Stefania Horovitz i tajemnica izotopów

Portret Stefanii Horowitz, prawdopodobnie namalowany przez ojca, b.d., [za:] https://www.geni.com/people/Stefania-Horowitz/6000000009579527822, dostęp z 17 lutego 2018
Odkrycie polonu i radu w 1898 roku przez Marię Skłodowską-Curie spowodowało prawdziwą lawinę odkryć kolejnych nowych pierwiastków. Profesor Józef Hurwic przedstawił to chyba najtrafniej:

Na początku drugiego dziesięciolecia naszego wieku znano około trzydziestu różnych substancji promieniotwórczych, które uważano za odrębne pierwiastki chemiczne, w układzie okresowym zaś między ołowiem i uranem było tylko kilka miejsc nie obsadzonych. Wydawało się więc, że prawo okresowości nie stosuje się do substancji promieniotwórczych. Ich zespół stanowił istną dżunglę.

Tajemnica Natury została wyjaśniona przez Fredericka Soddy’ego w 1913 roku. Uczony zauważył, że jeden pierwiastek chemiczny może mieć kilka odmian różniących się masą atomową. W prestiżowym czasopiśmie „Nature” napisał – Są one [pierwiastki] identyczne pod względem chemicznym, a także fizycznym, z wyjątkiem kilku właściwości zależących wprost od masy atomowej. Ponieważ właściwości chemiczne izotopów są takie same, można je jedynie rozdzielić metodami fizycznymi. Dzięki koncepcji Soddy’ego liczba odkrytych pierwiastków promieniotwórczych nagle zmalała i w układzie okresowym pozostały tylko polon (84Po), radon (86Rn), rad (88Ra), aktyn (89Ac), tor (90Th) i uran (92U). Osiem innych „różnych pierwiastków” (izotopów) tak naprawdę było odmianami umiejscowionych już w układzie okresowym czterech pierwiastków. W tej niezwykłej łamigłówce istotną rolę odegrała uczona urodzona w Warszawie – Stefania Horovitz. Była ona trzecią kobietą z Polski, która po Marii Skłodowskiej-Curie i Alicji Dorabialskiej odegrała istotną rolę w nauce o promieniotwórczości.

Leopold Horovitz, Autoportret, 1915, Domena Publiczna

Stefania Renata Horovitz urodziła się 17 kwietnia 1887 roku w Warszawie. Jej ojciec, Leopold Horovitz (1838–1917), był znanym i cenionym artystą skupionym wokół dworu cesarza Józefa I. Leopold słynął ze zdolności do malowania portretów. W 1873 roku w Wiedniu na międzynarodowej wystawie zdobył złoty metal za jeden ze swoich obrazów. Apogeum jego sławy przypadło na 1896 rok, kiedy został poproszony o namalowanie portretu cesarza Franciszka Józefa I. Dzięki tak szybko rozwijającej się karierze jego rodzina nie narzekała na niedostatki. Mniej więcej w tym samym czasie Leopold wraz z żoną Rozą z Londonów (1853–1920) oraz dziećmi Jerzym (1875–1948), Zofią (1877–1941), Arminem (1880–1965), Janiną (1882–1941) i najmłodszą Stefanią przenieśli się do Wiednia. Stefania pobierała nauki w domu. Nauka była jednak na najwyższym możliwym poziomie. W 1907 roku zainteresowała się chemią i zapisała na Wydział Filozoficzny Uniwersytetu Wiedeńskiego. Sukcesy przychodziły stosunkowo łatwo i już w 1914 roku ukończyła studia doktoranckie specjalizując się w chemii organicznej. Promotorem dysertacji był znany chemik organik profesor Guido Goldschmiedt (1850–1915). Do jego największych osiągnięć naukowych należało między innymi określenie struktury kilku związków pochodzenia naturalnego, w tym papaweryny i kwasu elagowego. Praca Horowitz dotyczyła przegrupowania chinonu pod wpływem kwasu siarkowego. Dysertacja została oceniona bardzo dobrze, a jej wynik opublikowano w dwóch pracach naukowych. Po obronie pracy doktorskiej Stefania zwróciła uwagę na chemię jądrową.

Otto Hönigschmid, przed 1921, [za:] https://badw.de/en/community-of-scholars/deceased.html?tx_badwdb_badwperson%5Bper_id%5D=1374&_badwdb_badwperson%5BpartialType%5D=BADWPersonDetailsPartial&tx_badwdb_badwperson%5BmemberType%5D=&tx_badwdb_badwperson%5Baction%5D=show&tx_badwdb_badwperson%5Bcontroller%5D=BADWPerson, dostęp z 17 lutego 2018
Pod koniec 1913 lub na początku 1914 roku rozpoczęła pracę w Instytucie Radowym w Wiedniu pod kierunkiem Ottona Hönigschmida (1878–1945). W latach 1904–1906 uczony pracował w laboratorium odkrywcy fluoru Henriego Moissana w Paryżu, a później u Theodore’a Richardsa na Uniwersytecie Harvarda. Uczony specjalizował się w badaniach węglików, krzemianów i pomiarach masy atomowej. Według opinii Kazimierza Fajansa był on mistrzem w oznaczaniu mas atomowych. Horovitz została jego protegowaną prawdopodobnie na prośbę Goldschmiedta, który był nauczycielem Hönigschmida. Co niezwykle istotne Hönigschmid miał pozytywne nastawienie do kobiet studiujących i zajmujących się nauką.

Historia rozpoczęcia ich współpracy jest niezwykła. Hönigschmid poszukując współpracownika zwrócił się z prośbą do przebywającej w Berlinie Lise Meitner, czy nie zna kogoś w Wiedniu kto kwalifikowałby się do pomocy w jego projekcie związanym z określaniem masy atomowej pierwiastków. Dzięki jej rekomendacji poznał Stefanię. Meitner i Horovitz najprawdopodobniej spotkały się w 1907 roku. Kilka miesięcy później napisał do Meitner: Przesyłam Ci pozdrowienia od panny Horovitz, która nie wierzy, że ją pamiętasz. Właśnie się z nią o to spieram. Od czerwca 1914 roku Horovitz i Hönigschmid rozpoczęli ścisłą współpracę. Otto Hönigschmid napisał do Lise Meitner – Z panną Horovitz pracujemy jak dobrzy koledzy. W tę piękną niedzielę nadal siedzimy w laboratorium od godziny szóstej. Uczeni zajęli się izolowaniem i oczyszczaniem ołowiu ze 100 kilogramów z siarczanu ołowiu pozyskanego z materiałów z Jachimowa. Praca ta była niezwykle czasochłonna i skrupulatna. Wszystkie ważone substancje musiały być izolowane w stanie czystym, a eksperymentator powinien być w stanie określić nawet najmniejszą ilość substancji, która może zostać utracona podczas eksperymentu ilościowego. Wkrótce stwierdzili, że masa atomowa ołowiu powstającego w szeregu uranowo-radowym wynosiła 206,73. Wykazali tym samym, że ołów z rozpadu jest lżejszy niż „zwykły” ołów (207,21). 23 maja 1914 roku Hönigschmid zaprezentował wyniki na kongresie Bunsena w Lipsku. Pracę wysłali także do „Monatshefte für Chemie”, a później także do „Comptes Rendus”. Uczeni wspólnie wykazali także, że odkryty przez Boltwooda i Hahna w 1906 roku pierwiastek jon to de facto izotop toru-230. Było to niezwykle ważne spostrzeżenie, bowiem wykazało, że jon i tor-230 mają takie same właściwości spektroskopowe i chemiczne, a jedyną różnicą jest ich masa atomowa. W jednym eksperymencie Horovitz podważyła istnienie pierwiastka i znalazła drugi dowód na istnienie izotopów.

Stefania Horowitz w Instytucie Radowym w Wiedniu, listopad 1915, [za:] M. Retenzi, Trafficking Materials and Gendered Experimental Practices. Radium Research in Early 20th Century Viena, http://www.gutenberg-e.org/rentetzi/index.html, dostęp z 17 lutego 2019
Ze współpracy Stefanii i Ottona wynika, że Horovitz była dojrzałym naukowcem i bliskim współpracownikiem swojego mentora. Potrafiła wyciągać słuszne wnioski z przeprowadzonych eksperymentów, często sama inicjowała prace nad nurtującym ją problemem. W 1914 roku Hönigschmid w liście do Meitner pisał: Teraz izolujemy ołów z czystej smółki z Jachimowa… Mamy nadzieję, że w ciągu najbliższych dwóch tygodni przed świętami przeanalizujemy te przygotowane [próbki] ołowiu… W 1922 roku w wykładzie noblowskim Frederick Soddy również podkreślił udział Stefanii Horovitz w pracach nad izotopami. Powiedział między innymi – Jednocześnie prace nad ołowiem z minerałów uranowych były prowadzone przez T. W. Richardsa i jego studentów na Harvardzie, a także przez Hönigschmida i Mlle. Horovitz, którzy podali prawidłowe wartości [masy atomowej ołowiu]. Historyk nauki Lawrence Badash podkreślił, że Hönigschmid i Horovitz przedstawili najbardziej przekonujące dowody potwierdzające istnienia izotopów, a ich prace eksperymentalne potwierdziły jednocześnie pracę wykonaną w trzech innych laboratoriach.

Niestety pod koniec pierwszej wojny światowej współpraca uczonych została przerwana. Hönigschmid przyjął etat na Uniwersytecie w Monachium i opuścił Wiedeń. Z niejasnych dziś powodów Horovitz opuściła Wiedeń i na krótki czas porzuciła karierę naukową. Według opinii członków rodziny chciała pocieszyć matkę po śmierci ojca i w 1917 roku wróciła do Warszawy. Siedem lat później, w 1924 roku wróciła do Wiednia i zafascynowała się psychologią adlerowską. Wspólnie z Alice Friedman zaczęła organizować dom zastępczy dla dzieci z trudnościami w nauce. W 1937 roku, prawdopodobnie z powodów politycznych, Horovitz opuściła Wiedeń i po raz kolejny przeprowadziła się do Warszawy. Wybitny polski radiochemik Kazimierz Fajans w liście do Elisabeth Rona (jedna z uczonych pracujących w Instytucie Radowym w Wiedniu) pisał:

Prawdopodobnie nie otrzymałaś z Wiednia żadnych informacji o losie dr Stefanii Horovitz. Dowiedziałem się o tym od wspólnego krewnego z Warszawy. Stefania przeprowadziła się tam [do Warszawy] po I wojnie światowej i po tym jak jej rodzice zmarli w Wiedniu, aby dołączyć do swojej zamężnej siostry [Zofii Natanson]. Nie była aktywna w chemii, a obie [siostry] zostały zlikwidowane przez nazistów w 1940 roku.

Kiedy Warszawa została okupowana przez nazistów, Horovitz i jej siostra miały szansę ucieczki z getta. Jednak w obawie przed prześladowaniem ukrywających się Żydów obie zdecydowała się udać na Umschlagplatz. Były wśród tysięcy Żydów, którzy zostali przetransportowani do obozu zagłady w Treblince. Obie zginęły. Ich losy są nieznane.

Pod koniec drugiej wojny światowej 14 października 1945 roku pod nazistowską administracją, z którą się nie zgadzali, Otto Hönigschmid wraz z żoną popełnili samobójstwo.

Reszta jest milczeniem…

 

Zalecana literatura:

  1. F. Rayner-Cnaham, G. W. Rayner-Canham, Stefanie Horovitz: A Crucial Role in the Discovery of Isotopes, [w]: A Devotion to Their Science: Pioneer Women of Radioactivity, red.: M. F. Rayner-Cnaham, G. W. Rayner-Canham, McGill-Queen’s University Press, Québec, 1997.
  2. M. Rentetzi, Stephanie Horovitz (1887–1942), [w]: European Women in Chemistry, red.: J. Apotheker, L. S. Sarkadi, Wiley, Verlag, 2011, str. 75–79.
  3. M. Rayner-Canham, G. Rayner-Canham, Stefanie Horovitz, Ellen Gleditsch, Ada Hitchins, and the Discovery of Isotopes, Bulletin for the History of Chemistry, 25(2), 2000, str. 103–108.
  4. B. Van Tiggelen, A. Lykknes, Celebrate the Women Behind the Periodic Table, Nature, 565, 2019, str. 559–561.

 

 

Katowice szlakiem Marii Goeppert-Mayer

Mural na ścianie rektoratu Uniwersytetu Śląskiego w hołdzie Marii Goeppert-Meyer, zaprojektowany został przez Grupę The Krasnals, a wykonany przez Wakeuptime w 2014 roku

Zwiedzaliśmy Katowice śladami Marii Goeppert-Mayer – Noblistki, która urodziła się w 1906 roku właśnie w tym mieście. Na budynku Rektoratu Uniwersytetu Śląskiego od 2014 roku widnieje mural zatytułowany „Tańcząca z atomami”.

Nasza zaprzyjaźniona nauczycielka – Pani Bożena Kubiak, która nas do Katowic zaprosiła – zorganizowała event geocachingowy poświęcony Marii Goeppert-Mayer zatytułowany JEJ MARIA ​. To już drugie spotkanie z tej serii – poświęcone genialnym kobietom-naukowcom – i z niecierpliwością czekamy na kolejne!

Eventowi towarzyszył wykład o Marii Goeppert-Mayer

Sali użyczyła nam Parafia Ewangelicko-Augsburska Zmartwychwstania Pańskiego – dziękujemy!

Drugi dzień naszego pobytu w Katowicach rozpoczęliśmy od spotkania z uczestnikami IX Regionalnego Konkursu im. Marii Goeppert-Mayer i wykładu dra hab. Tomasza Pospiesznego zatytułowanego „Pasja i geniusz” w ZSO nr 1 im. Mikołaja Kopernika w Katowicach.

Następnym przystankiem był Główny Instytut Górnictwa i Centrum Radiometrii Środowiskowej im. Marii Goeppert-Mayer, które zwiedziliśmy z laureatami konkursu.

 

Kawiarnia Fotograficzna Katowice gościła nas wieczorem na czytaniu sztuki Ewy Mikuły „Zrób sobie mural” – inspirowanej życiem Noblistki.


Serdecznie dziękujemy wszystkim zaangażowanym w naszą katowicką wyprawę szlakiem miejsc związanych z Marią Goeppert-Mayer. Szczególne podziękowania składamy Pani Bożenie Kubiak – anglistce z I LO w Katowicach – dzięki której osobistemu zaangażowaniu Noblistka z Katowic jest przywracana lokalnej pamięci.

Alicja Dorabialska

Alicja Dorabialska, b.d., domena publiczna.

Nie zwalczymy prawa natury. Możemy sobie jedynie — jako przestrogę — przypomnieć piękne słowa wypowiedziane ongiś przez Aleksandra Świętochowskiego: „Niech rzesze ludzkie będą uczone przez tych, którzy je kochają, a nie gnane przez tych, którzy nimi rządzić pragną”.

Alicja Dorabialska

W szary wieczór październikowy 1897 roku w Sosnowcu, w domu przy ulicy zwanej Czystą, prawdopodobnie dlatego, że była przeraźliwie brudna – narodziła się dziewczynka. Była okrutnie mała i bardzo wrzeszczała. To JA! Stworzonko nie było entuzjastycznie przez świat witane. Matka chciała mieć syna. Dopiero ojciec musiał jej wytłumaczyć, że „przecież i z córki można mieć jakąś pociechęˮ.

Tak opisała swoje narodziny jedna z najważniejszych postaci polskiej fizyki i chemii – Alicja Dorabialska. Pomimo – jak sama wspominała – wątłego zdrowia po urodzeniu okazała się bardzo silna i ciekawa świata. Dziewczynka była naprawdę wyjątkowa. Jej starsza o dwa lata siostra Lilka była dla małej Alicji wyrocznią. Nauczyła ją chodzić, mówić, czytać w wieku czterech lat i co ważniejsze śpiewać. Podobno jako jedenastomiesięczne dziecko śpiewała w wózku krakowiaka. W 1908 roku rodzina powiększyła się o brata panien Dorabialskich Stefana.

Ojciec Alicji Tomasz Dorabialski był urzędnikiem pocztowym. Jej matka Helena z Kamińskich– córka powstańca – bardzo dbała aby cały dom był pełen tradycji powstańczych. Alicja najpierw uczyła się w domu, a później w latach 1908–1913 uczęszczała do Szkoły Handlowej Żeńskiej. W 1913 roku wspólnie z matką wyjechała do Warszawy. Było to podyktowane faktem, że matura zdawana w stolicy znacznie ułatwi jej wstęp na studia. Przyjazd do Warszawy łączył się z wielką radością, gdyż Alicja mogła przebywać w towarzystwie Lilki, która już uczyła się w klasie fortepianu. W stolicy poza intensywną nauką Alicja poświęciła się działalności społecznej czego wyraźmy obrazem było współtworzenie przez nią tajnego skautingu. Po roku nauki i ukończeniu klasy VII w Siedmioklasowej Szkole Handlowej pani Teodory Raczkowskiej w Warszawie przyszła uczona uzyskała świadectwo dojrzałości. Ponieważ od początku nauki zdradzała intensywne zainteresowanie naukami ścisłymi, a w szczególności chemią, rozpoczęła studia w Towarzystwie Kursów Naukowych w Warszawie. Współpracowało ono z Towarzystwem Naukowym Warszawskim, przy którym istniała pracownia radiologiczna kierowała z Paryża przez Marię Skłodowską-Curie. Niestety wybuch pierwszej wojny światowej pokrzyżował plany Dorabialskiej. W 1915 roku cała rodzina przeprowadziła się do Moskwy, gdzie do 1918 roku Alicja kontynuowała studia na wydziale fizyko-chemicznym Wyższego Kursu Żeńskiego.

Alicja Dorabialska, b.d., [za:] http://zchf.ch.pw.edu.pl/files/historia_zchf.pdf, s. 15.
W wieku osiemnastu lat poznała w domu przyjaciółki profesora Wojciecha Świętosławskiego, z którym natychmiast podjęła polemikę, bowiem uważał on, że kobiety nie są zdolne do pracy naukowej. Alicja miała mu wówczas powiedzieć – Jeszcze w życiu pana znajdzie się kobieta, która dowiedzie, że kobiety mogą pracować naukowo! Nie mogła wiedzieć, że tą kobietą będzie ona. W maju 1918 roku Dorabialska wróciła do Warszawy, gdzie została asystentką profesora Świętosławskiego, który objął Katedrę Chemii Fizycznej na politechnice. Ich współpraca trwała szesnaście lat. Poza pracą naukową i dydaktyczną Dorabialska intensywnie działała społecznie m. in. w Lidze Akademickiej Obrony Państwa, Klubie Gazeciarzy, Straży Kresowej. Doskonaliła także swój warsztat wokalny uczęszczając na prywatne lekcje śpiewu. W 1922 roku Dorabialska uzyskała na Uniwersytecie Warszawskim tytuł doktora filozofii za pracę Badania termochemiczne nad stereoizomerią ketoksymów, którą wykonywała pod kierunkiem profesora Wiktora Lampego. W 1925 roku ziściło się jedno z największych marzeń Dorabialskiej. Z okazji położenia kamienia węgielnego pod budowę Instytutu Radowego do Warszawy przyjechała Maria Skłodowska-Curie. Obie panie spotkały się na bankiecie wydanym na cześć noblistki przez Polskie Towarzystwo Chemiczne. Wielka uczona zaprosiła wówczas do Paryża Dorabialską. Zmieniło to jej życie. W Paryżu została bliską współpracowniczką Madame Curie. Czasem odprowadzała ją do domu, przemywała także palce poparzone radem. Później była jedną z najważniejszych uczennic Marii działającą w Polsce. Zawsze podkreślała niezależność swojej mistrzyni mówiąc przecież to Maria, a nie Becquerel wpadła na pomysł aby zbadać promieniowanie ze starych preparatów uranowych z muzeum mineralogicznego. To ona stwierdziła, że niektóre preparaty wykazują silniejsze promieniowanie niż czysty uran. To ona samodzielnie wysunęła koncepcję, że muszą tam być inne promieniotwórcze pierwiastki. To ona w oparciu o doświadczenia zdobyte podczas zajęć w Towarzystwie Kursów Naukowych przeprowadziła własnoręcznie rozdział blendy smolistej na frakcje zawierające polon i rad. Marii i Piotrowi Curie Dorabialska poświeciła niewielką, ale bardzo urokliwą książeczkę. Kiedy spędziła rok 1931/1932 na Uniwersytecie Karola w Pradze koledzy nazywali ją pieszczotliwie „żaczkiem pani Curie”. W 1928 roku Dorabialska habilitowała się na Politechnice Warszawskiej w dziedzinie chemii fizycznej, a w 1934 roku uzyskała tytuł profesora nadzwyczajnego oraz nominację na kierownika Katedry Chemii Fizycznej Politechniki Lwowskiej. Została tym samym pierwszą kobietą profesorem Politechniki Lwowskiej. Wielu mężczyzn profesorów uważało, że kobieta na tym stanowisku doprowadzi do obniżenia poziomu i powagi uczelni. Po latach uczona wspominała: Na jakimś przyjęciu w Belwederze ówczesny minister wyznań religijnych i oświecenia publicznego Wacław Jędrzejewicz zwrócił się do marszałka: Panie Marszałku? Mamy kłopot. Kandydatką na katedrę Chemii Fizycznej na Politechnice Lwowskiej jest kobieta, Alicja Dorabialska. No to co? huknął marszałek. Niech się baba pokaże! Tak, ale jest jeszcze drugi szkopuł. Ona podpisała protest brzeski. No to co? Ma baba charakter! Więc pan Marszałek nie ma nic przeciwko temu, aby pan prezydent podpisał nominację? Oczywiście!
Delegacja Politechniki Lwowskiej przed uroczystością wręczenia Orderu Odrodzenia Polski Politechnice Lwowskiej i profesorowi Kazimierzowi Bartlowi na Zamku Królewskim w Warszawie; pierwsza z lewej profesor Alicja Dorabialska, 13 lutego 1937, NAC, sygn. 1-N-3209-1

Wybuch drugiej wojny światowej zastała uczoną wraz z rodziną w domku letniskowym w Wołominie pod Warszawą. Alicja zdecydowała się powrócić do Lwowa. Jej pociąg został trafiony pociskami. Uczona była w jednym z dalszych wagonów i nic jej się nie stało. W maju 1940 roku ogłoszono repatriację obywateli polskich z miasta, Dorabialska z niej skorzystała, co uratowało jej życie, bowiem, gdy Niemcy weszli w maju 1941 roku do Lwowa rozstrzelali wszystkich profesorów pod zarzutem współpracy z bolszewikami. Czas wojny uczona wraz z matką i Lilką spędziła w Warszawie. Była niezwykłą kobietą – w tajemnicy przed najbliższymi ukrywała w mieszkaniu Żydówkę, a także nauczała w tajnych kompletach. Przed wybuchem Powstania Warszawskiego spadła na uczoną wielka tragedia – w lipcu 1944 roku zmarła jej ukochana siostra. W powstaniu Dorabialska nie walczyła, ale opatrywała rannych, zdobywała leki i żywność.

Po wojnie Dorabialska otrzymała od rektora nowo powstałej Politechniki Łódzkiej profesora Bohdana Stefanowskiego propozycję objęcia katedry chemii. Wspólnie z profesorem Osmanem Achmatowiczem zajęła się organizacją Wydziału Chemicznego. Została powołana na dziekanem Wydziału Chemii. Była świetnym pedagogiem. Studenci nazywali ją „mamą”. Była odważna i niezależna. Kiedy ministerstwo wysłało do profesorów ankietę, w której zapytywało w jakim stopniu w swoich wykładach uwzględniają idee marksizmu-leninizmu, Alicja Dorabialska odpisała – Uprzejmie zawiadamiam, że nie znany jest jakikolwiek wkład tych panów do chemii fizycznej.

Profesor Alicja Dorabialska ze studentami, 1966, [za:] „Eliksir”, nr 2, 2015, s. 7.
We wrześniu 1968 roku uczona przeszła na emeryturę. Jednak nadal żywo interesowała się życiem wydziału. Do jej dziedzictwa należy zaliczyć kierowaną prze nią Katedrę Chemii Fizycznej, gdzie utworzono ośrodki mikrokalorymetrii i radiochemii. Pozostała zawsze wierna ślubowaniu, które złożyła na Politechnice Lwowskiej – Nie dla marnego zysku ani pustej sławy. W 1972 roku napisała autobiografię pt. Jeszcze jedno życie. Całe honorarium, które otrzymała za książkę przeznaczyła na ufundowanie tablicy na warszawskich Powązkach poświęconej pamięci chemików, którzy zginęli na Wschodzie.Uczona cieszyła się uznaniem i szacunkiem. Została odznaczona Krzyżem Niepodległości, Krzyżem Kawalerskim Orderu Odrodzenia Polski, Krzyżem Oficerskim Orderu Odrodzenia Polski, Krzyżem Komandorskim Orderu Odrodzenia Polski. Otrzymała także nagrodę pisma naukowego „Problemy” za szczególną popularyzację wiedzy chemicznej.

Zmarła 7 sierpnia 1975 roku w wieku siedemdziesięciu ośmiu lat. Została pochowana obok siostry i rodziców na warszawskich Powązkach. Na jej pomniku wyryto napis: Ja nie umarłam – ja żyję z wami.

Zalecana Literatura.

  1. A. Dorabialska, Jeszcze jedno życie, Fundacja Badań Radiacyjnych, Łódź, 1998.
  2. H. Bem, Profesor Alicja Dorabialska (1897–1978), Chemik, nr 12, tom 69, 2015, ss 873–874.
  3. J. Puchalska, Polki, które zadziwiły świat, Wydawnictwo Muza, Warszawa 2016, ss 176–207.
  4. S. Weinsberg-Tekel, Alicja Dorabialska: Polish Chemist, [w]: A Devotion to Their Science: Pioneer Women of Radioactivity, red.: M. F. Rayner-Cnaham, G. W. Rayner-Canham, McGill-Queen’s University Press, Québec, 1997, ss 92-96.

Tomasz Pospieszny

Lise Meitner i rozszczepienie jądra atomowego

Lise Meitner, fotografia dzięki uprzejmości Lotte Meitner-Graf, www.lottemeitnergraf

11 lutego minęła osiemdziesiąta rocznica opublikowania przez Lise Meitner i jej siostrzeńca Ottona Roberta Frischa artykułu, który zmienił oblicze fizyki i chemii jądrowej. Z tej okazji przedstawiamy fragment książki Tomasza Pospiesznego pt. Zapomniany geniusz. Lise Meitner – pierwsza dama fizyki jądrowej.

 

6 stycznia w Naturwissenschaften ukazał się artykuł autorstwa Ottona Hahna i Fritza Strassmanna o dziwnym zachowaniu uranu pod wpływem bombardowania neutronami. Jak podaje Klaus Hoffmann nie padł tam jeszcze termin „rozszczepienie atomu”… 10 stycznia Hahn napisał do Lise kolejny list, w którym relacjonował, że nasz Ra z toru także jest Ba! Eksperyment, który zrobiliśmy wskazuje na to w sposób oczywisty… Dlaczego pokazał się przede wszystkim Ba, nie wiem[1]. Jednakże bezwzględnie stało się jasne – jądro atomu pęka na mniejsze fragmenty. Otto jako chemik popełnił jednak istotny błąd, który zrozumiała i poprawiła Meitner. Słusznie wydedukowała, że jeśli jedną „połówką” był izotop baru (Z=56), to druga musi być kryptonem (Z=36), który może rozpadać się na Rb-Sr-Y-Zr[2]. Miała rację, bowiem to nie suma mas atomowych odpowiadała prawdzie, ale liczb atomowych: 92U = 56Ba + 36Kr!

Świąteczny pobyt Meitner i Frischa w końcu się zakończył. Ona wróciła do Sztokholmu, on do Kopenhagi. Otton Robert zaraz po przyjeździe udał się do Bohra, aby powiadomić go o nowym odkryciu: Ledwie zacząłem mówić, uderzył się ręką w czoło i wykrzyknął: „Och, co z nas za idioci! Och, to wspaniałe! Tak to właśnie musi być! W liście do ciotki relacjonował, że Bohr natychmiast i z wielkim uznaniem zgodził się z nami (…) Chce jeszcze wieczorem rozważyć to ilościowo i jutro ze mną o tym porozmawiać[3].

Przed rozjazdem do domów Meitner i Frisch postanowili podać swoje wyjaśnienia we wspólnej publikacji. Detale uczeni uzgodnili już przez telefon. 6 stycznia Frisch pokazał wstępny tekst Bohrowi, który na pół roku wyjeżdżał z wykładami do Stanów Zjednoczonych. Mistrz obiecał Robertowi, że utrzyma wszystko w tajemnicy dopóki tekst nie ukaże się drukiem. 7 styczna Frisch z wydrukowanym artykułem Hahna i Strassmanna poszedł do laboratorium George’a Placzka (1905-1955), który z miejsca skrytykował pracę niemieckich uczonych. Radził by Frisch odszukał fragmentów pękniętego jądra w komorze mgłowej. Uczony rozpoczął badania 13 stycznia 1939 roku i w ciągu doby potwierdził wyniki berlińskiej grupy. Dokonał fizycznego dowodu na chemiczny eksperyment Hahna. Poza radością z odkrycia, Frischa ucieszyła bardziej inna wiadomość. Jutz Frisch ojciec uczonego został zwolniony z obozu i 14 stycznia razem z Gusti będą mogli przyjechać do Sztokholmu. Będą przebywać z Lise! Podwójnie szczęśliwy Robert udał się do zaprzyjaźnionego biologa Williama Arnolda i zapytał: jak nazywacie proces, w którym bakteria dzieli się na dwie? Binary fission[4] – padła odpowiedź. Później Frisch mówił:

 

Bijące w oczy podobieństwo ze sposobem rozmnażania się bakterii (fission) skłoniło nas do użycia w pierwszej opublikowanej notatce terminu nuclear fission (rozszczepienie jądra). Otto Hahn nazywał ten proces „pękaniem”. Komunikat nasz został z pewnym trudem zredagowany przez telefon, gdyż pani profesor Meitner pojechała do Sztokholmu, podczas gdy ja nadal pracowałem w Kopenhadze[5].

Artykuł Lise Meitner i Otto Roberta Frischa, [za:] www.nature.com
            Przez weekend Frisch i Meitner uzgodnili tekst artykułu pt. „Rozbicie uranu przez neutrony: nowy rodzaj reakcji jądrowejˮ[6], który wysłali do Nature 16 stycznia. W artykule wydanym 11 lutego 1939 roku uczeni użyli po raz pierwszy terminu fission – rozszczepienie. Hahn wykonał eksperyment, Meitner go prawidłowo zinterpretowała. Jak zwykle uzupełniali się doskonale.

Intelektualny wkład Lise Meitner w wyjaśnienie zjawiska rozszczepienia jądra atomowego nigdy nie został doceniony. Co najgorsze, nie docenił go sam Hahn. Uczony odciął się od udziału Meitner całkowicie. Hahn rozpoczął rozdzielanie odkrycia, oddzielając się od Meitner, oddzielając chemię od fizyki[7]. Podkreślał, że gdyby Meitner pozostała w Berlinie wykluczyłaby powstawanie baru w procesie bombardowania uranu. Obawiam się, że Lizunia zabroniłaby mi rozszczepiać uran – mówił po latach niby żartobliwie[8].

[1] N.-T. H. Kim-Ngan, Niedoceniony przez komitet Nagrody Nobla udział austriackiej uczonej Lise Meitner w odkryciu rozszczepienia jadra atomowego, Postępy Techniki Jądrowej, vol. 50(1), 2007, 15–23.

[2] Ibidem, str. 20. Ten wniosek Meitner i Frisch umieścili w artykule opublikowanym w Nature, 3615, 1939, str. 239–238.

[3] R. Rhodes, Jak powstała bomba atomowa, Prószyński i S-ka, Warszawa 2000, str. 233.

[4] Ibidem, str. 235.

[5] R. Jungk, Jaśniej niż tysiąc słońc, Państwowy Instytut Wydawniczy, Warszawa, 1967, str. 62.

[6] R. Rhodes, Jak powstała bomba atomowa, op. cit., str. 235.

[7] R. L. Sime, The Politics of Forgetting: Otto Hahn and the German Nuclear-Fission Project in World War II, Phys. Perspect. 14, 2012, str. 59-94. Dzięki uprzejmości profesor R. L. Sime, która przesłała mi tekst artykułu.

[8] K. Hoffmann, Wina i odpowiedzialność: Otto Hahn, konflikty uczonego, Wydawnictwa Naukowo-Techniczne, Warszawa 1997, str. 142 oraz R. L. Sime, Lise Meitner. A Life in Physics, University of California Press, Berkeley and Los Angeles, California, 1996, str. 454.

 

Międzynarodowy Dzień Kobiet i Dziewcząt w Nauce

Jednym z wizerunków Boga jest właśnie oblicze kobiety.

Paulo Coelho

22 grudnia 2015 roku Zgromadzenie Ogólne ONZ przyjęło rezolucję ustanawiającą 11 lutego Międzynarodowym Dniem Kobiet i Dziewcząt w Nauce. W tym roku obędziemy obchodzić ten dzień po raz trzeci.

Obecnie tylko 30% spośród wszystkich naukowców to kobiety. Bieżącym celem ONZ i UNESCO jest zapewnienie kobietom i dziewczętom pełnego i równego dostępu do nauki oraz uczestnictwo w badaniach naukowych. Więcej o tym przeczytacie stronie http://www.unwomen.org/en.

Grafika Eweliny Wajs-Baryły przedstawia nasz subiektywny wybór najważniejszych kobiecych postaci świata nauki, od czasów najdawniejszych do współczesności. Spośród wszystkich przedstawionych Pań tylko 7 jest laureatkami Nagrody Nobla.

#ChooseScience

 

Piękniejsza Strona Nauki na VII Zimowym Forum Onkologicznym

Na zaproszenie prof. dr hab. n. med. Wojciecha Wysockiego w dniach 1–2 lutego 2019 roku mieliśmy zaszczyt i przyjemność być gośćmi VII Zimowego Forum Onkologicznego, które tradycyjnie już od kilkunastu lat odbywa się w Zakopanem.

Tomasz Pospieszny opowiada o pierwiastkach odkrytych przez Idę Noddack

1 lutego w sekcji poświęconej pamięci Jana Krzeptowskiego „Sabały” dr hab. Tomasz Pospieszny wygłosił wykład pt. „Kobiety układu okresowego”. Organizatorom Forum, a w szczególności prof. dr. hab. n. med. Wojciechowi Wysockiemu serdecznie dziękujemy za zaproszenie i możliwość wygłoszenia wykładu.

Warto nadmienić, że organizator Forum – Polskie Towarzystwo Chirurgii Onkologicznej obchodzi w tym roku jubileusz 25. lecia.

Piękniejsza Strona Nauki w Muzeum Tatrzańskim

W czwartek 31 stycznia mieliśmy zaszczyt współorganizować, a także uczestniczyć w spotkaniu Tatry źródłem inspiracji i kolebką niepodległości w Muzeum Tatrzańskim w Zakopanem. Bardzo dziękujemy Pani Annie Wende-Surmiak – dyrektor Muzeum Tatrzańskiego.

O Marii Skłodowskiej-Curie i jej rodzinie, odkryciu promieniotwórczości i eksploracji skał tatrzańskich wykład wygłosiła prof. dr hab. Antonina Cebulska-Wasilewska. Natomiast o życiu i działalności Bronisławy Dłuskiej opowiedziała Ewelina Wajs-Baryła.

Autorem zamieszczonych fotografii jest Pan Piotr Kyc z Muzeum Jana Kasprowicza w Zakopanem.

Słowo wstępne wygłosiła Pani Anna Wende-Surmiak – dyrektor Muzeum Tatrzańskiego

 

Wykład Eweliny Wajs-Baryły

 

Pani Jolanta Kapecka opowiedziała o swoich badaniach wnętrz sanatorium Dłuskich

 

Spotkaniu towarzyszyła dyskusja

 

 

 

150. rocznica powstania układu okresowego pierwiastków

Dymir Mendelejew, 1897, domena publiczna.

Układ okresowy pierwiastków chemicznych jest chyba jednym z najważniejszych osiągnięć nauki, bowiem zawiera wszystkie znane pierwiastki występujące we Wszechświecie jak i te, które do tej pory otrzymał w laboratorium człowiek. Rok 1869 jest powszechnie uważany za rok sformułowania okresowości pierwiastków chemicznych przez jednego z najwybitniejszych uczonych Dmitrija Mendelejewa. W 2019 roku przypada 150 rocznica powstania układu okresowego pierwiastków, dlatego br. został ogłoszony przez UNESCO i Zgromadzenie Ogólne Narodów Zjednoczonych Międzynarodowym Rokiem Układu Okresowego Pierwiastków Chemicznych (IYPT2019). Więcej informacji można znaleźć tutaj.

 

Układ okresowy Dymitra Mendelejewa z 1869 roku zatytułowany: Eksperyment na systemie pierwiastków w oparciu o ich masy atomowe i chemiczne podobieństwa.

 

Tabela pokazująca okresowość właściwości wielu pierwiastków chemicznych, z pierwszego angielskiego wydania Zasad chemii Dymitra Mendelejewa (z 1891 roku, przetłumaczone z rosyjskiej piątej edycji).

Odkrycie nowego pierwiastka chemicznego niewątpliwie wiąże się z wielką radością badacza. Jednak zanim będzie mógł skorzystać z przywileju nadania nazwy nowoodkrytemu pierwiastkowi, odkrycie musi przejść szereg niezwykle restrykcyjnych kryteriów. Jednym z najważniejszych jest potwierdzenie istnienia pierwiastka przez innych naukowców. Warto podkreślić, że nie zawsze oczywiste jest pierwszeństwo dokonanego odkrycia, a tylko ten kto pierwszy odkrył pierwiastek ma przywilej podania dla niego nazwy (obecnie nie zawsze).

Często pierwiastki nazywa się dla uczczenia innych uczonych. W ten sposób upamiętniono:

  • Johana Gadolinagadolin (Gd, pierwiastek 64). Odkryty w 1880 roku i nazwany na cześć fińskiego mineraloga i chemika, odkrywcy itru.
  • Alberta Einsteinaeinstein (Es, pierwiastek 99). Został odkryty w 1952 roku w pozostałościach po wybuchu termojądrowym na Oceanie Spokojnym.
  • Enrico Fermiego ferm (Fm, pierwiastek 100). Został odkryty wraz z einsteinem. Odkrywca pierwiastków, Albert Ghiorso w uzasadnieniu napisał – Proponujemy nazwy dla pierwiastka o liczbie atomowej 99, einstein (symbol E) na cześć Alberta Einsteina i dla pierwiastka o liczbie atomowej 100, ferm (symbol Fm), na cześć Enrico Fermiego.
  • Dymitrija Mendelejewamendelew (Md, pierwiastek 101). Otrzymany w 1955 roku. Glenn Seaborg wspominał – Myśleliśmy, że do nazwy tego pierwiastka będzie pasowało nazwisko rosyjskiego chemika Dmitrija Mendelejewa, który opracował układ okresowy. W prawie wszystkich naszych eksperymentach otrzymując pierwiastki transuranowe, zależało nam na stosowaniu jego metody przewidywania właściwości chemicznych w oparciu o położenie pierwiastka w tabeli. Ale w środku zimnej wojny, nazywanie pierwiastka na cześć rosyjskiego uczonego było nieco odważnym gestem, który nie pasował do niektórych amerykańskich kryteriów.
Pomnik Układu Okresowego Pierwiastków, upamiętniający sylwetkę Dymitra Mendelejewa, stojący na dziedzińcu Wydziału Technologii Chemicznej i Spożywczej Politechniki  w Bratysławie, 2018, fot. Ewelina Wajs-Baryła
  • Alfreda Nobla nobel (No, pierwiastek 102). Pierwsze doniesienia o odkryciu pierwiastka 102 zostało podane przez fizyków z Instytut Nobla w Szwecji w 1957 roku. Zespół poinformował, że bombardowali kiur izotopami węgla-13 przez dwadzieścia pięć godzin w półgodzinnych odstępach. Po wielu kontrowersjach pierwiastek ostatecznie nazwano na cześć fundatora najbardziej prestiżowej nagrody na świecie.
  • Ernesta Lawrencalorens (Lr, pierwiastek 103). Pierwiastek odkryto w 1961 roku i nazwano na cześć amerykańskiego fizyka, laureat Nagrody Nobla w dziedzinie fizyki za wynalezienie i udoskonalenie cyklotronu.
  • Ernesta Rutherfordarutherford (Rf, pierwiastek 104). Pierwiastek został odkryty w 1969 roku i w Stanach Zjednoczonych nazywano go na cześć Rutherforda, zaś w ZSRR (a także m.in. w Polsce) kurczatowem (Ku) na cześć Igora Kurczatowa rosyjskiego fizyka jądrowego. Nazwa rutherford została zatwierdzona w 1997 roku.
  • Glenna T. Seaborgaseaborg (Sg, pierwiastek 106). Został odkryty w 1974 roku. Nazwano go na cześć laureata Nagrody Nobla z chemii w 1951 roku, odkrywcy wielu transuranowców (plutonu, ameryku, kiuru, berkelu, kalifornu). Co ciekawe Seaborg doczekał „swojegoˮ pierwiastka w układzie okresowym (zmarł w 1994 roku). Zwlekano z nadaniem pierwiastkowi nazwy na cześć uczonego – oficjalnie z uwagi, że nie nazywa się pierwiastków imionami osób żyjących; nieoficjalnie – chciano ukarać Seaborga za otrzymanie niezwykle niebezpiecznego pierwiastka – plutonu.
  • Nielsa Bohrabohr (Bh, pierwiastek 107). Został odkryty w 1974 roku. Niemccy uczeni proponowali nazwać go nielsbohr (Ns), zaś Rosjanie chcieli nadać mu nazwę dubn (na cześć Dubnej – miejscowości, w której znajduje się Zjednoczony Instytut Badań Jądrowych). W roku 1994 komitet IUPAC zaproponował nazwanie pierwiastka 107 na cześć Bohra. Trzy lata później została przyjęta obowiązująca nazwa.
  • Wilhelma Conrada Röntgenarentgen (Rg, pierwiastek 111). Pierwiastek odkryto w 1994 roku, nazwę zaakceptowano w 2004 roku.
  • Mikołaja Kopernikakopernik (Cn, pierwiastek 112). Pierwiastek odkryto w 1996 roku, nazwę zaakceptowano w 2010 roku.
  • Gieorgija Florowaflerow (Fl, pierwiastek 114). Pierwiastek odkryto w 1999 roku. Nazwę zatwierdzono w 2012 roku. Zespół kierowany przez Florowa otrzymał cztery syntetyczne pierwiastki chemiczne: nobla, rutherforda, lorensa oraz dubn.
  • Jurija Oganiesiana – oganesson (Og, pierwiastek 118). Odkryto go w 2010 roku i nazwano na cześć żyjącego fizyka jądrowego, pod kierunkiem którego otrzymano jądra pierwiastków chemicznych o liczbach atomowych 113–116, a także … 118. Dostarczył dowody na istnienie tzw. wyspy stabilności.

 

Na konferencji z okazji 150. rocznicy urodzin Marii Skłodowskiej-Curie na Politechnice Warszawskiej, od lewej: Małgorzata Sobieszczak-Marciniak, Jurii Oganesian, Ewelina Wajs-Baryła i Tomasz Pospieszny, 8 listopada 2017, fot. EWB

 

Na szczególną uwagę zasługują dwa pierwiastki – otrzymany w 1944 roku kiur (pierwiastek 96) i w 1982 roku meitner (pierwiastek 109).

 

Graficznie przedstawione symbole curium i meitnerium autorstwa Theodore Gray’a, [:za] http://www.periodictable.com/

Pierwszy z nich został otrzymany przez Glenna T. Seaborga, Ralpha A. Jamesa oraz Alberta Ghiorso z University of California w Berkeley, poprzez bombardowanie cząstkami alfa izotopów plutonu-239. Odkrywcy nowego pierwiastka zaproponowali dla niego nazwę dla upamiętnienia Marii Skłodowskiej-Curie oraz Pierre’a Curie. Było to wyjątkowe wydarzenie, bowiem pierwszy raz od 1880 roku zaproponowano nazwę pierwiastka dla uczczenia jakiejś osoby. Warto zwrócić uwagę, że jego symbol Cm stanowią inicjały Marii Curie. W uzasadnieniu zespół Seaborga napisał:

Jako nazwę pierwiastka o liczbie atomowej 96 proponujemy „curium” i symbolem Cm. Dowody wskazują, że pierwiastek 96 zawiera siedem elektronów w podpowłoce 5f, a zatem jest analogiczny do gadolinu pierwiastka z siedmioma elektronami w podpowłoce 4f […]. Na tej podstawie pierwiastek 96 jest nazwany Curie w analogiczny sposób do nazwy gadolin, na cześć chemika Gadolina.

Niewiele brakowało, aby także córka Marii i Pierre’a Curie – Irène i jej mąż Frédéric Joliot-Curie także zostali upamiętnieni w układzie okresowym pierwiastków. W 1968 roku zespół uczonych pod kierunkiem Gieorgija Florowa z Zjednoczonego Instytutu Badań Jądrowych odkrył dwa izotopy pierwiastka 105. Rosjanie zaproponowali nazwę nielsbohr (Ns) dla uczczenia pamięci Nielsa Bohra, natomiast Amerykanie używali nazwy hahn (Ha), od nazwiska Ottona Hahna. Międzynarodowa Unia Chemii Czystej i Stosowanej (IUPAC) zasugerowała z kolei nazwę joliot (Jl) Ostatecznie w 1996 zatwierdzono, a w 1997 roku opublikowano dla pierwiastka 105 nazwę dubn (Db) na cześć Dubnej.

Natomiast w 1969 roku zespół z Dubnej przeprowadzili eksperymenty chemiczne na pierwiastko 102 i doszli do wniosku, że zachowuje się on jak cięższy homolog iterbu. Uczeni zaproponowali dla niego nazwę joliotium (Jo) dla uczczenia zmarłej kilka lat wcześniej Irène Joliot-Curie. Ostatecznie pierwiastek nazwano noblem.

Drugi pierwiastek został z kolei nazwany na cześć jednej z najwybitniejszych uczonych wszech czasów Lise Meitner. Badaczka była nominowana do Nagrody Nobla aż 48 raz i nigdy nie została nią wyróżniona. W latach 1934–1948 była nominowana 19 razy z chemii, zaś w latach 1937–1965 29 razy z fizyki. Warto podkreślić, że jej współpracownik Otto Hahn otrzymał Nagrodę Nobla z chemii w 1944 roku za rozszczepienie ciężkich jąder atomowych. Jednak to Lise Meitner zinterpretowała to zjawisko, gdyż Hahn nie miał pojęcia co się dzieje w przeprowadzonych przez niego eksperymentach.

W Instytucie Badań Ciężkich Jonów w Darmstadt w Niemczech zespół niemieckich naukowców pod kierunkiem Petera Armbrustera i Gottfrieda Münzenberga przeprowadził eksperyment, w wyniku którego otrzymano kilku atomów nowego pierwiastka chemicznego. Uczeni bombardowali jądra atomowe bizmutu-209 izotopem żelaza-58 otrzymując pierwiastek o liczbie atomowej 109. Armbruster zaproponował dla niego nazwę meitnerium i symbol Mt. W 1994 roku nazwa ta została zalecona, a w 1997 roku zatwierdzona przez IUPAC. Peter Armbruster po latach uzasadniał: Jestem przekonany, że jej wkład stanowi bardzo istotną części fizyki jądrowej XX wieku. Musiała przy tym pokonać wszelkie możliwe przeszkody.

Hahn, który miał być imieniem pierwiastka numer 105 przepadł na zawsze, bowiem zgodnie z obowiązującymi zasadami nie można użyć proponowanej raz nazwy dla innego pierwiastka. Lise się udało, ale Otto został wykluczony na zawsze.

Miejmy nadzieję, że kolejne otrzymane pierwiastki otrzymają nazwy na cześć wybitnych kobiet uczonych…

Zalecana literatura:

 

  1. M. Fontani, M. Costa, M. V. Orna, The lost elements. The periodic table’s shadow side, Oxford University Press, New York, 2014.
  2. E. R. Scierri, Układ okresowy. Historia i znaczenie, Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław 2013.
  3. S. Kean, Znikająca łyżeczka. Dziwne opowieści chemicznej treści, Ferria Science, Łódź, 2017.
  4.  H. Aldersey-Williams, Fascynujące pierwiastki. W krainie fundamentalnych składników rzeczywistości, Prószyński i S-ka, Warszawa, 2012.
  5. T. Gray, Wielka księga pierwiastków, z których zbudowany jest Wszechświat, Bellona, Warszawa, 2011.
  6. J. Challoner, Pierwiastki, czyli z czego zbudowany jest Wszechświat, Publicat, Poznań 2016.

Tomasz Pospieszny