia – w lipcu 1944 roku zmarła jej ukochana siostra. W powstaniu Dorabialska nie walczyła, ale opatrywała rannych, zdobywała leki i żywność.

Po wojnie Dorabialska otrzymała od rektora nowo powstałej Politechniki Łódzkiej profesora Bohdana Stefanowskiego propozycję objęcia katedry chemii. Wspólnie z profesorem Osmanem Achmatowiczem zajęła się organizacją Wydziału Chemicznego. Została powołana na dziekanem Wydziału Chemii. Była świetnym pedagogiem. Studenci nazywali ją „mamą”. Była odważna i niezależna. Kiedy ministerstwo wysłało do profesorów ankietę, w której zapytywało w jakim stopniu w swoich wykładach uwzględniają idee marksizmu-leninizmu, Alicja Dorabialska odpisała – Uprzejmie zawiadamiam, że nie znany jest jakikolwiek wkład tych panów do chemii fizycznej.

Profesor Alicja Dorabialska ze studentami, 1966, [za:] „Eliksir”, nr 2, 2015, s. 7.
We wrześniu 1968 roku uczona przeszła na emeryturę. Jednak nadal żywo interesowała się życiem wydziału. Do jej dziedzictwa należy zaliczyć kierowaną prze nią Katedrę Chemii Fizycznej, gdzie utworzono ośrodki mikrokalorymetrii i radiochemii. Pozostała zawsze wierna ślubowaniu, które złożyła na Politechnice Lwowskiej – Nie dla marnego zysku ani pustej sławy. W 1972 roku napisała autobiografię pt. Jeszcze jedno życie. Całe honorarium, które otrzymała za książkę przeznaczyła na ufundowanie tablicy na warszawskich Powązkach poświęconej pamięci chemików, którzy zginęli na Wschodzie.Uczona cieszyła się uznaniem i szacunkiem. Została odznaczona Krzyżem Niepodległości, Krzyżem Kawalerskim Orderu Odrodzenia Polski, Krzyżem Oficerskim Orderu Odrodzenia Polski, Krzyżem Komandorskim Orderu Odrodzenia Polski. Otrzymała także nagrodę pisma naukowego „Problemy” za szczególną popularyzację wiedzy chemicznej.

Zmarła 7 sierpnia 1975 roku w wieku siedemdziesięciu ośmiu lat. Została pochowana obok siostry i rodziców na warszawskich Powązkach. Na jej pomniku wyryto napis: Ja nie umarłam – ja żyję z wami.

Zalecana Literatura.

  1. A. Dorabialska, Jeszcze jedno życie, Fundacja Badań Radiacyjnych, Łódź, 1998.
  2. H. Bem, Profesor Alicja Dorabialska (1897–1978), Chemik, nr 12, tom 69, 2015, ss 873–874.
  3. J. Puchalska, Polki, które zadziwiły świat, Wydawnictwo Muza, Warszawa 2016, ss 176–207.
  4. S. Weinsberg-Tekel, Alicja Dorabialska: Polish Chemist, [w]: A Devotion to Their Science: Pioneer Women of Radioactivity, red.: M. F. Rayner-Cnaham, G. W. Rayner-Canham, McGill-Queen’s University Press, Québec, 1997, ss 92-96.

Tomasz Pospieszny

Lise Meitner i rozszczepienie jądra atomowego

Lise Meitner, fotografia dzięki uprzejmości Lotte Meitner-Graf, www.lottemeitnergraf

11 lutego minęła osiemdziesiąta rocznica opublikowania przez Lise Meitner i jej siostrzeńca Ottona Roberta Frischa artykułu, który zmienił oblicze fizyki i chemii jądrowej. Z tej okazji przedstawiamy fragment książki Tomasza Pospiesznego pt. Zapomniany geniusz. Lise Meitner – pierwsza dama fizyki jądrowej.

 

6 stycznia w Naturwissenschaften ukazał się artykuł autorstwa Ottona Hahna i Fritza Strassmanna o dziwnym zachowaniu uranu pod wpływem bombardowania neutronami. Jak podaje Klaus Hoffmann nie padł tam jeszcze termin „rozszczepienie atomu”… 10 stycznia Hahn napisał do Lise kolejny list, w którym relacjonował, że nasz Ra z toru także jest Ba! Eksperyment, który zrobiliśmy wskazuje na to w sposób oczywisty… Dlaczego pokazał się przede wszystkim Ba, nie wiem[1]. Jednakże bezwzględnie stało się jasne – jądro atomu pęka na mniejsze fragmenty. Otto jako chemik popełnił jednak istotny błąd, który zrozumiała i poprawiła Meitner. Słusznie wydedukowała, że jeśli jedną „połówką” był izotop baru (Z=56), to druga musi być kryptonem (Z=36), który może rozpadać się na Rb-Sr-Y-Zr[2]. Miała rację, bowiem to nie suma mas atomowych odpowiadała prawdzie, ale liczb atomowych: 92U = 56Ba + 36Kr!

Świąteczny pobyt Meitner i Frischa w końcu się zakończył. Ona wróciła do Sztokholmu, on do Kopenhagi. Otton Robert zaraz po przyjeździe udał się do Bohra, aby powiadomić go o nowym odkryciu: Ledwie zacząłem mówić, uderzył się ręką w czoło i wykrzyknął: „Och, co z nas za idioci! Och, to wspaniałe! Tak to właśnie musi być! W liście do ciotki relacjonował, że Bohr natychmiast i z wielkim uznaniem zgodził się z nami (…) Chce jeszcze wieczorem rozważyć to ilościowo i jutro ze mną o tym porozmawiać[3].

Przed rozjazdem do domów Meitner i Frisch postanowili podać swoje wyjaśnienia we wspólnej publikacji. Detale uczeni uzgodnili już przez telefon. 6 stycznia Frisch pokazał wstępny tekst Bohrowi, który na pół roku wyjeżdżał z wykładami do Stanów Zjednoczonych. Mistrz obiecał Robertowi, że utrzyma wszystko w tajemnicy dopóki tekst nie ukaże się drukiem. 7 styczna Frisch z wydrukowanym artykułem Hahna i Strassmanna poszedł do laboratorium George’a Placzka (1905-1955), który z miejsca skrytykował pracę niemieckich uczonych. Radził by Frisch odszukał fragmentów pękniętego jądra w komorze mgłowej. Uczony rozpoczął badania 13 stycznia 1939 roku i w ciągu doby potwierdził wyniki berlińskiej grupy. Dokonał fizycznego dowodu na chemiczny eksperyment Hahna. Poza radością z odkrycia, Frischa ucieszyła bardziej inna wiadomość. Jutz Frisch ojciec uczonego został zwolniony z obozu i 14 stycznia razem z Gusti będą mogli przyjechać do Sztokholmu. Będą przebywać z Lise! Podwójnie szczęśliwy Robert udał się do zaprzyjaźnionego biologa Williama Arnolda i zapytał: jak nazywacie proces, w którym bakteria dzieli się na dwie? Binary fission[4] – padła odpowiedź. Później Frisch mówił:

 

Bijące w oczy podobieństwo ze sposobem rozmnażania się bakterii (fission) skłoniło nas do użycia w pierwszej opublikowanej notatce terminu nuclear fission (rozszczepienie jądra). Otto Hahn nazywał ten proces „pękaniem”. Komunikat nasz został z pewnym trudem zredagowany przez telefon, gdyż pani profesor Meitner pojechała do Sztokholmu, podczas gdy ja nadal pracowałem w Kopenhadze[5].

Artykuł Lise Meitner i Otto Roberta Frischa, [za:] www.nature.com
            Przez weekend Frisch i Meitner uzgodnili tekst artykułu pt. „Rozbicie uranu przez neutrony: nowy rodzaj reakcji jądrowejˮ[6], który wysłali do Nature 16 stycznia. W artykule wydanym 11 lutego 1939 roku uczeni użyli po raz pierwszy terminu fission – rozszczepienie. Hahn wykonał eksperyment, Meitner go prawidłowo zinterpretowała. Jak zwykle uzupełniali się doskonale.

Intelektualny wkład Lise Meitner w wyjaśnienie zjawiska rozszczepienia jądra atomowego nigdy nie został doceniony. Co najgorsze, nie docenił go sam Hahn. Uczony odciął się od udziału Meitner całkowicie. Hahn rozpoczął rozdzielanie odkrycia, oddzielając się od Meitner, oddzielając chemię od fizyki[7]. Podkreślał, że gdyby Meitner pozostała w Berlinie wykluczyłaby powstawanie baru w procesie bombardowania uranu. Obawiam się, że Lizunia zabroniłaby mi rozszczepiać uran – mówił po latach niby żartobliwie[8].

[1] N.-T. H. Kim-Ngan, Niedoceniony przez komitet Nagrody Nobla udział austriackiej uczonej Lise Meitner w odkryciu rozszczepienia jadra atomowego, Postępy Techniki Jądrowej, vol. 50(1), 2007, 15–23.

[2] Ibidem, str. 20. Ten wniosek Meitner i Frisch umieścili w artykule opublikowanym w Nature, 3615, 1939, str. 239–238.

[3] R. Rhodes, Jak powstała bomba atomowa, Prószyński i S-ka, Warszawa 2000, str. 233.

[4] Ibidem, str. 235.

[5] R. Jungk, Jaśniej niż tysiąc słońc, Państwowy Instytut Wydawniczy, Warszawa, 1967, str. 62.

[6] R. Rhodes, Jak powstała bomba atomowa, op. cit., str. 235.

[7] R. L. Sime, The Politics of Forgetting: Otto Hahn and the German Nuclear-Fission Project in World War II, Phys. Perspect. 14, 2012, str. 59-94. Dzięki uprzejmości profesor R. L. Sime, która przesłała mi tekst artykułu.

[8] K. Hoffmann, Wina i odpowiedzialność: Otto Hahn, konflikty uczonego, Wydawnictwa Naukowo-Techniczne, Warszawa 1997, str. 142 oraz R. L. Sime, Lise Meitner. A Life in Physics, University of California Press, Berkeley and Los Angeles, California, 1996, str. 454.

 

Piękniejsza Strona Nauki na VII Zimowym Forum Onkologicznym

Na zaproszenie prof. dr hab. n. med. Wojciecha Wysockiego w dniach 1–2 lutego 2019 roku mieliśmy zaszczyt i przyjemność być gośćmi VII Zimowego Forum Onkologicznego, które tradycyjnie już od kilkunastu lat odbywa się w Zakopanem.

Tomasz Pospieszny opowiada o pierwiastkach odkrytych przez Idę Noddack

1 lutego w sekcji poświęconej pamięci Jana Krzeptowskiego „Sabały” dr hab. Tomasz Pospieszny wygłosił wykład pt. „Kobiety układu okresowego”. Organizatorom Forum, a w szczególności prof. dr. hab. n. med. Wojciechowi Wysockiemu serdecznie dziękujemy za zaproszenie i możliwość wygłoszenia wykładu.

Warto nadmienić, że organizator Forum – Polskie Towarzystwo Chirurgii Onkologicznej obchodzi w tym roku jubileusz 25. lecia.

150. rocznica powstania układu okresowego pierwiastków

Dymir Mendelejew, 1897, domena publiczna.

Układ okresowy pierwiastków chemicznych jest chyba jednym z najważniejszych osiągnięć nauki, bowiem zawiera wszystkie znane pierwiastki występujące we Wszechświecie jak i te, które do tej pory otrzymał w laboratorium człowiek. Rok 1869 jest powszechnie uważany za rok sformułowania okresowości pierwiastków chemicznych przez jednego z najwybitniejszych uczonych Dmitrija Mendelejewa. W 2019 roku przypada 150 rocznica powstania układu okresowego pierwiastków, dlatego br. został ogłoszony przez UNESCO i Zgromadzenie Ogólne Narodów Zjednoczonych Międzynarodowym Rokiem Układu Okresowego Pierwiastków Chemicznych (IYPT2019). Więcej informacji można znaleźć tutaj.

 

Układ okresowy Dymitra Mendelejewa z 1869 roku zatytułowany: Eksperyment na systemie pierwiastków w oparciu o ich masy atomowe i chemiczne podobieństwa.

 

Tabela pokazująca okresowość właściwości wielu pierwiastków chemicznych, z pierwszego angielskiego wydania Zasad chemii Dymitra Mendelejewa (z 1891 roku, przetłumaczone z rosyjskiej piątej edycji).

Odkrycie nowego pierwiastka chemicznego niewątpliwie wiąże się z wielką radością badacza. Jednak zanim będzie mógł skorzystać z przywileju nadania nazwy nowoodkrytemu pierwiastkowi, odkrycie musi przejść szereg niezwykle restrykcyjnych kryteriów. Jednym z najważniejszych jest potwierdzenie istnienia pierwiastka przez innych naukowców. Warto podkreślić, że nie zawsze oczywiste jest pierwszeństwo dokonanego odkrycia, a tylko ten kto pierwszy odkrył pierwiastek ma przywilej podania dla niego nazwy (obecnie nie zawsze).

Często pierwiastki nazywa się dla uczczenia innych uczonych. W ten sposób upamiętniono:

  • Johana Gadolinagadolin (Gd, pierwiastek 64). Odkryty w 1880 roku i nazwany na cześć fińskiego mineraloga i chemika, odkrywcy itru.
  • Alberta Einsteinaeinstein (Es, pierwiastek 99). Został odkryty w 1952 roku w pozostałościach po wybuchu termojądrowym na Oceanie Spokojnym.
  • Enrico Fermiego ferm (Fm, pierwiastek 100). Został odkryty wraz z einsteinem. Odkrywca pierwiastków, Albert Ghiorso w uzasadnieniu napisał – Proponujemy nazwy dla pierwiastka o liczbie atomowej 99, einstein (symbol E) na cześć Alberta Einsteina i dla pierwiastka o liczbie atomowej 100, ferm (symbol Fm), na cześć Enrico Fermiego.
  • Dymitrija Mendelejewamendelew (Md, pierwiastek 101). Otrzymany w 1955 roku. Glenn Seaborg wspominał – Myśleliśmy, że do nazwy tego pierwiastka będzie pasowało nazwisko rosyjskiego chemika Dmitrija Mendelejewa, który opracował układ okresowy. W prawie wszystkich naszych eksperymentach otrzymując pierwiastki transuranowe, zależało nam na stosowaniu jego metody przewidywania właściwości chemicznych w oparciu o położenie pierwiastka w tabeli. Ale w środku zimnej wojny, nazywanie pierwiastka na cześć rosyjskiego uczonego było nieco odważnym gestem, który nie pasował do niektórych amerykańskich kryteriów.
Pomnik Układu Okresowego Pierwiastków, upamiętniający sylwetkę Dymitra Mendelejewa, stojący na dziedzińcu Wydziału Technologii Chemicznej i Spożywczej Politechniki  w Bratysławie, 2018, fot. Ewelina Wajs-Baryła
  • Alfreda Nobla nobel (No, pierwiastek 102). Pierwsze doniesienia o odkryciu pierwiastka 102 zostało podane przez fizyków z Instytut Nobla w Szwecji w 1957 roku. Zespół poinformował, że bombardowali kiur izotopami węgla-13 przez dwadzieścia pięć godzin w półgodzinnych odstępach. Po wielu kontrowersjach pierwiastek ostatecznie nazwano na cześć fundatora najbardziej prestiżowej nagrody na świecie.
  • Ernesta Lawrencalorens (Lr, pierwiastek 103). Pierwiastek odkryto w 1961 roku i nazwano na cześć amerykańskiego fizyka, laureat Nagrody Nobla w dziedzinie fizyki za wynalezienie i udoskonalenie cyklotronu.
  • Ernesta Rutherfordarutherford (Rf, pierwiastek 104). Pierwiastek został odkryty w 1969 roku i w Stanach Zjednoczonych nazywano go na cześć Rutherforda, zaś w ZSRR (a także m.in. w Polsce) kurczatowem (Ku) na cześć Igora Kurczatowa rosyjskiego fizyka jądrowego. Nazwa rutherford została zatwierdzona w 1997 roku.
  • Glenna T. Seaborgaseaborg (Sg, pierwiastek 106). Został odkryty w 1974 roku. Nazwano go na cześć laureata Nagrody Nobla z chemii w 1951 roku, odkrywcy wielu transuranowców (plutonu, ameryku, kiuru, berkelu, kalifornu). Co ciekawe Seaborg doczekał „swojegoˮ pierwiastka w układzie okresowym (zmarł w 1994 roku). Zwlekano z nadaniem pierwiastkowi nazwy na cześć uczonego – oficjalnie z uwagi, że nie nazywa się pierwiastków imionami osób żyjących; nieoficjalnie – chciano ukarać Seaborga za otrzymanie niezwykle niebezpiecznego pierwiastka – plutonu.
  • Nielsa Bohrabohr (Bh, pierwiastek 107). Został odkryty w 1974 roku. Niemccy uczeni proponowali nazwać go nielsbohr (Ns), zaś Rosjanie chcieli nadać mu nazwę dubn (na cześć Dubnej – miejscowości, w której znajduje się Zjednoczony Instytut Badań Jądrowych). W roku 1994 komitet IUPAC zaproponował nazwanie pierwiastka 107 na cześć Bohra. Trzy lata później została przyjęta obowiązująca nazwa.
  • Wilhelma Conrada Röntgenarentgen (Rg, pierwiastek 111). Pierwiastek odkryto w 1994 roku, nazwę zaakceptowano w 2004 roku.
  • Mikołaja Kopernikakopernik (Cn, pierwiastek 112). Pierwiastek odkryto w 1996 roku, nazwę zaakceptowano w 2010 roku.
  • Gieorgija Florowaflerow (Fl, pierwiastek 114). Pierwiastek odkryto w 1999 roku. Nazwę zatwierdzono w 2012 roku. Zespół kierowany przez Florowa otrzymał cztery syntetyczne pierwiastki chemiczne: nobla, rutherforda, lorensa oraz dubn.
  • Jurija Oganiesiana – oganesson (Og, pierwiastek 118). Odkryto go w 2010 roku i nazwano na cześć żyjącego fizyka jądrowego, pod kierunkiem którego otrzymano jądra pierwiastków chemicznych o liczbach atomowych 113–116, a także … 118. Dostarczył dowody na istnienie tzw. wyspy stabilności.

 

Na konferencji z okazji 150. rocznicy urodzin Marii Skłodowskiej-Curie na Politechnice Warszawskiej, od lewej: Małgorzata Sobieszczak-Marciniak, Jurii Oganesian, Ewelina Wajs-Baryła i Tomasz Pospieszny, 8 listopada 2017, fot. EWB

 

Na szczególną uwagę zasługują dwa pierwiastki – otrzymany w 1944 roku kiur (pierwiastek 96) i w 1982 roku meitner (pierwiastek 109).

 

Graficznie przedstawione symbole curium i meitnerium autorstwa Theodore Gray’a, [:za] http://www.periodictable.com/

Pierwszy z nich został otrzymany przez Glenna T. Seaborga, Ralpha A. Jamesa oraz Alberta Ghiorso z University of California w Berkeley, poprzez bombardowanie cząstkami alfa izotopów plutonu-239. Odkrywcy nowego pierwiastka zaproponowali dla niego nazwę dla upamiętnienia Marii Skłodowskiej-Curie oraz Pierre’a Curie. Było to wyjątkowe wydarzenie, bowiem pierwszy raz od 1880 roku zaproponowano nazwę pierwiastka dla uczczenia jakiejś osoby. Warto zwrócić uwagę, że jego symbol Cm stanowią inicjały Marii Curie. W uzasadnieniu zespół Seaborga napisał:

Jako nazwę pierwiastka o liczbie atomowej 96 proponujemy „curium” i symbolem Cm. Dowody wskazują, że pierwiastek 96 zawiera siedem elektronów w podpowłoce 5f, a zatem jest analogiczny do gadolinu pierwiastka z siedmioma elektronami w podpowłoce 4f […]. Na tej podstawie pierwiastek 96 jest nazwany Curie w analogiczny sposób do nazwy gadolin, na cześć chemika Gadolina.

Niewiele brakowało, aby także córka Marii i Pierre’a Curie – Irène i jej mąż Frédéric Joliot-Curie także zostali upamiętnieni w układzie okresowym pierwiastków. W 1968 roku zespół uczonych pod kierunkiem Gieorgija Florowa z Zjednoczonego Instytutu Badań Jądrowych odkrył dwa izotopy pierwiastka 105. Rosjanie zaproponowali nazwę nielsbohr (Ns) dla uczczenia pamięci Nielsa Bohra, natomiast Amerykanie używali nazwy hahn (Ha), od nazwiska Ottona Hahna. Międzynarodowa Unia Chemii Czystej i Stosowanej (IUPAC) zasugerowała z kolei nazwę joliot (Jl) Ostatecznie w 1996 zatwierdzono, a w 1997 roku opublikowano dla pierwiastka 105 nazwę dubn (Db) na cześć Dubnej.

Natomiast w 1969 roku zespół z Dubnej przeprowadzili eksperymenty chemiczne na pierwiastko 102 i doszli do wniosku, że zachowuje się on jak cięższy homolog iterbu. Uczeni zaproponowali dla niego nazwę joliotium (Jo) dla uczczenia zmarłej kilka lat wcześniej Irène Joliot-Curie. Ostatecznie pierwiastek nazwano noblem.

Drugi pierwiastek został z kolei nazwany na cześć jednej z najwybitniejszych uczonych wszech czasów Lise Meitner. Badaczka była nominowana do Nagrody Nobla aż 48 raz i nigdy nie została nią wyróżniona. W latach 1934–1948 była nominowana 19 razy z chemii, zaś w latach 1937–1965 29 razy z fizyki. Warto podkreślić, że jej współpracownik Otto Hahn otrzymał Nagrodę Nobla z chemii w 1944 roku za rozszczepienie ciężkich jąder atomowych. Jednak to Lise Meitner zinterpretowała to zjawisko, gdyż Hahn nie miał pojęcia co się dzieje w przeprowadzonych przez niego eksperymentach.

W Instytucie Badań Ciężkich Jonów w Darmstadt w Niemczech zespół niemieckich naukowców pod kierunkiem Petera Armbrustera i Gottfrieda Münzenberga przeprowadził eksperyment, w wyniku którego otrzymano kilku atomów nowego pierwiastka chemicznego. Uczeni bombardowali jądra atomowe bizmutu-209 izotopem żelaza-58 otrzymując pierwiastek o liczbie atomowej 109. Armbruster zaproponował dla niego nazwę meitnerium i symbol Mt. W 1994 roku nazwa ta została zalecona, a w 1997 roku zatwierdzona przez IUPAC. Peter Armbruster po latach uzasadniał: Jestem przekonany, że jej wkład stanowi bardzo istotną części fizyki jądrowej XX wieku. Musiała przy tym pokonać wszelkie możliwe przeszkody.

Hahn, który miał być imieniem pierwiastka numer 105 przepadł na zawsze, bowiem zgodnie z obowiązującymi zasadami nie można użyć proponowanej raz nazwy dla innego pierwiastka. Lise się udało, ale Otto został wykluczony na zawsze.

Miejmy nadzieję, że kolejne otrzymane pierwiastki otrzymają nazwy na cześć wybitnych kobiet uczonych…

Zalecana literatura:

 

  1. M. Fontani, M. Costa, M. V. Orna, The lost elements. The periodic table’s shadow side, Oxford University Press, New York, 2014.
  2. E. R. Scierri, Układ okresowy. Historia i znaczenie, Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław 2013.
  3. S. Kean, Znikająca łyżeczka. Dziwne opowieści chemicznej treści, Ferria Science, Łódź, 2017.
  4.  H. Aldersey-Williams, Fascynujące pierwiastki. W krainie fundamentalnych składników rzeczywistości, Prószyński i S-ka, Warszawa, 2012.
  5. T. Gray, Wielka księga pierwiastków, z których zbudowany jest Wszechświat, Bellona, Warszawa, 2011.
  6. J. Challoner, Pierwiastki, czyli z czego zbudowany jest Wszechświat, Publicat, Poznań 2016.

Tomasz Pospieszny

Emmy Noether

Emmy Noether, b.d., [za:] https://untoldstoriesofscience.files.wordpress.com/2015/09/emmynoether_pic.jpg

Z pewnością nie jest przesadą, by nazwać ją matką współczesnej algebry.

(Irving Kaplansky)

Jeden z czołowych matematyków niemieckich Edmund Landau oceniając geniusz Emmy Noether powiedział – Mogę potwierdzić tylko, że jest ona wybitną matematyczką, ale nie – że jest kobietą. Rzeczywiście uczona nigdy nie przykładała uwagi do swojego wyglądu. Liczyła się dla niej tylko matematyka.

Emmy Noether, b.d., Oberwolfach Photo Collection, sygn. 9267

Emmy Noether urodziła się 23 marca 1882 roku w Erlangen w rodzinie żydowskiej. Miała trzech młodszych braci Alfreda, Fritza i Roberta. Alfred, urodził się w 1883 roku był doktorem z chemii, zmarł w 1918 roku. Fritz urodził się w 1884 roku i był także znanym matematykiem, zaś Gustaw Robert urodził się w 1889 roku. Wiadomo, że był poważnie chory i zmarł w wieku trzydziestu dziewięciu lat. Uczona otrzymała imiona Emmy Amalia, ale będzie używał tylko pierwszego. Jej ojcem był Max Noether, którego rodzina zajmowała się hutnictwem. Mając czternaście lat zachorował na polio. Dzięki długotrwałej i ciężkiej rekonwalescencji odzyskał częściową sprawność, chociaż do końca życia poruszał się o lasce. Najprawdopodobniej zdolności matematyczne Emmy odziedziczyła po ojcu. Uczył się on matematyki samodzielnie, a w 1868 toku otrzymał doktorat na Uniwersytecie w Heidelbergu. W 1875 roku został profesorem Uniwersytetu Fryderyka i Aleksandra w Erlangen, gdzie poznał i poślubił Idę Amalię Kaufmann wywodzącą się z zamożnego rodu kupców niemieckich. Warto zauważyć, że Max był jednym z uczonych, którzy zajmowali się geometrią algebraiczną i teorią funkcji algebraicznych.

Emmy nigdy nie uchodziła za kanon piękna – była tęgawa, sepleniła, nosiła grube okulary, ale była niezwykle sympatyczna, bardzo lubiana. Uwielbiała łamigłówki i zagadki. Dużo czasu poświęcała na czytanie. Matka zadbała, aby Emmy umiała gotować, prowadzić gospodarstwo domowe. Nie były to jej ulubione zajęcia, chociaż lubiła grać na fortepianie i tańczyć. Wykazywała także duże zdolności językowe. W 1900 roku zdała egzamin umożliwiający jej nauczanie języka angielskiego i francuskiego w szkole dla dziewcząt.

Emmy Noether, ok. 1900, domena publiczna.

Noether nie zdecydowała się jednak na nauczanie. Postanowiła rozpocząć studia na Uniwersytecie w Erlangen. Zapisała się na kierunek pedagogiczny jako wolna słuchaczka. Kobieta na uczelni była nadal kimś wyjątkowym. Musiała otrzymać zgodę od poszczególnych profesorów, aby móc uczestniczyć w ich wykładach. Nie było to jednak szczególnie trudne z uwagi na pozycję jej ojca. 14 lipca 1903 roku Emmy zdała egzamin maturalny w Realgymnasium w Norymberdze. Następnie w semestrze zimowym 1903/1904 rozpoczęła studia na Uniwersytecie w Getyndze, gdzie słuchała wykładów między innymi fizyka i astronoma Karla Schwarzschilda oraz matematyków Hermanna Minkowskiego, Otto Blumenthala, Feliksa Kleina czy Davida Hilberta. Kiedy w 1904 roku powróciła do Erlangen zapisała się na uniwersytet jako pełnoprawna studentka matematyki. Pod opieką i kierunkiem przyjaciela Maxa Noethera Paula Gordana przedstawiła w 1907 roku pracę doktorską pt. O kompletnych układach niezmiennych dla trójskładnikowych form bikwadratowych. Umożliwiło jej to podjęcie pracy na uniwersytecie. Jak łatwo można się domyśleć pracowała nieodpłatnie, często była poniżana i dyskryminowana, chociaż jak się wydaje była absolutnie odporna na słowne uszczypliwości. Liczyło się dla niej to, że może pracować naukowo, zastępować ojca na wykładach. Z czasem studenci zaczęli uważać ją za doskonałego nauczyciela – być może dość ekstrawaganckiego, ale doskonale znającego wykładany przedmiot.

Emmy w towarzystwie braci: Alfreda, Fritza i Roberta, przed 1918, Oberwolfach Photo Collection, sygn. 3120

Emmy ściśle współpracowała z Gordanem, a kiedy przeszedł on na emeryturę w 1910 roku czasowo pracowała samodzielnie. Jego zastępca Erhard Schmidt niebawem wyjechał do Wrocławia, a jego miejsce objął Ernst Fischer, który miał istotny wpływ na życie i pracę Noether. Oboje czerpali niezwykła przyjemność z „uprawianiaˮ matematyki, dyskutowali o pracy w każdej wolnej chwili. Noether słynęła z tego, że wysłała pocztówki do Fischera, w których często rozwijała swój tok myślowy. Jednak co ważniejsze Fischer zapoznał Noether z pracami Davida Hilberta.

W roku 1915 roku Feliks Klein zaproponował jej, aby podjęła wykłady na wydziale matematyki Uniwersytetu w Getyndze. Miała podjąć pracę jako asystentka Hilberta. Hilbert i Klein starali się w Ministerstwie Edukacji o przyznanie Noether tytułu profesora, a co za tym idzie wynagrodzenia. Niestety większość tęgich męskich głów wyrażała sprzeciw wobec przyjęcia kobiety w kręgi akademickie. Wzburzony Hilbert miał powiedzieć – Ależ, proszę panów, to, że pani Noether jest kobietą, nie powinno stanowić przeszkody, ponieważ chodzi o jej wykłady, a nie obecność w łaźni.

Noether przyjechała do Getyngi pod koniec kwietnia 1915 roku. W maju otrzymała informację o nagłej śmierci matki. Jej ojciec zrezygnował z pracy i przeszedł na emeryturę. Emmy przerwała więc pracę i wróciła na kilka tygodni do Erlangen. Kiedy wróciła na uniwersytet nie otrzymała pensji, dlatego nadal pozostawała na utrzymaniu rodziny, która także bardzo ją wspierała i mobilizowała w podjętych pracach. Wkrótce udowodniła jedno z najbardziej fundamentalnych twierdzeń w fizyce, tzw. twierdzenie Noether, w myśl którego symetrie praw fizyki są powiązane z zasadami zachowania pewnych wielkości fizycznych np. energii czy pędu. Jednakże według specjalistów najbardziej innowacyjnym wkładem uczonej w matematykę był jej wpływ na rozwój algebry abstrakcyjnej, któremu poświęciła wiele artykułów i wykładów.

Po pierwszej wojnie światowej Noether miała już na tyle pewną pozycję w świecie matematyki, że pozwolono jej przedstawić habilitację. Egzamin ustny odbył się pod koniec maja 1919 roku, a wykład habilitacyjny w czerwcu. Jednak dopiero w 1923 roku otrzymała etat docenta prywatnego z prawem do wykładania i prowadzenia prac doktorskich. Niestety nadal nie otrzymywała wynagrodzenia. Praca była dla niej najważniejsza. Kiedy dyskutowała o matematyce zapominała o całym świecie. Podczas posiłków gestykulowała często rzucając jedzeniem i nie dbając o to, że plami ono jej sukienkę. Kiedyś w trakcie wykładu zsunęła się jej niedbale włożona halka. Emmy podniosła ją, wrzuciła do kosza i kontynuowała wywód jakby nic się nie stało. Często żartobliwie nazywaną ją Herr Noether. Ubierała się w długi płaszcz, chodziła bardzo energicznie zawsze z dużą czarną torbą, mrucząc coś pod nosem. Miała sporą nadwagę, ale absolutnie jej to nie obchodziło. Jeśli nie jem, nie mogę tworzyć matematyki – mawiała.

Emmy Noether, ok. 1930, domena publiczna.

Jej wpływ na rozwój idei współpracowników był niezwykle wyraźny – pozwalała im zdobywać uznanie i rozwijać karierę kosztem własnych osiągnięć. Wkrótce była u szczytu sławy – publikowała, miał uczniów dwa razy zaproszono ją do wygłoszenia referatów na Międzynarodowym Kongresie Matematyków, współredagowała także „Mathematische Annalen”. Była towarzyska i przyjacielska. Kiedy w 1926 roku przyjechał do Getyngi rosyjski topolog Paweł Aleksandrow bardzo szybko nawiązał współpracę z Noether. Uczeni stali się bliskimi przyjaciółmi. Aleksandrow zaczął ją nazywać „der Noetherˮ. Oboje spotykali się regularnie i czerpali radość z dyskusji na temat algebry i topologii. W przemówieniu dedykowanym pamięci uczonej Aleksandrow nazwał ją najwspanialszym matematykiem wszechczasów.

Zimą 1928/1929 Noether pojechała do Moskwy, gdzie kontynuowała pracę z Aleksandrowem oraz prowadziła serię wykładów. Niestety wyjazd na wschód przysporzył jej kłopotów, bowiem kiedy wróciła do Niemiec wiele osób skarżyło się, że mieszka w jednym budynku z marksistowską Żydówką. Uczona została zmuszona do opuszczenia pokoju. Najgorsze jednak miało nadejść.

Emmy Noether w gronie uczniów i współpracowników, b.d., Oberwolfach Photo Collection , sygn. 3097

W 1933 roku, kiedy naziści doszli do władzy, zwolniono wszystkich profesorów pochodzenia żydowskiego. Niewzruszona uczona zapraszała swoich studentów do domu, gdzie prowadziła dalej zajęcia. Miała podobno nawet nie zważać na jednego z nich, gdy przyszedł ubrany w nazistowski mundur. Wbrew wszystkiemu była ostoją dla innych. Hermann Weyl wspominał: Jej odwaga, szczerość, obojętność wobec własnego losu, jej pojednawczy duch były w samym środku całej tej nienawiści i podłości, rozpaczy i smutku wokół nas, moralnego pocieszenia … Jej serce nie znało złośliwości; nie wierzyła w zło, w rzeczy samej nigdy nie przyszło jej do głowy, że może odgrywać rolę wśród mężczyzn. Z czasem jednak sytuacja polityczna robiła się coraz bardziej niebezpieczna i Noether musiała zacząć myśleć o swoim bezpieczeństwie. Początkowo chciała wyjechać do Rosji, jednak przekonano ją aby wyjechała na Bryn Mawr College w Stanach Zjednoczonych, gdzie pojechała z końcem 1933 roku. Niestety trudno było jej się odnaleźć w innych warunkach prac. Była przyzwyczajona do wysokiego poziomu wiedzy doktorantów. Wkrótce zaczęła jeździć na twórcze dyskusje do Institute for Advanced Study w Princeton. W 1934 roku na krótko wróciła do Niemiec, gdzie po raz ostatni widziała się z bratem Fritzem, który wyjechał do Rosji, gdzie podczas czystek zginął.

Emmy Noether, b.d., Oberwolfach Photo Collection, sygn. 9245

W kwietniu 1935 roku lekarze zdiagnozowali w macicy Noether spory guz. Operacja była dość ryzykowna, ponieważ uczona cierpiała na wysokie ciśnienie. W trakcie zabiegu okazało się, że ma także torbiel na jajniku. Operacja przebiegła jednak pomyślnie. Wydawało się, że uczona szybko powraca do zdrowia. Niestety po trzech dniach dostała wysokiej gorączki, straciła przytomność i zmarła. Lekarze nie potrafili podać jednoznacznej przyczyny śmierci – podejrzewali udar lub infekcję pooperacyjną. Po jej śmierci Albert Einstein powiedział:

Kilka dni temu, w wieku pięćdziesięciu trzech lat, zmarła wybitna matematyczka, profesor Emmy Noether, związana z uniwersytetem w Getyndze, a przez ostatnie dwa lata z Bryn Mawr College. W opinii najbardziej kompetentnych współczesnych matematyków, Fräulein Noether była największym twórczym talentem matematycznym, jaki pojawił się od chwili, gdy zaczęło się wyższe wykształcenie kobiet. W dziedzinie algebry, którą od stuleci zajmują się najbardziej utalentowani matematycy, odkryła ona metody, które okazały się niezmiernie ważne dla osiągnięć obecnego młodszego pokolenia matematyków. Matematyka czysta jest na swój sposób poezją idei logicznych. Szuka się w niej najogólniejszych idei zdolnych do połączenia w prostej, logicznej i jednolitej formie jak najszerszego kręgu związków formalnych. W tym dążeniu do logicznego piękna odkrywa się uduchowione formuły konieczne, by głębiej przeniknąć prawa natury.

 

Zalecana literatura:

 

  1. S. Bertsch McGrayne, Nobel Prize Women in Science. Their Lives, Struggles, and Momentous Discoveries, 2nd Ed., Joseph Henry Press, Washington, 2006, ss 64–92.
  2. A. Dick, Emmy Noether, 1882–1935, Birkhauser, Stuttgart, 1981.
  3. A. K.Wróblewski, 300 uczonych prywatnie i na wesoło, Tom 2, Prószyński i S-ka, Warszawa, 2018.
  4. H. Hasse, E. Noether, Die Korrespondenz 1925–1935, Göttingen University Press
  5. M. B. Tent, Emmy Noether: The mother of modern algebra, A K Peters, Ltd. Natick, Massachusetts, 2008.

Tomasz Pospieszny