#kartkazkalendarza — Lise Meitner i rozszczepienie jądra atomowego

 

/   Tomasz Pospieszny   /

 

Ostatnie dni grudnia 1939 roku należały do Lise Meitner i Ottona Hahna, którzy wymieniając niezwykle intensywnie korespondencję rozpisywali się o jednym z najważniejszych wydarzeń w historii nauki. O rozszczepieniu jądra atomowego.

Zapraszamy do lektury fragmentu książki Tomasza Pospiesznego pt. Zapomniany geniusz. Pierwsza dama fizyki jądrowej, Novae Res, Gdynia 2016.

 

***

Teraz Hahn musiał się spieszyć. Wyniki były może do końca niezrozumiałe, a wyjaśnienie dalekie, ale trzeba było się spieszyć. W Paryżu ta „przeklęta baba”, Irène Joliot-Curie, mogła mieć rację z lantanem i dreptała tuż za Hahnem. Kto wie, może równo z nim. Na gotowy maszynopis Hahn naniósł szybkie poprawki. W ostatnim momencie, uzgadniając to z Fritzem, zmienił tytuł na „Odkrycie izotopów metali alkalicznych powstających przy napromieniowaniu uranu neutronami i ich zachowanieˮ. W tej subtelnej zmianie – izotopów metali alkalicznych – ujął rad i bar, bowiem oba pierwiastki należą do metali alkalicznych. 22 grudnia oryginalny maszynopis odebrał Paul Rosbaud (redaktor „Naturwissenschaften”), a Hahn wrzucił do skrzynki pocztowej kopię zaadresowaną do Lise Meitner. W ciągu doby tekst pracy Hahna i Strassmanna przeczytały tylko te dwie osoby:

 

[…]Gdy wykonaliśmy odpowiednie badania promieniotwórczych próbek baru, które nie zawierały żadnych produktów późniejszych rozpadów, wyniki były zawsze negatywne. Substancja promieniotwórcza rozłożona była równomiernie we wszystkich frakcjach baru. […]Doszliśmy do wniosku, że nasze „izotopy radu” mają właściwości baru. Jako chemicy właściwie powinniśmy stwierdzić, że nowe produkty nie są radem, lecz barem. Żadne inne pierwiastki oprócz radu i baru nie wchodzą w rachubę.  […]

[…]Jako chemicy powinniśmy w istocie zmienić podany wyżej schemat rozpadu i wstawić symbole Ba [bar] , La [lantan] , Ce  [cer] na miejsce Ra  [rad] , Ac [aktyn] , Th [tor]. Jednakże jako „chemicy jądrowi”, pracujący w dziedzinie bardzo zbliżonej do fizyki, nie możemy zdobyć się na podjęcie tak drastycznego kroku, który byłby sprzeczny z wszystkimi dotychczas obowiązującymi prawami fizyki jądrowej. Być może wskutek szeregu niezwykłych zbiegów okoliczności otrzymaliśmy fałszywe wskazania[1].

 

Artykuł autorstwa niemieckich uczonych musiał wzbudzać kontrowersje. Po pierwsze, praca ta potwierdzała przypuszczenia Idy Noddack, która głośno i samotnie kwestionowała wcześniejsze prace Fermiego oraz zespołu Hahn–Meitner–Strassmann. Po drugie, ostatecznie przyznawała rację trudnej i zawiłej interpretacji doświadczeń przeprowadzonych przez Irène Joliot-Curie i Pavlé Savića. Po trzecie, podważała wcześniejsze badania nad transuranowcami, które zaowocowały przecież wieloma publikacjami grupy berlińskiej. Wreszcie nikt nie miał pewności, a wręcz przeciwnie: całą masę wątpliwości, że atom uranu jakimś sposobem przekształca się w atom baru. Hahn cały czas rozmyślał o wynikach ostatnich doświadczeń. 27 grudnia zatelefonował do Rosbauda z zapytaniem, czy można jeszcze dodać krótki akapit uzupełniający wnioski.

 

Jeśli chodzi o „grupę transuranowców”, to pierwiastki te są chemicznie powiązane, ale nie identyczne z ich niższymi homologami renu, osmu, irydu i platyny. Nie zostały jeszcze wykonane eksperymenty, które by potwierdzały, że mogą one być chemicznie identyczne z jeszcze niższymi homologami mazurem [obecnie technet] , rutenem, rodem, palladem.  […]Suma mas atomowych Ba + Ma [mazur] , na przykład, 138+101 wynosi 239! [2]

 

I ponownie Hahn szukał poparcia dla swoich pomysłów u Lise Meitner. Dzień później napisał do niej i Frischa list[3] dotyczący dołączonego akapitu. Korespondencja była dynamiczna (skoro tak intensywnie pracowali na odległość, co mogłoby się wydarzyć, gdyby Lise nie musiała emigrować?).

 

28 grudnia 1938 roku

Chcę Ci jeszcze szybko napisać parę słów o moich fantazjach dotyczących Ba, etc. Może w Kungälv jest z Tobą Otto Robert i może omówicie ten problem przez chwilę. Wysłaliśmy Tobie rękopis naszej pracy*.  […]Czy byłoby możliwe, aby uran 239 rozpadł się na 1 Ba i 1 Ma? Ba 138 i Ma 101 dają razem 239. Nie musi być akurat taka liczba masowa. Mogłoby też być 136 + 103, czy coś podobnego. Oczywiście nie zgadzają się liczby atomowe. Kilka neutronów musiałby się przemienić w protony, aby uzyskać takie ładunki. Czy to energetycznie jest możliwe? Wszystko inne jest udowodnione,  […]wówczas transuranowce „ausenium” i „hesperium” [pierwiastki 93 i 94] znikną. Nie wiem, czy to by mnie bardzo smuciło, czy nie*[4].

 

Było to intrygujące stwierdzenie. Jeśli Hahn miał rację, to odkrył zupełnie nowe zjawisko i jednocześnie przekreślił lata wspólnych badań z Meitner. Swoimi badaniami podważył istnienie transuranowców! Powodowało to znaczne zamieszanie w fizyce i chemii jądrowej. Przekreślało prace Fermiego i jego rzymskiej grupy, przekreślało prace Meitner i Hahna. Nieco oszołomiona Lise wyznała:

 

Nie mogliśmy tego zauważyć. To jest zupełnie niespodziewane. Hahn jest dobrym chemikiem i ufałam, że jeśli zidentyfikował jakieś pierwiastki, to miał rację. Kto mógłby pomyśleć, że chodzi o coś znacznie lżejszego?[5]

 

Kiedy Hahn i Strassmann przeprowadzali pierwsze doświadczenia z neutronami i uranem, Lise Meitner obchodziła pierwsze Boże Narodzenie na emigracji. Z dala od rodziny, przyjaciół. Z dala od domu. Jedyną bliską osobą, która mieszkała w Szwecji, była Eva von Bahr-Bergius, z którą Meitner zaprzyjaźniła się jeszcze w latach dwudziestych. Eva wspólnie z mężem Niklasem Bergiusem (1871–1947) wybudowała piękny dom w Kungälv, oddalonym około dwadzieścia kilometrów od Göteborga, do którego zaprosiła na święta bożonarodzeniowe Meitner. Uczona chyba z radością przyjęła zaproszenie, tym bardziej że miała się tam spotkać z ukochanym siostrzeńcem Ottonem Robertem. Frisch – podobnie jak ciotka – był uchodźcą pracującym w Kopenhadze pod opieką Nielsa Bohra. Niestety święta 1938 roku były dla nich obojga bardzo przykre i smutne. Spędzali je z dala od rodziny i nie wiedzieli, czy osoby bliskie ich sercom nadal żyją. Od czasu aresztowania ojca Frischa nie było także kontaktu z jego matką.

Meitner zatrzymała się w przytulnym pensjonacie i z niecierpliwością oczekiwała na swojego siostrzeńca. Pojawił się wieczorem, zmęczony podróżą. Nazajutrz podekscytowana Meitner zaczęła relacjonować siostrzeńcowi doświadczenia Hahna. Frisch początkowo był bardzo sceptyczny wobec opowieści ciotki. W tym czasie zajmował go problem magnetycznych właściwości neutronów i miał nadzieję, że przedyskutuje go z Lise. Ta jednak nie dawała za wygraną. Zmusiła siostrzeńca, by przeczytał list Hahna z 19 grudnia. Po pierwszej lekturze listu Frisch nie był nastawiony przychylnie:

 

Bar? Nie wierzę. Gdzieś jest jakiś błąd[6].

Nie, Hahn był zbyt dobrym chemikiem. Ale jak bar może tworzyć się z uranu?[7]

– Ale to niemożliwe! Nie można jednym uderzeniem odłupać od jądra stu cząsteczek. Nie można go nawet przeciąć. Wystarczy oszacować siły jądrowe, wszystkie te wiązania, które musisz naraz zerwać – to fantazja. To zupełnie niemożliwe, by coś takiego mogło się z jądrem zdarzyć[8].

 

Uczona była przekonana, że nie może być mowy o błędzie. Błędy mogła popełniać Irène Joliot-Curie, ale nie współpracownicy jej, Lise Meitner. Wybrali się na wspólny spacer. Frisch założył narty, a ciotka towarzyszyła mu pieszo. Kiedy siostrzeniec wyraził obawę, że Lise za nim nie nadąży, odpowiedziała, że szybkie chodzenie ją odmładza i utrzymuje w ruchu[9]. Po latach Frisch wspominał:

 

[…]Usiedliśmy oboje na pniu drzewa (wszystkie dyskusje miały miejsce, gdy szliśmy przez las w śniegu, ja na moich biegówkach, a Lise Meitner (zgodnie z wcześniejszym zapewnieniem, szła równie szybko bez nart) i zaczęliśmy wykonywać obliczenia na skrawkach papieru[10].

Jak może z uranu powstać bar? Nikomu nigdy nie udało się oderwać od jądra żadnych fragmentów większych niż protony czy jądra helu (cząstki alfa) i należało odrzucić myśl, że możliwe jest oddzielenie naraz wielu takich cząstek.  […]Wykluczone również, by jądro uranu po prostu pękło. Naprawdę, jądro to nie krucha bryłka, którą można rozłupać lub przełamać. Bohr podkreślał, że jądro bardziej przypomina kroplę cieczy[11].

 

Rzeczywiście model kroplowy jądra atomowego zaproponowany przez Bohra umożliwił wyjaśnienie zagadki Lise i Robertowi. Frisch podsumowywał:

 

Powoli zdaliśmy sobie sprawę z tego, że rozszczepienie uranu na dwie w przybliżeniu równe części… należy ująć z innej strony. Obraz byłby taki… jądro atomu zmienia stopniowo pierwotny kształt, wydłuża się, zwęża pośrodku, po czym dzieli się na dwie połowy[12].

 

Im większy ładunek w jądrze atomowym, tym większa jego niestabilność. Uran ma aż 92 protony, zatem jest niestabilny (protony odpychają się, przez co niestabilność jądra wzrasta). Dlatego w przyrodzie nie ma naturalnie występujących pierwiastków o liczbie protonów większej niż 92. Wystarczył jeden jedyny neutron, który powodował zwiększenie energii jądra, wskutek czego jądro zaczęło drgać i w efekcie pękać. Powstające dwa nowe jądra oddalają się od siebie z dużą prędkością. Ich masa było nieco mniejsza niż jądro macierzyste, a ów ubytek masy zgodnie z równaniem Einsteina E = mc2 przekształcał się w energię wynoszącą 200 MeV![13] Frisch wspominał:

 

Lise Meitner obliczyła, że dwa jądra powstałe w wyniku podziału jądra uranu będą lżejsze niż pierwotne jądro uranu o około jednej piątej masy protonu… Zgodnie z formułą Einsteina E = mc2… jedna piąta masy protonu jest równoważna 200 MeV[14].

 

24 grudnia 1938 roku w przepięknie zaśnieżonym lesie w odległej Szwecji Meitner wspólnie ze swoim siostrzeńcem wyjaśniła jedną z zagadek Matki Natury. Wszystko stało się jasne. Lise napisała do Hahna, ale jeszcze nie wyznała mu, że wspólnie z Frischem odkryła rozwiązanie.

 

29 grudnia 1938

Drogo Otto,

bardzo dziękuję za Twój list z 28… Wyniki Ra-Ba są bardzo ekscytujące. Otto R. i ja łamiemy sobie głowy; niestety nie dostałam jeszcze maszynopisu, ale właśnie posłałam po niego i mam nadzieję otrzymać go jutro. Wtedy będziemy mogli o tym lepiej pomyśleć.

1 stycznia 1939, godz. 12:30

Drogi Otto,

rok zaczynam listem do Ciebie. Może to być dobry rok dla nas wszystkich. Przeczytaliśmy i przemyśleliśmy bardzo dokładnie Twoją pracę, ale czy energetycznie byłoby możliwe, żeby takie ciężkie jądro pękało. Wprawdzie Twoja hipoteza o powstawaniu Ba i Ma jest niemożliwa z kilku powodów[15].

_____________________________________

[1] Ibidem, str. 228.

[2] P. Rife, „Lise Meitner…”, op. cit., str. 187.

[3] Profesor Sime podaje, że korespondencja pomiędzy Hahnem i Meitner dochodziła z dnia na dzień. Co za czasy!

 

[4] K. Hoffmann, „Wina i odpowiedzialność…”, op. cit., str. 141.

*Cytuję zdanie za: P. Rife, „Lise Meitner…”, op. cit., str. 192.

* Cytuję zdanie za: R. L. Sime, „Lise Meitner…”, op. cit., str. 239.

[5] R. Rhodes, „Jak powstała bomba atomowa”, op. cit., str. 232.

[6] Ibidem, str. 230.

[7] O. R. Frisch, „What Little I Remember”, op. cit., str. 115.

[8] R. Rhodes, „Jak powstała bomba atomowa”, op. cit., str. 230.

[9] Ibidem, str. 209.

[10] O. R. Frisch, „What Little I Remember”, op. cit., str. 116.

[11] R. Rhodes, „Jak powstała bomba atomowa”, op. cit., str. 230.

[12] R. Jungk, „Jaśniej niż tysiąc słońc”, op. cit., str. 62.

[13] 200 milionów eV (elektronovoltów). Energia z jednego atomu nie oszałamia, ale z jednego grama uranu już tak. Znajduje się w nim bowiem 2,53 x 1022 atomów!

[14] N.-T. H. Kim-Ngan, „Niedoceniony przez komitet Nagrody Nobla…”, op. cit., str. 20.

[15] R. L. Sime, „Lise Meitner…”, op. cit., str. 240.

122. rocznica odkrycia radu

 

Z okazji 122. rocznicy odkrycia radu zapraszamy do lektury fragmentu rozdziału Robaczki świętojańskie z książki Tomasza Pospiesznego pt. Maria Skłodowska-Curie. Zakochana w nauce, Wydawnictwo Po Godzinach, Warszawa 2020.

 

 

***

Na kolejny sukces małżonkowie Curie nie musieli zbyt długo czekać. Po spędzonych wakacjach w Owernii na południu Francji z większym zapałem zabrali się do pracy. Ich wnuczka Hélène Langevin-Joliot uważa, że

[…] po ślubie Maria i Piotr oczywiście pracowali wspólnie. Tak urządzili swoje życie by móc dużo czasu poświęcić pracy. To badaniom naukowym podporządkowali wszystko. Ale chciałabym wspomnieć, że pomimo tak intensywnej pracy mieli czas na rozrywkę np. spędzali razem wakacje. Między odkryciem polonu i radu wyjeżdżają z rodziną Piotra do Owernii, a więc przerywają badania naukowe na całe dwa miesiące. Dziś to może się wydawać absolutnie niesamowite.[1]

 

W połowie listopada przeprowadzili serię doświadczeń, dzięki którym otrzymali bardzo promieniotwórczy produkt. Przy udziale Gustave Bémonta udało im się pozyskać próbkę zawierającą pierwiastek bar (symbol Ba, liczba atomowa 56) o promieniotwórczości dziewięćset razy większej niż uran! 26 grudnia 1898 roku wspólnie z asystentem Bémontem ogłosili, że odkryli drugi pierwiastek chemiczny – rad (symbol Ra, liczba atomowa 88)[2]. W komunikacie zatytułowanym O nowej silnie radioaktywnej substancji zawartej w blendzie smolistej[3] napisali:

 

Wyżej wyszczególnione fakty każą nam przypuszczać, że w tym nowym związku promieniotwórczym znajduje się nowy pierwiastek, który proponujemy nazwać radem. Nowy ten związek zawiera na pewno znaczną ilość baru, mimo to jednak jest on silnie promieniotwórczy. Promieniotwórczość radu musi być, zatem ogromna.[4]

Małżonkowie Curie na okładce czasopisma „Le Petit Parisien” z 10 stycznia 1904, archiwum Tomasza Pospiesznego

Maria będzie później żałowała, że rad przyćmił swą międzynarodową sławą polon. Poza tym polon bardziej strzegł swoich tajemnic. Jeden z pierwszych polskich współpracowników Marii, Mirosław Kernbaum, po latach powiedział o polonie – Dziwnym więc trafem dzieli on los narodu, ku czci którego otrzymał imię: egzystuje de facto, jako pierwiastek chemiczny, de iure jednak przez międzynarodową komisję chemików nie jest za taki uznawany.[5] Polska jeszcze długo nie będzie miała szczęścia…

Jaką rolę w odkryciu radu odegrał Bémont nie wiadomo do końca. Znakomita biografka Marii, Françoise Giroud, podaje, że uczestniczył w badaniach, ponieważ w zeszycie laboratoryjnym z maja 1898 roku istnieją notatki wykonane jego ręką.[6] Jego badania mogły jednak ograniczać się do drobnych prac laboratoryjnych. Nie mniej jednak jest współautorem komunikatu donoszącym o istnieniu radu.

Maria i Piotr Curie oraz ich asystent Petit w szopie przy ul. Lhomond 42, ok. 1898, domena publiczna

Polon i rad zostały zaobserwowane przez małżonków Curie dzięki dużej aktywności promieniotwórczej. Teraz uczeni potrzebowali dodatkowego dowodu, aby potwierdzić, że oba pierwiastki istnieją. Eugène Demarçay specjalista z zakresu spektroskopii emisyjnej wykonał widma nowo odkrytych pierwiastków. Demarçay rozgrzewał w płomieniu palnika substancje zawierające polon i rad do stanu gazowego, a następnie przeanalizował widma, które powstały w wyniku rozszczepienia światła przez nie emitowanego. Curie mieli dowód istnienia radu w postaci widma emisyjnego, na którym było widać słabą, ale wyraźną linię fioletową przy 381,48 nm odpowiadającą temu pierwiastkowi.[7] Niestety stężenie polonu w badanej próbce było zbyt słabe, żeby zaobserwować linię emisyjną. Dlaczego? Otóż trzy pierwiastki promieniotwórcze uran, tor i rad należą do pierwiastków długożyciowych, przez co uczeni prawie w ogóle nie obserwowali spadku ich promieniotwórczości. Z kolei polon należy do pierwiastków krótkożyciowych, dla których aktywność promieniotwórcza maleje wraz z upływem czasu. Ponadto jest też pierwiastkiem rzadkim. W jednej tonie blendy uranowej (w zależności od jej pochodzenia) znajduje się około 1,4 grama radu i tylko 0,1 miligrama polonu. Maria wysunęła hipotezę, że aktywność promieniotwórcza jest stała dla danego pierwiastka. Pojawiła się więc wątpliwość czy polon nie jest bizmutem, którego aktywność została wzbudzona przez rad. Dodatkowo przemawiała za tym faktem obecność w widmie emisyjnym tylko linii bizmutu. Z drugiej strony Maria wnioskowała, że ilość polonu w badanej próbce może być tak mała, że nie zauważono jego linii. Jedynym sposobem na potwierdzenie tej teorii było otrzymanie próbki o większym stężeniu polonu, przez co byłoby można dokładnie zbadać jego właściwości chemiczne. Niestety to zadanie przez długie lata było nieosiągalne. Dopiero w czerwcu 1902 roku niemiecki chemik pracujący w Berlinie, Willy Marckwald wydzielił wolny polon. Zanurzył on czysty bizmut w roztworze otrzymanym przez roztworzenie[8] bizmutu otrzymanego z odpadów po przerobie blendy uranowej w kwasie solnym. Bizmut jako aktywniejszy pierwiastek wyparł z soli polon, który osadził się na jego powierzchni[9]. W ten sposób roztwór stawał się nieaktywny, a powierzchnia bizmutu stawała się promieniotwórcza poprzez obecność cienkiej warstewki nowego ciała. Uczony sądząc, że odkrył nowy pierwiastek, który właściwościami zbliżony był do telluru, nazwał go radiotellurem. Maria Curie udowodniła, że radiotellur i polon mają te same właściwości fizyczne i chemiczne – są więc tą samą substancją. Koronnym argumentem było porównanie czasów połowicznego zaniku obu pierwiastków. Kiedy okazało się, że wynosi on w obu przypadkach 140 dni, Maria nie miała wątpliwości. W sprawozdaniu pt. O zmniejszeniu się radioaktywności polonu wraz z upływem czasu pisała: Polon Marckwalda wydaje się identyczny z naszym oraz nie ma wątpliwości […] że substancja przygotowana przez Marckwalda jest po prostu tą samą, którą odkryłam wcześniej i opisałam jako polon.[10] Maria zadbała, aby jej wyniki badań, wnioski i eksperymenty ukazały się także po niemiecku. Kiedy jest pewna swych racji potrafi być bezwzględna. W świecie mężczyzn to trudna sztuka, ale za to jak bardzo imponująca. Marckwald, uznając rację Marii, powołując się na Szekspira, napisał: Jeśli wonną różę nazwać inaczej, czyż przestanie pachnieć?* Proponuję w przyszłości zastąpić nazwę radiotellur przez polon.[11]

Widmo emisyjne było wystarczającym dowodem istnienia radu dla fizyków, nie przekonywało jednak chemików. Chemicy żądali właściwości chemicznych nowych pierwiastków, chcieli znać masę radu. Irena Joliot-Curie wspominała:

 

W tym czasie oznaczenie widma i ciężaru atomowego radu miało wielkie znaczenie dla przekonania chemików, że nowe radiopierwiastki były takimi samymi substancjami, jak inne, różniąc się jedynie posiadaniem właściwości promieniotwórczych.[12]

Maria i Piotr Curie w szopie przy ulicy Lhomond 42, ok. 1898, domena publiczna

Ażeby Maria mogła określić masę atomową radu potrzebowała dziesiątek ton smółki uranowej, a ta niestety po pierwsze zawierała bardzo małe ilości radu, a po drugie kosztowała fortunę. Z pomocą przyszła fabryka uranu z Czech, znajdująca się w Jachymowie. Wspaniałomyślnie rząd austriacki po namowach Franza Exnera – późniejszego nauczyciela fizyki eksperymentalnej Erwina Schrödingera i Mariana Smoluchowskiego – podarował małżonkom Curie najpierw sto kilogramów, a potem całą tonę ziemi, stanowiącą odpady po wydzieleniu uranu. W rozprawie doktorskiej Maria napisała:

 

To ta pozostałość zawiera substancje radioaktywne; jej czynność promieniotwórcza jest cztery i pół razy większa od aktywności uranu metalicznego. Rząd austriacki, do którego należą kopalnie blendy, uprzejmie zaoferował nam na cele naszych poszukiwań jedną tonę tych odpadków i upoważnił kopalnie do dostarczania nam większej ilości ton tego materiału.[13]

 

Odpady te zawierały drogocenny rad i polon. Wreszcie, fundacja barona Rothschilda za bardzo niską cenę odkupiła od rządu Austrii kilka ton ziemi. Maria rozpoczęła swoją przygodę z radem. Zaczęła rodzić się legenda.

Wnętrze laboratorium państwa Curie przy ul. Lhomond 42, 1898, Bibliotheque numerique du Cirad en agronomie tropicale, domena publiczna

 

W 1902 roku po serii bardzo żmudnych i ciężkich prac laboratoryjnych, udało się Marii pozyskać 1 decygram[14] chlorku radu (RaCl2) i wyznaczyć masę radu na 225±1 (dziś wiemy, że wynosi ona 226,025 u). Wszystkie prace małżonkowie Curie wykonywali w legendarnej, drewnianej szopie przy ulicy Lhomond 42 niedaleko Wyższej Szkoły Fizyki i Chemii Przemysłowej Miasta Paryża, gdzie wykładał Piotr. Nie było tam wentylacji, zimą było bardzo zimno, podczas deszczu przeciekał dach, a latem panował niewyobrażalny ukrop. Maria pisała:

 

Była to pozbawiona wszelkich sprzętów szopa z desek, o cementowej podłodze i oszklonym dachu, przez który miejscami przeciekał deszcz. Całe wyposażenie składało się ze zniszczonych drewnianych stołów, żelaznego pieca, dającego bardzo niedostateczne ciepło i z tablicy, na której Piotr chętnie pisał i rysował. Nie było tam wyciągu do robót, przy których wydzielają się szkodliwe gazy, trzeba było zatem wykonywać takie prace na podwórzu, gdy pogoda na to pozwalała. Podczas deszczu musieliśmy je prowadzić w szopie, przy otwartych drzwiach.[15]

 

________________________

[1] Maria, reż. A. Albrecht, Polska 2011.

[2] Rad leży w układzie okresowym pod barem. Oba pierwiastki należą do tej samej grupy berylowców.

[3] M. P. Curie, Mme. P. Curie, M. G. Bémont, Sur une nouvelle substance fortement radio-active, contenue dans la pechblende, CR 127, 1898, str. 1215–1217.

[4] E. Curie, Maria Curie, dz. cyt., str. 174.

[5] M. Skłodowska-Curie, Badanie ciał radioaktywnych, dz. cyt., str. <4>.

[6] F. Giroud, Maria Skłodowska-Curie, dz. cyt., str. 88.

[7] Linie w widmie emisyjnym są swoistymi odciskami palców pierwiastków chemicznych. Każdy z nich ma swoją własną, charakterystyczną dla siebie linię.

[8] Roztworzenie to zjawisko chemiczne, które polega na rozpuszczaniu ciała stałego przy jednoczesnej jego reakcji z rozpuszczalnikiem lub składnikiem roztworu. Po odparowaniu rozpuszczalnika nie powstanie substancja wyjściowa, ale produkt reakcji.

[9] Maria pisała: Można wydzielić radiopierwiastki z roztworu drogą elektrolizy lub osadzania na odpowiednio dobranym metalu, zanurzonym w roztworze. […] Tak np. w celu oddzielenia lub oczyszczenia polonu osadza się go zazwyczaj na miedzi lub srebrze. Zob. M. Skłodowska-Curie, Promieniotwórczość, reprint wydania z 1939, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa 2011, str. 340.

[10] S. Quinn, Życie Marii Curie, dz. cyt., str. 249–250.

[11] M. Fontani, M. Costa, M.V. Orna, The lost elements. The periodic table’s shadow side, Oxford University Press, New York, 2014, str. 472.

*W. Szekspir, Romeo i Julia, akt II, scena 3, przekład J. Iwaszkiewicz, Świat Książki, Warszawa 1999.

[12] I. Joliot-Curie, Naturalne pierwiastki, dz. cyt., str. 8.

[13] M. Skłodowska-Curie, Badanie ciał radioaktywnych, dz. cyt., str. 19.

[14] Decygram to 1/10 grama.

[15] M. Skłodowska-Curie, Autobiografia, dz. cyt., str. 117.

145. rocznica urodzin Milevy Marič

 

/   Tomasz Pospieszny  /

 

Mileva Marič odeszła w zapomnieniu i taką też pozostała przez wiele lat. Pochowano ją w obrządku prawosławnym w jej ukochanym Zurychu na cmentarzu Nordheim. Nagrobek Milevy Marič został usunięty w latach siedemdziesiątych ubiegłego stulecia przez władze cmentarza, gdyż przez wiele lat po jej śmierci nie była uiszczana opłata za grób. Z inicjatywy dra Ljubo Vujevicia z The Tesla Memorial Society w Nowym Yorku odnaleziono grób Milevy w 2004 roku. Zainicjowano także ponowne wzniesienie nagrobka kobiety, która była towarzyszką życia Alberta Einsteina.

Proponujemy Państwu lekturę fragmentu książki Tomasza Pospiesznego pt. Pasja i geniusz. Kobiety, które zasłużyły na Nagrodę Nobla opisujący życie Milevy Marič.

 

Pani Einstein-Marity

Niezwykle uporządkowana Mileva wprowadziła ład w życie Einsteina. W dzieciństwie nauczyła się szyć, a później także gotować. Nie tylko szyła swoje sukienki, ale także reperowała ubrania Alberta. Umiała trafić do jego serca przez swój intelekt, ale także przez jego żołądek. Roztargnienie, brak organizacji, bałaganiarstwo i zapominalstwo Einsteina była zdolna okiełznać jak nikt inny. Tak doskonale nam idzie wspólne zgłębianie naszych mrocznych dusz, picie kawy, jedzenie kiełbasek itd. – pisał Albert[1]. Jeden z biografów Einsteina Peter Michelmore napisał, że Mileva:

 

[…] potrafiła szybciej niż [Albert] wyrobić sobie zdanie na temat ludzi i była bardzo stała w swoich wyborach. W każdej sprawie zajmowała zdecydowany punkt widzenia. Z góry planowała zarówno przebieg swoich studiów, jak i rozkład każdego dnia. Próbowała również wprowadzić porządek w życie Alberta. I matematyka była tylko częścią tego wszystkiego. Namawiała go do regularnego spożywania posiłków i uczyła oszczędności. Często wściekała się na jego roztargnienie. Wtedy spoglądał na nią ze spokojem, jak tupie nóżką niczym mała dziewczynka, a w jego oczach pojawiały się łobuzerskie ogniki. Potem robił śmieszne miny lub opowiadał żarcik i jej złość powoli ustępowała[2].

Mileva,Albert i ich pierwszy syn Hans Albert, Berno, 1904, Instytut Leo Baecka, [za:] http://einstein-virtuell.mpiwg-berlin.mpg.de/VEA/SC-1668110491_MOD-736752543_SEQ1883770543_SL-110908586_en.html
Niestety nie wszyscy byli przychylni ich związkowi. Przyjaciele Milevy uważali, że Albert nie jest dla niej odpowiednim partnerem. Z kolei jego znajomi nie potrafili zrozumieć, co widzi w utykającej, humorzastej Milevie. Albert jednak podziwiał jej inteligencję. I był zakochany. Kiedy jeden z jego kolegów powiedział: Wiesz, nigdy nie odważyłbym się poślubić kobiety, która nie byłaby zupełnie zdrowa, Albert odpowiedział: Ale ona ma taki cudowny głos[3].

Tymczasem zbliżał się czas egzaminów: międzykursowego i końcowego. Einstein zdał egzamin międzykursowy w październiku 1898 roku, Mileva zaś musiała przygotowywać się do niego dłużej z racji pobytu na uniwersytecie w Heidelbergu. Przystąpiła do niego w październiku następnego roku, zdając z piątą lokatą. Latem 1899 roku, gdy Mileva przygotowywała się do egzaminów, Einstein przebywał na wakacjach wraz z matką i siostrą. Pokazał wówczas matce zdjęcie Milevy. W liście do ukochanej pisał, że wywarło ono na Paulinie Einstein wrażenie – moja stara matka pozdrawia Cię jak najserdeczniej[4]. Niestety kiedy Frau Einstein zorientowała się, że nie jest to kolejny romans syna, lecz związek poważny, jej zachowanie względem Milevy uległo radykalnej zmianie. Przeszkadzało jej, że jest Serbką, że nie jest Żydówką, że pochodzi z pospolitej rodziny, że jest starsza od Alberta, że jest ułomna fizycznie. Jednym słowem, była najgorszą z możliwych partii dla jej ukochanego syna. Pierwsze niepokojące wieści nadesłała Helena Kaufler, która na własne oczy widziała niechęć Pauliny do Milevy. Zrozpaczona Mileva pisała do niej:

 

Sądzisz, że ona w ogóle mnie lubi? Naprawdę się ze mnie tak strasznie naśmiewała? Wiesz, poczułam się głęboko nieszczęśliwa, ale potem się pocieszyłam, że w końcu ten najważniejszy dla mnie człowiek jest innego zdania, a kiedy on roztacza nade mną wspaniałą wizję naszej przyszłości, nie myślę już o moim nieszczęściu[5].

 

Niestety najgorsze miało dopiero nadejść. Latem 1900 roku przystąpili do egzaminów końcowych składających się z części pisemnej i ustnej. Einstein zdał, Mileva nie. Jako jedyna uzyskała średnią poniżej pięciu. Tym samym jako jedyna nie otrzymała dyplomu. Być może miał na to wpływ egzamin ustny, który Mitza zdawała przed profesorami mężczyznami, z góry przeświadczonymi o braku zdolności kobiet do nauk ścisłych. Możliwe też, że nie opanowała całego materiału, przecież w tym samym roku zdawała także egzamin międzykursowy. Załamana wróciła do rodziców z mocnym postanowieniem przystąpienia do egzaminów w roku następnym. Albert zaś udał się na wakacje z rodziną. Niestety sytuacja pomiędzy nim i matką była bardzo napięta. Kiedy Paulina dowiedziała się, że Mileva oblała egzaminy, zapytała: No, i kim teraz będzie ta twoja Laleczka?. Z pewnością i wyzwaniem w oczach Albert odpowiedział: Moją żoną. Ona jest takim samym molem książkowym jak ty, a tobie potrzebna jest żona. Gdy ty będziesz miał trzydziestkę, z niej będzie już stara krowa! – krzyczała Paulina[6]. Jej wściekłość zmieniła się w histerię i bezradność:

 

Mama rzuciła się na łóżko, ukryła głowę w poduszkach i rozpłakała jak dziecko. Gdy tylko się opanowała, natychmiast przystąpiła do gwałtownego ataku: „W ten sposób rujnujesz swoją przyszłość i grzebiesz swoje szanse! Żadna porządna rodzina by jej nie chciała. Jeśli zajdzie w ciążę, dopiero będziesz się miał z pyszna!” Przy tym ostatnim wybuchu, przed którym było jeszcze wiele innych, w końcu straciłem cierpliwość. Zaprzeczyłem ostro, abyśmy żyli w grzechu, po czym zrugałem ją, na czym świat stoi […][7].

Akademia Olimpijska: Albert Einstein z przyjaciółmi: Conradem Habichem i Maurice’m Solovine’em, ok. 1903, domena publiczna

Wydaje się, że młody Einstein był na tyle uparty, że dążył do celu za wszelką cenę. Dopiero teraz widzę jak szaleńczo Cię kocham – pisał do Milevy[8]. Żywiołowe wręcz wyznania uczuć mogą świadczyć o buncie Alberta przeciw rodzinie, chociaż na pewno kochał Milevę. Napisał do niej:

 

Co będzie, to będzie, ale i tak będziemy mieć najpiękniejsze życie pod słońcem. Przyjemna praca i bycie razem – czegóż można jeszcze chcieć? Jak uciułamy trochę pieniędzy, kupimy sobie rowery i będziemy co parę tygodni jeździć na wycieczki[9].

Państwo Einsteinowie w Kacu w Serbii, ok. 1912, domena publiczna

Czy ta romantyczna deklaracja nie nasuwa skojarzeń z francusko-polską parą uczonych pędzących na bicyklach?

Niestety sytuacja materialna Einsteina z dnia na dzień się pogorszyła: chcąc go ukarać, rodzina przestała przekazywać mu pieniądze. Udzielał korepetycji, ale był to skromny dochód, który nie pozwalał na finalizację planów Alberta i Milevy. A przecież mieli marzenia. Jakże cudnie będzie wyglądał świat, gdy będę już Twoją małą żoną – pisała Mileva[10]. Niestety rodzice Einsteina robili wszystko, co tylko mogli, by utrudnić im życie. Zwłaszcza Milevie. Do Heleny pisała:

 

Ta kobieta najwyraźniej obrała sobie za cel życia, by zatruć życie nie tylko moje. Ale i swojego syna […]. Posunęli się nawet do tego, by napisać list do moich rodziców, w którym oczerniają mnie w stopniu wręcz skandalicznym[11].

 

Brak stabilności finansowej nie ograniczył jednak pracy twórczej Alberta. Pierwszą pracą, której się poświęcił, było padanie efektu kapilarnego, czyli podnoszenie się słupa cieczy w bardzo cienkiej rurce. 3 października 1900 roku, na dwa miesiące przed wysłaniem artykułu do redakcji „Annalen der Physikˮ, w liście do Milevy pisał:

 

Wnioski na temat efektu kapilarnego, do jakich doszedłem niedawno w Zurychu, wydają mi się całkiem nowe, choć są takie proste. Kiedy oboje będziemy już w Zurychu, spróbujemy zdobyć jakieś dane empiryczne na ten temat […]. Jeśli ujawnia się tu jakieś prawo przyrody, poślemy rezultaty do „Annalenˮ[12].

 

Walter Isaacson, autor doskonałej biografii Einsteina, podaje, że był to początek sporów dotyczących udziału Milevy Marič w badaniach i teoriach Einsteina. W tym jednak przypadku wydaje się, że jej rola ograniczała się do słuchaczki i być może dyskutantki. W liście do Heleny Savić (od 15 listopada 1900 roku żony Milivojea Savića) pisała:

 

Albert napisał artykuł z fizyki, który prawdopodobnie wkrótce zostanie opublikowany w „Annalen der Physik”. Możesz sobie wyobrazić, jaka jestem dumna z mojego ukochanego. Nie jest to taki zwykły artykuł, tylko bardzo ważny – dotyczy teorii cieczy. Wysłaliśmy kopię do Boltzmanna, gdyż chcielibyśmy wiedzieć, co on o tym myśli. Mam nadzieję, że nam odpisze[13].

Boltzmann nie odpisał, a artykuł Einstein z czasem uznał za mało znaczący. Pomimo pierwszego osiągnięcia naukowego nadal pozostawał bez pracy. Zmuszony przez rodzinę pojechał do Mediolanu. Miało to służyć rozdzieleniu kochanków.

Z listów można wnioskować, że im dłużej Albert nie widział Mitzy, tym bardziej szalał z miłości:

 

Bez Ciebie brakuje mi pewności siebie, przyjemności z pracy, przyjemności z życia – krótko mówiąc, bez Ciebie moje życie straciło swój sens[14].

 

Jakże mogłem przedtem żyć. […] Bez myśli o Tobie wolałbym umrzeć. […] Spośród wszystkich ludzi, Ty kochasz mnie najmocniej i najlepiej rozumiesz. […] Wieczorami myślę o tym, że [Ty] myślisz o mnie i całujesz w łóżku poduszkę. Wiem, jak to jest! […]. Moim szczęściem jest Twoje szczęście. […] Moje życie zyskuje prawdziwy sens tylko dzięki myślom o Tobie. […] Jak cudownie było ostatnim razem, gdy mogłem Cię obejmować, tak jak natura stworzyła[15].

 

W innym liście dodawał: Na zawsze pozostaniemy studentami i gówno będzie nas obchodził cały świat[16]. Niestety nie dane było im pozostać wiecznymi studentami. Mileva rozpoczęła przygotowania do ponownego podejścia do egzaminów końcowych i miała nadzieję, że uzyskanie dyplomu umożliwi jej przygotowanie rozprawy doktorskiej. Promotorem miał być profesor Heinrich Martin Weber (1842–1913). W marcu 1900 roku w liście do Heleny pisała:

 

Profesor Weber przyjął moją propozycję pracy dyplomowej i był z niej całkiem zadowolony. Szukam tematów dalszych badań, które będę musiała wykonać. E. [Albert] wybrał dla siebie bardzo interesujący temat[17].

 

Albert z kolei pisał:

 

Ja również cieszę się bardzo, że będziemy nad tym razem pracowali. Nie wolno Ci teraz przerywać Twoich badań – jakiż będę dumny, gdy moje małe kochanie zostanie już panią doktor, a ja wciąż będę zupełnie zwykłym człowiekiem![18]

 

Niestety współpraca nie układała się idealnie. Weber był autorytatywny i z czasem coraz mniej lubił zuchwałego Einsteina. Milevie dostawało się także. Wiosną następnego roku pisała:

 

Miałam kilka kłótni z Weberem, ale jestem już do tego przyzwyczajona[19]. Dzięki obawom Webera nie udało mi się jeszcze zdobyć doktoratu [pomimo ukończenia kursu]. Znosiłam zbyt wiele i w żadnym wypadku nie wrócę do niego ponownie[20].

 

Można z dużą dozą prawdopodobieństwa przypuszczać, że Mileva nie uzyskała dyplomu, gdyż Albert nie potrafił ukrywać niechęci do profesora Webera. Tymczasem życie Milevy uległo radykalnej zmianie.

W maju 1900 roku spędziła z Albertem piękne, romantyczne i namiętne wakacje nad jeziorem Como. Niebawem okazało się, że jest w ciąży. 28 maja Einstein w liście do ukochanej pisał: Jak się czujesz, kochana? Jak tam chłopiec? […] Jak tam nasz mały synek?[21]. Pomimo dolegliwości ciążowych Mileva starała się przygotować do egzaminu, który miała zdawać w lipcu. Niestety i tym razem się nie udało. Abraham Pais podkreśla: teraz, gdy już wiemy, że w tym czasie była w odmiennym stanie, tym bardziej winniśmy podziwiać jej odwagę i upór, by zdawać raz jeszcze[22]. Bez dyplomu, w ciąży, bez ukochanego przy sobie wróciła do Nowego Sadu. Musiała zmierzyć się sama z trudami ciąży i porzuconymi marzeniami o karierze naukowej. Co jednak najgorsze, była przekonana, że na zachodzie zostanie uznana za ladacznicę, która zrujnowała Albertowi życie, na wschodzie zaś za idiotkę[23]. Jesienią 1901 roku Einstein został prywatnym nauczycielem w Szafuzie nad Renem. Jednocześnie wiązał nadzieje z otrzymaniem posady w urzędzie patentowym w Bernie. Mileva czuła się osamotniona. W liście do Alberta pisała:

 

Gdybyś tylko wiedział, jak bardzo samotna i opuszczona się czuję, na pewno byś przyjechał. […] Żebyś wiedział, jak bardzo chcę Cię znowu zobaczyć! Myślę o tobie całymi dniami, a jeszcze bardziej nocami[24].

 

W grudniu 1901 roku Albert pisał:

 

Wyczekuję naszej drogiej Lieserl [córeczki], ale po kryjomu (tak aby Doxerl się nie dowiedziała) wyobrażam sobie, że jest to Hanserl […]. Istnieje tylko kwestia, jak moglibyśmy przyjąć naszą Lieserl; nie chciałbym jej oddawać […][25].

 

Kiedy kilka dni później dowiedział się, że otrzymał pracę w Bernie, przyszło ukojenie i spokój. W listach do Mitzy pisał:

 

Zurych, 30 kwietnia 1901 roku

Mój kochany kotku,

[…] Sama się przekonasz, jaki pogodny i radosny się stałem. Dawno zapomniałem o wszystkich moich troskach. I tak bardzo Cię znowu kocham! To tylko z nerwów byłem tak niedobry dla Ciebie […] i tęsknię bardzo do chwili, kiedy znowu Cię ujrzę. […]

Całuję Cię z dna mojego serca.

Twoje kochanie[26]

 

Winterthur, 9 maja 1901 roku

Kochany kotku,

[…] Gdybym tylko mógł przekazać Ci chociaż cząstkę własnego szczęścia, abyś już na zawsze była wolna od smutku i melancholii. […]

Najlepsze życzenia i całusy dla Ciebie.

Albert[27]

 

W styczniu 1902 roku otrzymał wiadomość, że został ojcem. Poród był długi i ciężki. Córeczce Mileva nadała imię Lieserl. Einstein pisał do ukochanej:

 

Berno, 4 lutego 1902 roku

Moje najdroższe kochanie,

Biedne, najdroższe kochanie; co musiałaś wycierpieć, jeśli nie możesz nawet samodzielnie do mnie napisać! Szkoda, że nasza droga Lieserl musi zostać przedstawiona światu w ten sposób! Mam nadzieję, że do czasu nadejścia mojego listu będziesz zdrowsza i weselsza. […] Więc faktycznie jest dziewczynka. Czy jest zdrowa i płacze jak trzeba? Jakiego koloru ma oczka? Skąd bierzesz mleko? Czy dużo je? Musi być kompletnie łysa. Kocham ją bardzo, a przecież nawet nie wiem, jak wygląda. […] Chętnie sam zmajstrowałbym taką Lieserl, to musi być fascynujące! Z pewnością umie już płakać, lecz śmiać nauczy się dopiero później. Jest w tym pewna głęboka prawda. […]

Dla Ciebie tysiące pocałunków od Twojej miłości,

Johnnie[28]

Albert Einstein na rok przed otrzymaniem Nagrody Nobla, 1920, domena publiczna

Niestety nie ma żadnych listów świadczących o tym, że Einstein widział swoją córkę. Trudno domniemywać, czy o istnieniu dziecka wiedziała także rodzina i najbliżsi przyjaciele Einsteina. Wprawdzie jego matka 20 lutego 1902 roku pisała: tej Marič zawdzięczam najgorsze chwile mojego życia; gdyby to leżało w mojej mocy, zrobiłabym wszystko, aby zniknęła z naszego horyzontu[29], ale nie ma pewności, że odnosi się tym samym do narodzin wnuczki. Nie wiadomo też nic pewnego o losie dziecka. Michele Zackheim w swojej książce o Lieserl twierdzi, że była niepełnosprawna fizycznie i zamieszkała z rodziną Milevy. Według niej prawdopodobnie zmarła na szkarlatynę we wrześniu 1903 roku[30]. Z kolei wieloletni badacz życia Einsteina Robert Schulmann wysunął hipotezę, że Lieserl adoptowała Helena Savić. Nadano jej imię Zorka i miała żyć aż do lat dziewięćdziesiątych ubiegłego wieku. W rzeczywistości Saviciowie mieli niewidomą od wczesnego dzieciństwa córkę o takim imieniu, która zmarła w 1992 roku. Jednakże wnuk Heleny, a siostrzeniec Zorki doktor Milan Popović, odrzucił możliwość, że była to Lieserl, i twierdził, że to dziecko zmarło we wrześniu 1903 roku. W swojej książce napisał: wysunięta teoria, jakoby moja babcia adoptowała Lieserl, jest pozbawiona jakichkolwiek podstaw, gdyż zostało to dokładnie sprawdzone w historii mojej rodziny[31]. Znajduje to potwierdzenie w korespondencji Milevy i Alberta. W sierpniu 1903 roku Mileva pojechała do Nowego Sadu, gdyż została poinformowana, że Lieserl zachorowała na szkarlatynę. Z podróży wysłała kartę Albertowi: Podróż upływa szybko, ale jest ciężka. Nie czuję się dobrze. Co porabiasz, mój Jonzile? Napisz do mnie prędko. Twoja biedna Laleczka[32]. Złe samopoczucie Milevy wynikało z tego, że była ponownie w ciąży. Albert odpisał:

 

Bardzo mi przykro z powodu tego, co się stało z Lieserl. Szkarlatyna pozostawia często trwałe ślady. Jak Lieserl została zarejestrowana urzędowo? Musimy bardzo uważać, bo inaczej dziecko będzie miało problemy w przyszłości[33].

Mileva i Albert Einsteinowie, ok. 1905, domena publiczna

10 października 1902 roku zmarł ojciec Alberta. Krótko przed śmiercią wyraził zgodę na ślub syna z Milevą[34]. 6 stycznia 1903 roku Einstein dotrzymał słowa i ożenił się z Mitzą. Ślub cywilny odbył się w Bernie w towarzystwie najbliższych przyjaciół. Rok później, 14 maja 1904 roku, Mileva urodziła syna Hansa Alberta. W liście do Heleny pisała, żeby przyjechała do Berna, gdyż chciała jej pokazać moje małe kochanie, które też ma na imię Albert. Nie umiem wyrazić, ile daje mi radości, gdy śmieje się po przebudzeniu albo fika nóżkami w kąpieli[35]. Ojciec Milevy przyjechał zobaczyć wnuka i zaoferował zięciowi pokaźną sumę pieniędzy. Einstein jednak ich nie przyjął, argumentując:

 

Nie poślubiłem twojej córki dla pieniędzy, ale dlatego, że ją kocham, potrzebuję jej, ponieważ oboje jesteśmy jednością. Wszystko, co zrobiłem i osiągnąłem, zawdzięczam Milevie. Jest moim genialnym źródłem inspiracji, moim aniołem ochronnym przeciwko pokusom w życiu, a tym bardziej w nauce. Bez niej nie rozpocząłbym pracy, nie mówiąc już o jej zakończeniu[36].

_______

[1] R. Highfield, P. Carter, Prywatne życie Alberta Einsteina, op. cit., s. 67.

[2] P. Michelmore, Einstein: Profile of the Man, Dodd, Mead and Company, New York 1962, s. 36.

[3] W. Isaacson, Einstein, op. cit., s. 59.

[4] R. Highfield, P. Carter, Prywatne życie Alberta Einsteina, op. cit., s. 76.

[5] Ibidem, s. 77.

[6] Ibidem, s. 79.

[7] Ibidem, s. 80.

[8] W. Isaacson, Einstein, op. cit., s. 67.

[9] Ibidem, s. 69.

[10] A. Pais, Tu żył Albert Einstein, Prószyński i S-ka, Warszawa 2005, s. 24.

[11] Ibidem, s. 24.

[12] W. Isaacson, Einstein, op. cit., s. 71.

[13] M. Popović, In Albertʼs Shadow, op. cit., s. 70.

[14] J. Renn, R. Schulmann, Albert Einstein/Mileva Marić, op. cit., s. 26.

[15] A. Pais, Tu żył Albert Einstein, op. cit., s. 24.

[16] D. Overbye, Zakochany Einstein, op. cit., s. 72.

[17] M. Popović, In Albertʼs Shadow, op. cit., s. 60.

[18] J. Renn, R. Schulmann, Albert Einstein/Mileva Marić, op. cit., s. 32.

[19] M. Popović, In Albertʼs Shadow, op. cit., s. 76.

[20] Ibidem, s. 78.

[21] J. Renn, R. Schulmann, Albert Einstein/Mileva Marić, op. cit., s. 54.

[22] A. Pais, Tu żył Albert Einstein, op. cit., s. 25.

[23] D. Overbye, Zakochany Einstein, op. cit., s. 127.

[24] W. Isaacson, Einstein, op. cit., s. 86.

[25] A. Pais, Tu żył Albert Einstein, op. cit., s. 25.

[26] J. Renn, R. Schulmann, Albert Einstein/Mileva Marić, op. cit., s. 46.

[27] Ibidem, s. 51.

[28] J. Renn, R. Schulmann, Albert Einstein/Mileva Marić, op. cit., s. 73.

[29] A. Pais, Tu żył Albert Einstein, op. cit., s. 25.

[30] M. Zackheim, Einsteinʼs Daughter: The Search for Lieserl, Riverhead Hardcover, New York 1999.

[31] M. Popović, In Albertʼs Shadow, op. cit., s. 11.

[32] W. Isaacson, Einstein, op. cit., s. 98.

[33] Ibidem, s. 98.

[34] A. Pais, Pan Bóg jest wyrafinowany… Nauka i życie Alberta Einsteina, Prószyński i S-ka, Warszawa 2001, s. 61.

[35] W. Isaacson, Einstein, op. cit., s. 100.

[36] D. Trbuhović-Gjurić, Im Schatten Albert Einsteins, op. cit., s. 76.

Tydzień Noblowski — wielkie niedocenione

/   Tomasz Pospieszny   /

 

Harriet Brooks

(1876–1933)

Harriet Brooks, McCord Museum, Montreal, Quebec

Harriet Brooks była jedną z najwybitniejszych fizyczek jądrowych badającą przemiany jądrowe i radioaktywność. Uważana jest za pierwszą kanadyjską uczoną zajmującą się fizyką jądrową. Współpracowała z ikonami epoki: Josephem Johnem Thomsonem, Ernestem Rutherfordem i Marią Skłodowską-Curie. Rutherford uważał zresztą, że dorównuje ona zdolnościami i geniuszem Marii Curie. Należy do pierwszych osób, które odkryły radon i próbowały określić jego masę atomową. Brooks przeprowadziła serię eksperymentów mających na celu określenie charakteru radioaktywnych emisji z toru. Przypisuje się jej także odkrycie koncepcji odrzutu atomowego. Eksperymenty te stanowiły jedną z podstaw rozwoju nauki o technologii jądrowej.

 

 

Lise Meitner

(1878–1968)

Lise Meitner, [za:] www.austriaart.pl
Albert Einstein mówił o niej: Jest naszą Madame Curie i to bardziej utalentowaną niż Madame Curie. I nie powinno to dziwić. Jej sukcesy naukowe były zaskakujące. Była współodkrywczynią odrzutu jądra atomowego, kilku naturalnych izotopów promieniotwórczych i trwałego izotopu protaktynu. Samodzielnie zbadała właściwości fizyczne wielu substancji promieniotwórczych, rozkład energii promieniowania beta, promieniowanie beta i gamma, odkryła zjawisko nazywane dziś zjawiskiem Augera. Prawidłowo zinterpretowała doświadczenie wykonane przez Ottona Hahna i Fritza Strassmanna, obliczyła energię wyzwalaną w tym procesie oraz przewidziała łańcuchową reakcję jądrową. Lise Meitner z całą pewnością zasłużyła na Nagrodę Nobla, której pomimo ogromnych zasług nigdy nie dostała.

 

 

Marietta Blau

(1894–1970)

Marietta Blau, domena publiczna

Marietta Blau pozostaje do dziś mało znaną i prawie zapomnianą badaczką, która położyła podwaliny pod współczesną fizykę cząstek elementarnych. Opracowała fotograficzną metodę detekcji cząstek. Dzięki jej badaniom i pomysłowości po raz pierwszy
zastosowano fotograficzne emulsje jądrowe, które były użyteczne do obrazowania i dokładnego pomiaru cząstek (głównie cząstek alfa i protonów) oraz zdarzeń jądrowych o wysokiej energii. Jako pierwsza uczona użyła emulsji jądrowych do wykrywania neutronów, co pozwoliło na opracowanie metody dokładnego badania reakcji wywołanych przez zjawiska promieniowania kosmicznego. Jej prace znacznie przyspieszyły rozwój fizyki cząstek. Niestety nie przyznano jej Nagrody Nobla, chociaż otrzymał ją Cecil Powell za użycie światłoczułej emulsji oraz wytworzenie emulsji jądrowej, dzięki której badał procesy jądrowe.

 

Ida Noddack

(1896–1978)

Ida Noddack-Tacke, Stadtarchiv Wesel

Jedna z najwybitniejszych uczonych XX wieku była obdarzona nie tylko niezwykłymi zdolnościami analitycznymi, ale także ponadprzeciętną intuicją. Wyjątkowo precyzyjna i ambitna, wyprzedzała swój czas o kilka pokoleń. Wraz z mężem odkryła dwa
pierwiastki chemiczne – ren i mazur (obecna nazwa technet). Niestety, odkrycie drugiego nie zostało potwierdzone, choć dziś coraz częściej słychać głosy, że niesłusznie. Ida Tacke-Noddack jako pierwsza podała prawidłową interpretację eksperymentu Fermiego, jednak jako kobieta – i tylko dlatego – została zignorowana przez męskie środowisko naukowe. Czas pokazał, że miała rację.

 

Chien-Shiung Wu

(1912–1997)

Chien-Shiung Wu, domena publiczna

Była jedną z największych specjalistek w zakresie radioaktywności. Pracowała przy Projekcie Manhattan nad wzbogaceniem uranu. Do jej największych sukcesów naukowych należy zaliczyć zaprojektowanie i wykonanie w 1957 roku eksperymentu, którym potwierdziła hipotezę dwóch amerykańskich fizyków Tsung-Dao Lee i Chen Ning Yanga z 1956 roku. Przewidzieli oni teoretycznie, że w rozpadzie beta łamana jest parzystość. Była nazywana Pierwszą Damą Fizyki. I pomimo wielkiej pracowitości, oddania nauce, pomysłowości i znacznych osiągnięć nie otrzymała Nagrody Nobla, podczas gdy Lee i Yang zostali jej pierwszymi chińskimi laureatami w 1957 roku. Na pocieszenie Chien-Shiung Wu była pierwszą osobą, która otrzymała Nagrodę Wolfa z fizyki.

_____________________

T. Pospieszny, Pasja i geniusz. Kobiety, które zasłużyły na Nagrodę Nobla, Wydawnictwo Po Godzinach, Warszawa 2019.

Ellen Gleditsch — norweska pionierka radiochemii

 

/   Tomasz Pospieszny   /

 

Ellen Gleditsch jest jedną z niewielu pionierek radiochemii, która jest nie tylko zapomniana w świecie, ale także w Norwegii – kraju rodzimym. Była niezwykle aktywna zawodowo, większą część życia spędziła podróżując i współpracując z innymi naukowcami. Działała także w organizacjach międzynarodowych.

Dom rodziny Gleditsch w Tromsø, National Library of Norway, domena publiczna

Uczona przyszła na świat 29 grudnia 1879 roku w Mandal – małym miasteczku położonym nad Morzem Północnym w południowej Norwegii. Była najstarszym z dziesięciorga rodzeństwa: Karl (1881–1974), Birgit (1882–1941), Eivind (1885–1943), Leif (1886–1946), August (1888–1913), Adler (1893–1978), bliźniaczki Liv (1895–1977) i Astrid (1895–1924) oraz Kristian (1901–1973). Rodzina Gleditschów przybyła do Norwegii około sto lat wcześniej z Jugosławii. Wędrowali przez Niemcy i Danię, gdzie przodek uczonej, Carl August Ludwig von Gleditsch z Sachsen-Weimar, podjął pracę jako kapral w duńskiej armii i poślubił Dunkę. Para później przeprowadziła się i osiedliła w Norwegii, która w 1790 roku była częścią Danii. Ojciec Ellen, Karl Kristian (1851–1913) był synem luterańskiego ministra. Szybko zyskał opinię szanowanego nauczyciela przedmiotów ścisłych, a później także jako dyrektor szkoły średniej w Mandal. W 1889 roku rodzina przeprowadziła się do Tromsø na dalekiej północy Norwegii, gdzie Karl Kristian kontynuował karierę nauczycielską. Kilka lat później został także szanowanym politykiem. Z kolei matka Ellen, Petra Birgitte Hansen (1857–1913) była córką kapitana żeglugi. Była silną i niezależną kobietą angażującą się w politykę. Należała do pierwszego ruchu sufrażystek w Norwegii. Uwielbiała muzykę ludową i tą pasją zainspirowała także swoje dzieci. Według Ellen matka miała niezwykłe zdolności językowe. Pasjonowała ją przyroda i astronomia. Gleditschowie lubili spędzać czas na wsi i zabierali dzieci na długie wędrówki po lasach i górach. Często także żeglowali. Podczas wycieczek ojciec zakochany w botanice uczył swoje dzieci jak rozpoznawać i stosować rośliny w lecznictwie.

Ellen z matką i ojcem, 1913/1914, National Library of Norway, domena publiczna

Miłość rodziców, ich wzajemna troska oraz otwartość na świat sprawiła, że dzieci wychowywały się w szczęśliwej i opiekuńczej rodzinie. Ellen bardzo wcześnie nauczyła się szacunku dla innych ludzi, ale również dla przyrody. Często także, jako najstarsza z rodzeństwa, pomagała matce w opiece nad młodszym rodzeństwem. Wydaj się, że właśnie wówczas rozwinęła się w niej etyka pracy, bezinteresowność, skromność, troska o innych i głębokie wartości humanitarne, które zdominowałyby jej osobowość i pozostały w niej przez całe życie. Ellen w wieku osiemnastu lat zdała egzamin końcowy będąc najlepszą uczennicą w klasie. Znała łacinę, niemiecki, angielski, ale najbardziej interesowała się naukami przyrodniczymi. Zdecydowała się na podjęcie stażu w aptece. W 1897 roku przeniosła się do Oslo, gdzie kontynuowała naukę. Po kilkuletniej praktyce zdała dwa ważne egzaminy: w 1900 roku egzamin na asystenta farmaceutycznego i w 1902 roku niezwykle trudny egzamin na farmaceutę dyplomowanego.

 

Ellen Gleditsch w stroju absolwentki, b.d., National Library of Norway, domena publiczna

 

Po latach uczona wspominała:

Po egzaminie z farmakologii dr Bødtker doradził mi kontynuację studiów w laboratorium uniwersyteckim pod kierunkiem profesora Hiortdahla. Tak bardzo chciałam kontynuować naukę, ale nie miałam pieniędzy, a trzeba było przetrwać, więc zacząłem pracować jako korepetytorka. Wszystko układało się nawet dobrze, ale nie miałam tyle czasu na naukę, ile bym chciała. To była najpierw kwestia przetrwania, a potem nauki. Ale tak naprawdę poszło lepiej, niż mogłoby się wydawać. W 1903 roku zostałam asystentką w uniwersyteckim laboratorium chemicznym, a w 1905 roku zdałam egzamin maturalny, zaś w 1906 roku kwalifikacyjny egzamin wstępny na uniwersytet.

 

Ellen Gleditsch (z lewej) i jej przyjaciółka — botaniczka Thekla Resvoll (1871–1948)[1900 roku prowadziła kursy z botaniki roślin dla farmaceutów], ok. 1905, Oslo Museum, CC BY–SA
Eyvind Bødtker, d.b., fot. Borgens Atelier, Norsk Farmasihistorisk Museum, CC BY–SA

Doktor Eyvind Bødtker (1867–1932) był jednym z najlepszych norweskich chemików organików. Przez lata był mentorem i przyjacielem Ellen. W 1907 roku opublikowała swój pierwszy artykuł naukowy, który za jego radą został przetłumaczony na język francuski i opublikowany we francuskim czasopiśmie naukowym. Bødtker często bywał we Francji i był pod wielkim wrażeniem francuskiego życia kulturalnego oraz naukowego. To on miał niewątpliwy wpływ na Ellen i zapewne obudził w niej pragnienie wyjazdu poza odizolowaną społeczność naukową Oslo. Kiedy podopieczna wyznała mu, że jej największym marzeniem jest nauka w laboratorium Marii Skłodowskiej-Curie, Bødtker postanowił działać. Pojechał do Paryża i odwiedził laboratorium Madame Curie. Ponieważ jej nie zastał zostawił wiadomość moja utalentowana asystentka bardzo chciałaby pracować dla Pani, wyłącznie z zamiłowania do nauki, nie dla zdobycia dyplomu. Kiedy po kilku dniach powrócił spotkał się z Marią. To początkowo odrzuciła prośbę Bødtkera twierdząc, że nie ma już miejsca w laboratorium. Uczony jednak nie ustępował. Pokazał Marii Curie pracę autorstwa Ellen. Praca wydawała się interesująca, ale noblistka nadal twierdziła, że nie ma miejsca w pracowni. Wówczas Bødtker stwierdził, że mademoiselle Gleditsch jest tak mała i lekka, że nie zajmie dużo miejsca w pracowni. W końcu Maria Curie ustąpiła. Według wielu historyków nauki decydującym czynnikiem było prawdopodobnie to, że większość stypendystów w laboratorium Marii była fizykami, a Curie bardzo potrzebowała chemika. Idealną kandydatką była Gleditsch. Wielkie marzenie się ziściło.

 

Instytut Radowy w Paryżu, 1929, Wellcome Images, CC BY–4.0

Gleditsch otrzymała stypendium królowej Norwegii i Szwecji. Było ono niezbędne, aby opłacić pobyt w laboratorium Curie. Jednak Maria Skłodowska-Curie zrobiła tym razem wyjątek. W liście do Ellen napisała: […] jeśli podejmie Pani tę pracę [rekrystalizacja soli baru i radu], która zajmie tylko część Pani czasu, a będzie stanowić ogólną korzyść dla laboratorium, mógłbym zwolnić Panią z opłat […]. Jednocześnie mogłaby Pani pracować nad innymi, bardziej interesującym problemami, które mogą prowadzić do nowych wyników. W październiku 1907 roku Ellen Gleditsch wyjechała do Paryża. Początkowo mieszkała ze swoim bratem Adlerem, a później wynajęła małe mieszkanko za Panteonem, skąd miała blisko do pracowni i Sorbony. Po latach wspominała:

Pomieszczenia, które miała do dyspozycji Maria Curie były położone rozłożyście. Przy wejściu znajdowało się duże biuro z przylegającym ciemnym pokojem, w pobliżu pokoju pełniącego funkcję biblioteki. Trzeba było przejść przez podwórko, by dostać się do dużego laboratorium, w którym można było znaleźć większość sprzętu naukowego. Obok znajdowało się mały gabinet Marii Curie i inny pokój używany przez André Debierneʼa.

 

Maria Skłodowskia-Curie, 1911, Library of Congress

Precyzja z jaką Ellen podjęła się rozdziału soli baru i radu była tak wielka, że Madame Curie szybko uczyniła z niej osobistą asystentkę. W 1907 roku obie rozpoczęły prace nad eksperymentem, który miał obalić teorię Williama Ramsaya (1852–1916). Chemik ów twierdził, że w wyniku działania emanacji radu na miedź, otrzymał lit i sód. Maria Curie wraz z Ellen przeprowadziły niezwykle staranne doświadczenia, stosując w miejsce szklanych naczyń, naczynia platynowe. Stosunkowo szybko uczone stwierdziły, że efekt opisany przez Ramsaya nie istnieje, a obecność litu i sodu jest związana z używanymi przez niego szklanych i kwarcowych naczyń. Pomimo wielu różnic w osobowościach obie panie szybko się polubiły i być może zaprzyjaźniły. Gleditsch była często zapraszana do domu Curie w Sceaux, gdzie poznała córki Marii. Wydaje się również, że był to początek przyjaźni pomiędzy Ellen i Irène. Podczas jednej z krótkich wizyt w Norwegii Gleditsch zaręczyła się z młodym oficerem. Według biografów uczonej, para była bardzo różna i intelektualnie niedobrana. Zaręczyny – prawdopodobnie jedyny związek uczuciowy Gleditsch, który mógł zakończyć się małżeństwem – wkrótce zostały zerwane. W 1926 roku Gleditsch mówiła:

Często wymagana jest obecność [kobiety] w domu. Kobieta, która chce zostać badaczem, musi pogodzić dwa przeciwstawne żądania. Badania wymagają przede wszystkim refleksyjnej atmosfery, możliwości myślenia w ciszy i spokoju oraz skoncentrowania się na konkretnym problemie. Materialne obawy, troska o męża lub dzieci pozostawione w domu bez odpowiedniej pomocy lub opieki zabiją wszelkie szanse na pierwszorzędne wysiłki.

W 1912 roku Gleditsch otrzymała licencjat, z którym powróciła do Norwegii. Przyznano jej skromne stypendium na uniwersytecie w Oslo. Uczona próbowała kontynuować badania związane z czasem połowicznego zaniku radu, a jeszcze rozpoczęte w Paryżu, jednak na przeszkodzie stał brak odpowiednio wyposażonego laboratorium. Bardzo szybko zorientowała się, że swoją pasję i zainteresowanie radioaktywnością będzie mogła rozwijać w Stanach Zjednoczonych. Niestety los pisze własny scenariusz.

 

Portret dr Ellen Gleditsch, b.d., National Library of Norway

Na początku 1913 roku Ellen straciła oboje rodziców i jednego z braci. Została tym samym głową rodziny. Starała się utrzymywać dom i łożyła na edukacje rodzeństwa. Więzi rodzinne były bardzo mocne, co manifestowało się między innymi tym, że Ellen do końca życia mieszkała z bratem Adlerem. Pod koniec feralnego roku Gleditsch otrzymała stypendium Fundacji Amerykańsko-Skandynawskiej. Napisała do Bertrama Boltwooda (1870–1927) z Yale oraz Theodore’a Lymana (1874–1954) z Harvardu wyrażając chęć podjęcia z nimi współpracy. Po odmowie Lymana, który stwierdził, że żadna kobieta nigdy nie pracowała w jego laboratorium, i nie do końca optymistycznym liście Boltwooda, uparta i zdecydowana Ellen pojechała do Stanów Zjednoczonych. Może budzić to zdziwienie, bowiem Boltwood słyną ze swoich szowinistycznych poglądów. Po latach Gleditsch mówiła (nie odnosząc się do jego nazwiska), że pracowała z uczonym, który był znany z nienawiści do kobiet. I ją akceptował bo nie krzyczała. Według uczonej był to największy komplement w mojej karierze naukowej. To właśnie tutaj w semestrze 1913–1914 uczona określiła okres połowicznego zaniku radu na 1686 lat (dziś wiadomo, że wynosi on 1620 lat). Praca ta sprawiła, że uczona została rozpoznawalna w świecie nauki. Stała się wiodącą specjalistką w izolacji i oddzielaniu substancji promieniotwórczych od minerałów. Theodore W. Richards (1868–1928), zaprosił ją na Harvard, a wiosną 1914 roku otrzymała doktorat honoris causa Smith College w Massachusetts. Również Lyman zmienił zdanie i zaproponował jej posadę. Gleditsch wykładała teorię atomu, omawiając powstałą właśnie teorię kwantów oraz ostatnie prace Bohra, Rutherforda i Moseleya. Rozszerzyła swoje prace o badania nad radioaktywnymi minerałami, którymi interesowała się przez całe życie. Opracowała procedury analityczne izolacji wielu substancji radioaktywnych znalezionych w norweskich minerałach i dostarczała próbki do laboratorium Curie. Jako pierwsza zwróciła uwagę na znaczenie izotopów ołowiu w celu dokładnego określenia wieku Ziemi.

Na Uniwersytecie Harvarda Gleditsch zaangażowała się w badania izotopów. W tamtym czasie wiadomo było, że masa atomowa pierwiastków promieniotwórczych (lub tych, które powstawały w wyniku rozpadu promieniotwórczego) może się różnić w zależności od ich pochodzenia geologicznego. Na przykład, w rudach bogatych w naturalnie występujący tor obfitował ołów-208. Natomiast w rudach bogatych w uran dominował ołów-206. Problem pojawił się kiedy Francis Aston (1877–1945) ogłosił, że znalazł dwie różne masy atomowe dla chloru (odpowiednio 35 i 37), a średnia masa atomowa wynosi 35,46. Chlor nie jest pierwiastkiem radioaktywnym, zatem trudno było wytłumaczyć tą anomalię. Wyglądało na to, że także w tym przypadku skład izotopowy zmieniał się w zależności od źródła (tak jak w dla pierwiastków radioaktywnych). Gleditsch i jej współpracownicy badając chlor pochodzący z różnych źródeł, odkryli, że skład izotopowy chloru w rzeczywistości nie różnił się w zależności od źródła. Badacze określili masę atomową pierwiastka na dwa różne sposoby. W pierwszej metodzie strącili chlorek srebra za pomocą azotanu srebra. Chlorek srebra przemyli, wysuszyli i zredukowali do srebra metalicznego za pomocą gazowego wodoru. Na podstawie masy wysuszonego chlorku srebra i srebra metalicznego wyznaczyli ciężar atomowy chloru. Druga metoda polegała na określeniu gęstości nasyconych roztworów chlorku sodu, a następnie masy chloru. Jednakże Irène Curie w Paryżu otrzymała inny wynik. Gleditsch doszła jednak do wniosku, że próbki Curie musiały być zanieczyszczone. Masa atomowa chloru była zatem stała.

Oczywiście bardzo szybko zaczęła się uczoną interesować prasa. Podczas jednego z wywiadów zapytano ją o chęć wyjścia za mąż. Ze względu na sporą ilość pracy zwyczajnie nie mam [na małżeństwo] czasu; moimi zainteresowaniami są badania [naukowe], które pochłaniają wszystkie moje myśli – odpowiedziała Gleditsch.

Eva Ramstedt, ok. 1910, Uppsala University Library

Wybuch pierwszej wojny światowej przyniósł uczonej naukową izolację. Nie mogła wyjeżdżać, miała kłopoty z dostępem do światowej literatury specjalistycznej. W listopadzie 1915 roku pisała do Marii Skłodowskiej-Curie:

Minęło dużo czasu, odkąd miałam od Ciebie jakieś wiadomości. Mam nadzieję, że radzisz sobie tak dobrze, jak pozwalają na to takie czasy… Jak zapewne wiesz, tego lata spotkałam się z panią Ramstedt. Wspólnie badałyśmy radioaktywność w źródłach i wodzie oraz elektryczność w atmosferze. Mamy nadzieję, że będziemy mogły kontynuować [badania] w przyszłym roku. Miło było rozmawiać o Paryżu, laboratorium Curie i wspomnieniach z naszych czasów studenckich. Przydało mi się przynajmniej rozmawiać z kimś, kto pracuje nad radioaktywnością. Mam tu przyjaciół, chemików i fizyków, ale żaden z nich nie zajmował się wiele promieniotwórczością… Chciałabym pojechać do Paryża i Cię odwiedzić! Oby tylko warunki na to wkrótce pozwoliły!

W 1916 roku otrzymała stanowisko docenta oraz uczciwą pensję. Mogła prowadzić badania i zatrudniać współpracowników. Napisała pierwszy podręcznik dotyczący radioaktywności wydany jednocześnie w Szwecji i Norwegii pt. Rad i procesy radiochemiczne. W 1917 roku została wybrana na członkinię Akademii Nauk w Oslo. Została tym samym drugą kobietą, która dostąpiła tego zaszczytu (pierwszą była Kristine Bonnevie). Uważała, że współpraca międzynarodowa jest niezwykle ważna dla nauki. Ellen Gleditsch twierdziła, że:

W tej atmosferze [wyjazdów] dowiedziałam się, w jaki sposób problem [naukowy] rodzi się w jednym laboratorium, jest podejmowany w innym, a potem może zostać rozwiązany w jeszcze innym. Dowiedziałam się, że konkurencja i wyścig związany z rozwiązaniem [problemów naukowych] jest ściśle powiązany z postępem nauki. Powstaje rodzaj braterstwa między tymi, którzy pracują w tym samym laboratorium, w którym powstają różne problemy, gdzie są omawiane i być może ich rozwiązania skutkują publikacją. Rozwiązanie to dociera w końcu do laboratoriów w innych krajach, w których badane są te same problemy. I w końcu człowiek zdaje sobie sprawę – być może tylko poprzez małe osobiste rozczarowania lub sukcesy, że ktokolwiek podejmuje ten decydujący, ostatni krok związany z rozwiązaniem [problemu], czy płynie z zagranicy czy nie, ma drugorzędne znaczenie.

W 1919 roku Gleditsch wyjechała na dziewięciomiesięczne stypendium do Paryża. Rok później pojechała do Rutherforda do Cambridge i Soddy’ego do Oxfordu, z którym się zaprzyjaźniła i którego prace szczególnie ceniła. Następnie powróciła do Paryża, aby zastąpić podróżującą do Ameryki Południowej Marię Curie w laboratorium. Po powrocie do Norwegii została uhonorowana przez Norweską Akademię Nauk prestiżową nagrodą Nansena.

 

Ellen Gleditsch na schodach Instytutu Radowego w Paryżu, 1924 [za:] Natalie Pigeard-Micault, Les femmes du laboratoire Curie, Glypche, Paris 2013

W 1922 roku Gleditsch po raz pierwszy w liście do Marii Skłodowskiej-Curie skarżyła się na problemy zdrowotne. Pisała, że cierpi na anemię, która powoduje częste przeziębienia. Być może było to związane z pracą z substancjami radioaktywnymi, jednakże zważywszy na fakt, że uczona żyła prawie osiemdziesiąt dziewięć lat można wnioskować, że miała wyjątkowo silny organizm.

W okresie międzywojennym Gledisch skoncentrowała się na badaniu izotopów w minerałach. Część prac wykonała wspólnie z młodszą siostrą Liv, która także była chemikiem. Uczona zaangażowała się również w jedną z komisji działających przy Lidze Narodów. Głośno mówiła:

Nie ma znaczenia, czy praca jest wykonywana przez niską kobietę w Bułgarii czy przez wysokiego mężczyznę w Stanach Zjednoczonych, jeśli wykonano ją dobrze. I właśnie to musimy zrobić: pracować tak dobrze, aby nikt nie ośmielił się powiedzieć – to dobra robota dla kobiety, ale aby wszyscy mogli powiedzieć – to dobra robota w ogóle. Rasa i płeć nie mają znaczenia w nauce.

Ellen Gledtisch, ok. 1935, Oslo Museum, CC CC 1.0

W 1929 roku po wielu perturbacjach została profesorem chemii. W liście do Marii Curie pisała: Dokonało się. Trzy dni temu zostałam profesorem. Mam szczerą nadzieję, że będę w stanie wykonać dobrą robotę; i że nie będzie brakowało pracy. Mam również nadzieję, że od czasu do czasu będę Cię odwiedzać i że te wizyty będą dla mnie źródłem inspiracji i zachęty. Uważała, że praca ze studentami oznacza pracę nad przyszłością. To uczeń jutro będzie kontynuował naszą pracę. Aby popularyzować naukę, Gleditsch zaczęła wygłaszać wykłady popularnonaukowe w radio, pisała też artykuły w języku francuskim, angielskim, niemieckim i norweskim. Była autorką biografii wielu naukowców, których znała osobiście.

Podczas drugiej wojny światowej Gleditsch przyczyniła się do znalezienia bezpiecznej przystani w Norwegii dla uchodźców, głównie ze społeczności uniwersyteckiej. W jej laboratorium w Oslo i innych częściach kraju znaleziono miejsca dla uciekających naukowców. Wśród nich znaleźli się Elizabeth Rona i Marietta Blau. Kiedy Niemcy okupowali Norwegię, Gleditsch nigdy nie rezygnowała z wysiłków przeciwstawienia się okupantom i marionetkowemu reżimowi. Starała się utrzymać ducha oporu i przygotować się na spodziewane ataki na wolność akademicką i osobistą. Nic jej nie złamało. Jej brat, Adler był przez kilka lat jeńcem wojennym. Siostra Liv została aresztowana w ostaniem roku wojny. Ellen Gleditsch nadal okazywała pogardę okupantom, pomagając studentom, naukowcom i innym ludziom, którzy znaleźli się w niebezpieczeństwie. Kilkakrotnie ukrywała ich w swoim mieszkaniu. W 1943 roku uczona została aresztowana. Przesłuchiwał ją dobrze wykształcony niemiecki oficer. Po niemiecku przekonała go, aby ją wypuścił. I właściwie nie wiadomo dlaczego, oficer podziękował jej za miłe spotkanie i wyraził nadzieję, że spotkają się ponownie w przyjemniejszych okolicznościach. Wkrótce jednak została oskarżona o działalność polityczną na uniwersytecie i zakazano jej pracy na uczelni.

 

Zebranie Komisji Norm i Jednostek Promieniotwórczości w Sztokholmie w 1953; od lewej m.in: Raymond Delaby (1.),  Irène Joliot-Curie (6.), Ellen Gleditsch (9.), Friedrich Paneth (10.), austriacka fizyk Berta Karlik (11.) i George de Hevesy (12.), National Library of Norway

 

Po wojnie pozostała w kontakcie z przyjaciółmi i kolegami, takimi jak np. Lise Meitner, którą regularnie odwiedzała w Sztokholmie. W 1946 roku uczona przeszła na emeryturę i rozpoczęła współpracę z UNESCO. Jej celem była walka z analfabetyzmem. W 1947 roku na zaproszenie Frederica Joliota-Curie wzięła udział w ceremonii z okazji dziesiątej rocznicy śmierci Rutherforda. W 1952 roku została powołana do norweskiej komisji ds. koordynacji naukowej jako przedstawicielka rządu, gdzie była rzecznikiem międzynarodowej kontroli nad bombą atomową. W tym samym roku zrezygnowała z pracy w UNESCO w proteście przeciwko przyjęciu Hiszpanii pod faszystowskim reżimem Franco jako członka instytucji. Przez cały czas publikowała. Pod koniec życia zainteresowała się szczególnie historią nauki. Jej ostatni artykuł dotyczący życia i pracy szwedzkiego chemika Carla Wilhelma Scheele’a został opublikowany w 1968 roku. Uczona otrzymała wiele nagród i wyróżnień, w tym między innymi w 1962 roku jako pierwsza kobieta doktorat honoris causa Sorbony, medal miasta Paryża, została także honorowym obywatelem Paryża. Otrzymała również doktorat honoris causa Uniwersytetu w Strasburgu.

Pod koniec maja 1968 roku spędzała weekend w swoim wiejskim domu w Enebakk pod Oslo. Poczuła się źle. Straciła przytomność. Lekarze orzekli, że dostała udaru. Kilka dni później, 5 czerwca w wieku osiemdziesięciu dziewięciu lat Ellen Gleditsch zmarła.

Można by oczekiwać, że w Norwegii pamięć o uczonej będzie pielęgnowana i trwała. Niestety niewiele osób zna tą wyjątkową kobietę i jej osiągnięcia. Niestety mało kto pamięta Ellen Gleditsch – wybitną uczoną, działaczkę pokojową oraz przyjaciółkę i współpracowniczkę Marii Skłodowskiej-Curie.

 

W styczniu 2019 roku Svein Stølen – rektor Uniwersytetu w Oslo – odsłonił pamiątkową plakietę na budynku przy ulicy Jonas Reins 1 w Oslo, gdzie Ellen Gleditsch mieszkała w latach 1931–1968, fot. Eivind Torgersen, [za:] https://forskning.no
_______________

Literatura zalecana:

[1] A.-M. Weidler Kubanek, Nothing Less Than An Adventure: Ellen Gleditsch and Her Life in Science, CreateSpace Independent Publishing Platform, 2010.

[2] A. Lykknes, Ellen Gleditsch and Research on Radium, Chlorine and Potassium, [w]: Women in Their Element: Selected Women’s Contributions To The Periodic System, ed., Annette Lykknes, Brigitte Van Tiggelen, World Scientific Publishing Co, Singapore 2019.

[3] A. Lykknes, L. Kvittingen, A. K. Børrese, Ellen Gleditsch: Duty and responsibility in a research and teaching career, 1916-1946, Historical Studies in the Physical and Biological Sciences, 36 (1), 2005, str. 131–188.

[4] A. Lykknes, H. Kragh, L. Kvittingen, Ellen Gleditsch: Pioneer Woman in Radiochemistry, Phys. Perspect., 6, 2004, str. 126–155.

[5] A. Lykknes, Ellen Gleditsch: Woman Chemist in IUPAC’s Early History, Chemistry International, 2019, str. 26–27.

[6] A.-M. Weidler Kubanek, C. P. Grzegorek, Ellen Gleditsch: Professor and Humanist, [w]: A Devotion to Their Science: Pioneer Women of Radioactivity, ed., Marlene F. Rayner-Canham, Geoffrey W. Rayner-Canham, McGill-Queen’s University Press, Québec 1997.

[7] A. Lykknes, Ellen Gleditsch: Professor, Radiochemist, and Mentor, Department of Chemistry Norwegian University of Science and Technology Trondheim, Norway, Ph. D. thesis, 2005.

[8] M. F. Rayner-Canham, G. W. Rayner-Canham, Sir W. Grenfell College, Stefanie Horovitz, Ellen Gleditsch, Ada Hitchins, and the discovery of isotopes, Bull. Hist. Chem., 25(2), 2000, str. 103–108.

Hertha Ayrton — uczona aktywistka

/   Tomasz Pospieszny   /

 

Osobiście nie zgadzam się z tym, żeby w ogóle wprowadzać problem płci w nauce. Perspektywa, zgodnie z którą rozpatruje się tę kwestię, jest zupełnie błędna i pozbawiona sensu merytorycznego. Kobieta po prostu albo jest dobrym naukowcem, albo nie; w każdym przypadku powinna jednak mieć równe szanse, a jej prace należy studiować z punktu widzenia naukowego, a nie perspektywy płci.

Hertha Ayrton

14 marca 1909 roku w liście do „Westminster Gazette” Hertha Ayrton napisała, że „błędy są niezwykle trudne do naprawienia, ale błąd, związany z przypisaniem sukcesu mężczyźnie, za – tak naprawdę – pracę wykonaną przez kobietę, ma więcej żyć niż kot”. Wiedziała co pisze, bowiem przez wiele lat jej praca i osoba była nieuznawana w zdominowanym przez mężczyzn świecie inżynierii i nauk ścisłych.

Portsea na przełomie XIX i XX wieku, domena publiczna

Phoebe Sarah Hertha nazywana przez rodzinę Sarah urodziła się 28 kwietnia 1854 roku na wyspie Portsea u południowego wybrzeża Anglii, w hrabstwie Hampshire. Była trzecią córką z ośmiorga dzieci Żyda polskiego pochodzenia, imigranta z Polski pod carskim zaborem rosyjskim i zegarmistrza Leviego Marksa oraz krawcowej Alice Theresy Moss, której rodzice byli polskimi uchodźcami. Ojciec Herthy był również synem polskiego karczmarza i uciekł do Anglii przed żydowskimi prześladowaniami pod carskimi rządami. Niestety zdrowie Leviego, prawdopodobnie podkopane przez młodzieńcze doświadczenia, nigdy nie było dobre. Wykupił licencję na sprzedawanie swoich towarów jako domokrążca, jednak nie odnosił żadnych sukcesów w interesach. Ojciec Herthy zmarł w 1861 roku, pozostawiając ciężarną żonę i siedmioro dzieci w poważnej sytuacji finansowej. Hertha musiała szybko dojrzeć. Przejęła częściowo obowiązki matki, opiekując się młodszym rodzeństwem. Kiedy skończyła dziewięć lat, przeniosła się do ciotek, które prowadziły szkołę. Tutaj bardzo szybko uwidocznił się jej talent do nauk ścisłych. Naukę kontynuowała w prywatnej szkole w północno-zachodnim Londynie, prowadzonej przez ciotkę ze strony matki Miriam i jej męża Alphonseʼa Hartoga, dzięki którym poznała niezwykle uzdolnionych kuzynów. Od nich uczyła się między innymi muzyki, łaciny i matematyki. W szkole przyszła uczona nauczyła się, między innymi od swojego wuja Alphonseʼa, płynnie języka francuskiego. Po zajęciach szkolnych udzielała korepetycji. W ten sposób zarobione pieniądze wysyłała matce, aby pomóc matce i rodzeństwu. Uchodziła za ładną dziewczynę była niska, miała przenikliwe szarozielone oczy i kruczoczarne włosy. Jednak Hertha absolutnie nie zwracała uwagi na swój wygląd i zalotników. Od młodzieńczych lat była niezależna, bardzo uparta i wyzwolona. Kiedy została niesprawiedliwie oskarżona o jakieś wykroczenie, przez kilka dni prowadziła strajk głodowy. Mając szesnaście lat zdecydowała, żeby nie nazywać jej Sarah lecz Hertha na cześć bogini ziemi z wiersza Algernona Charlesa Swinburneʼa. Oczywiście na kształtowanie się osobowości Herthy mieli wpływ jej przyjaciele. Jedną z jej najlepszych przyjaciółek była kuzynka Florence Nightingale – Barbara Leigh Smith (po mężu Bodichon) – walcząca feministka i wybitna postaci ruchu na rzecz emancypacji kobiet oraz jedna z założycieli Girton College w Cambridge.

 

Barbara Leigh Smith Bodichon (1827–1891), National Portrait Gallery St. Martin’s Place London WC2H OHE, CC–BY 3.0

 

Smith zachęcała Herthę, aby starała się o stypendium na studia. Przyszła uczona nie otrzymała stypendium jednak w 1876 roku została przyjęta do collegeʼu i rozpoczęła studiowanie matematyki i fizyki. Jednym z jej mistrzów był fizyk zajmujący się elektrycznością Richard Glazebrook, uczeń Jamesa Clerka Maxwella. Najprawdopodobniej to on zachęcił i zainteresował Herthę właśnie tym tematem.

 

Richard Tetley Glazebrook (1854–1935), National Portrait Gallery St. Martin’s Place London WC2H OHE, CC–BY 3.0

 

Niestety po pierwszym semestrze podupadła na zdrowiu i musiała na rok opuścić Cambridge. Roczna przerwa w nauce spowodowała znaczne zaległości, przez co Hertha miała znaczne kłopoty z nadrobieniem materiału. Należy jednak dodać, że mimo zaległości Hertha rozwijała się naukowo oraz wykazywała znaczne zdolności w kierunku technicznym. Jako pierwsza zaprojektowała i zbudowała sfigmomanometr czyli aparat do pomiaru ciśnienia tętniczego krwi. Był to pierwszy z jej wielu sukcesów, które miały nadejść. Podczas studiów prowadziła także chór, założyła straż pożarną i klub matematyczny. Co warte podkreślenia w 1880 roku ukończyła studia, lecz uczelnia nigdy nie dała jej dyplomu lecz certyfikat. Jako ostatni brytyjski uniwersytet Cambridge „uległˮ dopiero w 1948 roku, kiedy to przyznał stopnie naukowe kobietom! W 1881 roku zdała egzamin zewnętrzny na Uniwersytecie Londyńskim, który przyznał jej licencjat z nauk ścisłych.

Po opuszczeniu Cambridge Hertha i jedna z jej koleżanek z roku wynajęły mieszkanie w Londynie, gdzie prowadziły prywatne lekcje. Była bardzo zaangażowana w prace matematyczne i fizyczne. Miała niezwykły zmysł konstruktorski – w tym czasie wynalazła na przykład przyrząd kreślarski służący do pomniejszania i powiększania figur, który znalazł zastosowanie w pracowniach architektonicznych i inżynieryjnych. Była też autorką licznych rozwiązań problemów matematycznych. Wiele z jej pomysłów zostało opatentowanych: w sumie była autorką 26 patentów – pięciu z matematyki, trzynastu związanych z lampami łukowymi i elektrodami, reszta dotyczyła rozwiązań związanych na napędami powietrza.

 

William Edward Ayrton (1847–1908), National Portrait Gallery St. Martin’s Place London WC2H OHE, CC–BY 3.0

 

Przez kolejne dwa lata przygotowywał się także do egzaminów na uniwersytet, aby studiować fizykę stosowaną. Zapisała się na kurs uzupełniający w Finsbury Technical College, który prowadził William Edward Ayrton. Uczony przyszedł na świat 14 września 1847 roku w Londynie. Był syn adwokata, studiował matematykę na University College w Londynie i elektryczność w Glasgow u Williama Thomsona (Lorda Kelwina). Uchodził za pioniera nauczania fizyki i elektrotechniki. Przez kilka lat pracował za granicą między innymi w Indiach (1868–1872) i Japonii (1873–1897). Po powrocie do Londynu został mianowany wykładowcą w kilku uczelniach technicznych, w tym Finsbury. To spotkanie miało zmienić życie Herthy.

Ayrton, który dwa lata wcześniej owdowiał oświadczył sie Herthcie i w 1885 roku para zawarła związek małżeński. Miss Herthon zaadoptowała córkę Edwarda z pierwszego małżeństwa Edith (1879–1945), późniejszą pisarkę i aktywistkę. Rok później para doczekała się kolejnej córki Barbary (1886–1950) znanej sufrażystki, która imię otrzymała na cześć Barbary Leigh Smith.

 

Hertha Ayrton, ©The Institute of Engineering and Technology, IET Archives UK 108 IMAGE 1/1/0020

 

Hertha zatrudniła gosposię, co umożliwiło jej rozpoczęcie pracy naukowej u boku męża. Początkowo pomagała Edwardowi w eksperymentach nad wynalezieniem stabilnego i cichego źródła światła. Kiedy Edward wyjechał służbowo za granicę, a Hertha przebywała poza domem doszła do tragedii. Ich wspólna praca została zniszczona, gdy gosposia sądząc, że papiery z notatkami uczonych są przeznaczone do zniszczenia spaliła je w kominku. Wkrótce Hertha zaczęła przeprowadzać własne eksperymenty w domu, podczas gdy jej mąż opiekował się ich córkami. Praca ta doprowadziła uczoną do kilku ważnych odkryć. W pierwszej kolejności skupiła się nad problemem migotania i syczenia powstającym podczas oświetlenia łukowego. Stwierdziła, że problemem są pręty węglowe, które po podłączeniu do nich źródła prądu ulegają dziurawieniu poprzez ulatnianie się węgla. Przez powstające otwory w prętach przechodziło powietrze powodując charakterystyczny świst. Hertha zmieniła kształt prętów oraz zauważyła relacje pomiędzy spadkiem napięcia i długością łuku oraz przepływem prądu elektrycznego. W latach 1895–1896 wyniki prac opublikowała w dwunastu artykułach naukowych w czasopiśmie „The Electricanˮ. W 1899 roku jako pierwsza kobieta otrzymała członkostwo w prestiżowej instytucji zrzeszającej inżynierów elektryków. Była również pierwszą kobietą, która odczytała własną pracę naukową w Royal Society w Londynie. Jedna z gazet pisała:

Damy uczestniczące w tym wydarzeniu z wielkim zdumieniem przyjęły to, że przedstawicielka ich własnej płci kierowała pokazami sprawiającymi wrażenie najbardziej niebezpiecznych ze wszystkich Pani Ayrton natomiast w ogóle nie wyglądała na przestraszoną.

 

Hertha Ayrton, [za:] E. Sharp, „Hertha Ayrton, 1854-1923, a memoir”, London 1926.

Hertha zaczęła prowadzić wykłady związane z jej badaniami i cieszyła się znaczną popularnością zarówno w kraju jak i za granicą.  W1900 roku została zaproszona na Międzynarodowy Kongres Elektryczny odbywający sie w Paryżu, gdzie po francusku wygłosiła odczyt na temat swoich badań nad łukiem elektrycznym. W 1902 roku otrzymała nominację członkowską do londyńskiego Towarzystwa Królewskiego, jednak prawnik towarzystwa orzekł, że Hertha jako kobieta jest niewybieralna, bowiem jako kobieta zamężna nie stanowiła samodzielnego podmiotu prawnego!! Pierwszą kobietę wybrano dopiero w 1946 roku. Uczona podczas udzielonego wywiadu powiedziała:

Osobiście nie zgadzam się z tym, żeby w ogóle wprowadzać problem płci w nauce. Perspektywa, zgodnie z którą rozpatruje się tę kwestię, jest zupełnie błędna i pozbawiona sensu merytorycznego. Kobieta po prostu albo jest dobrym naukowcem, albo nie; w każdym przypadku powinna jednak mieć równe szanse, a jej prace należy studiować z punktu widzenia naukowego, a nie perspektywy płci.

 

Okładka książki: H. Ayrton, „The Electric Arc”, The Electrician Printing and Publishing Company, London, 1902

W 1902 roku ukazała się jej książka pt. The Electric Arc, która podsumowywała wyniki jej pracy. W latach 1904–1908 uczona pracowała nad projektowaniem elektrycznych reflektorów dla Royal Navy. Niestety jej prace w większości przypisano Edwardowi, chociaż ten protestował i zawsze podkreślał udział Herthy w pracach naukowych. Jej prace zostały docenione w 1906 roku, gdy przyznano jej Medal Hughesa Towarzystwa Królewskiego „za oryginalne odkrycie w dziedzinie nauk fizycznych, a w szczególności dotyczące generowania, magazynowania i wykorzystywania energii elektrycznej”. Została też przyjęta na pełnoprawną członkinię Institution of Electrical Engineers.

Do jej przyjaciółek należała między innymi Maria Skłodowska-Curie. Uczone poznały się w 1903 roku w Londynie, gdzie państwo Curie prezentowali swoje wyniki badania nad radem w londyńskim Królewskim Towarzystwie. Przyjaźń obu kobiet była na tyle trwała, że Maria znalazła w 1912 roku schronienie w domu Ayrton po wybuchu skandalu związanego z tzw. aferą Langevina.

 

Mill House w Highcliffe, wynajęty przez Herthę Ayrton na wspólny pobyt z Marią Skłodowską i jej córkami latem 1912 roku, [za:] http://www.dorsetlife.co.uk

Podczas pierwszej wojny światowej Hertha przekonała Biuro Wojenne do wykorzystania jej wynalazku, który mógł rozproszyć chmury gazów bojowych. Wkrótce ponad sto tysięcy wentylatorów, które miały również inne zastosowania, było używanych na froncie zachodnim.

 

Wentylatory pomysłu Herthy Ayrtonm [za:] https://www.allaboutcircuits.com

Hertha Ayrton miała zdecydowane lewicowe poglądy, dlatego bez wahania dołączyła do do powstałej Partii Pracy. Zawsze była zagorzałą zwolenniczką praw kobiet, podobnie zresztą jak jej mąż. Już w 1899 roku przewodniczyła sekcji naukowej drugiego spotkania Międzynarodowego Kongresu Kobiet. Odgrywała wiodącą rolę w ruchu sufrażystek, zwłaszcza po wojnie. Ayrton była mocno zaangażowana w ruch sufrażystek. W 1911 roku odmówiła udziału w powszechnym spisie ludności, pisząc na formularzu:

Jak miałabym odpowiedzieć na wszystkie te pytania, skoro rzekomo brak mi inteligencji, by móc samodzielnie wybierać kandydatów do parlamentu? Nie dostarczę żadnych tego rodzaju informacji do czasu, aż uzyskam prawa obywatelskie. Domagam się prawa wyborczego dla kobiet.

 

Barbara Ayrton w stroju „córki rybaka” promuje londyńską Wystawę Kobiecą w maju 1909 roku, fot. Christina Broom, [za:] http://historyinphotos.blogspot.com

Edward Ayrton zmarł 8 listopada 1908 roku. Hertha pozbawiona silnego wsparcia męża walczyła o prawa kobiet. Była niezwykle dumna, że jej córka Barbara należała do jednych z najbardziej wojujących sufrażystek.

Hertha Ayrton zmarła w Londynie 26 sierpnia 1923 roku w wieku 69 lat na posocznicę.

 

Literatura zalecana:

  1. Evelyn Sharp, Hertha Ayrton: A Memoir, Edward Arnold & Co., London 1926.
  2. Hertha Ayrton, The Electric Arc, Cambridge University Press, Cambridge 1912 (pierwsze wydanie 1902).
  3. Ioan James, Remarkable Engineers. From Riquet to Shannon, Cambridge University Press, Cambridge 2010.
  4. Rachel Swaby, Upór i przekora. 52 kobiety, które zmieniły naukę i świat, Wydawnictwo Agora, Warszawa 2017.

„Światło w ciemności” — komiks o Marii Skłodowskiej-Curie

fot. Piękniejsza Strona Nauki

 

W bieżącym roku kilka wydawnictw oddało do rąk czytelników książki dotyczące życia Marii Skłodowskiej-Curie. Jedną z nich jest pozycja pt. Maria Skłodowska-Curie. Światło w ciemności. Tekst napisały Frances Andreasen Osterfelt i Anja C. Andersen, zaś za stronę graficzną odpowiadała polska graficzka i ilustratorka Anna Błaszczyk. Książka ukazała się nakładem poznańskiego wydawnictwa Media Rodzina, partnerem wydania jest Muzeum Marii Skłodowskiej-Curie w Warszawie. Książka według opisu wydawcy liczy 136 stron.

 

fot. Piękniejsza Strona Nauki

 

Początkowo podszedłem do książki dość sceptycznie, chyba ze względu na ilustracje, które nie do końca do mnie przemawiały. Jednak po przeczytaniu książki z przekonaniem mogę stwierdzić, że jest to pozycja ciekawa i przede wszystkim potrzebna. W moim odczuciu utwierdziły mnie rozmowy z młodymi czytelnikami, którym zarówno strona graficzna jak i merytoryczna bardzo odpowiada. Jest to bardzo ważne, aby właśnie dzieci i młodzież zachęcać do poznawania życia Marii Skłodowskiej-Curie w nowatorski sposób, a co ważniejsze przemawiający do ich wyobraźni.

 

fot. Piękniejsza Strona Nauki

 

Omawiana książka jest dobrze opracowaną powieścią graficzną, która pokazuje życie uczonej. Książka została podzielona na 5 rozdziałów i Epilog. I właściwie jedynym mankamentem jest to, że kończy się za szybko. Szkoda, że autorki pobieżnie tylko pokazały działalność Marii podczas pierwszej wojny światowej, nie wspomniały o jej podróżach do Stanów Zjednoczonych… Z drugiej strony, gdyby pokazać w ten sposób całe życie uczonej być może nie zachęciłoby to młodego czytelnika do dalszych samodzielnych poszukiwań Marii Skłodowskiej-Curie.

 

fot. Piękniejsza Strona Nauki

 

W tekście duńskich autorek znalazłem zaledwie kilka drobnych przeinaczeń, o których nawet nie ma sensu pisać. Właściwie znajduje to nawet usprawiedliwienie w tym, że tekstu nie ma zbyt wiele, a dominują wspomniane już grafiki (chętnie podałbym, które zrobiły na mnie wrażenie, ale niestety książka nie ma numeracji stron, co niewątpliwie utrudnia jej opisywanie).

 

fot. Piękniejsza Strona Nauki

 

Życie Marii Skłodowskiej-Curie dla współczesnych młodych ludzi jest zapewne czymś niezwykle odległym, czasem być może odrealnionym, ale cechy jej charakteru, które to życie ukształtowały w pełni powinny pozostawać godnym wzorem do naśladowania. Jej pracowitość, upór, dążenie do spełnienia marzeń są w istocie świadectwem, że ciężka praca, a nade wszystko wiara we własne możliwości pozwala na realizację nawet tych marzeń, które wydają się niemożliwe do zrealizowania. Autorki we wstępie napisały:

Na przykładzie jej życia pragniemy przypomnieć, jak bogaty może stać się świat, jeśli stworzy się równe szanse dla wszystkich – niezależnie od płci, rasy i narodowości.

Niech to przesłanie będzie najlepszą rekomendacją dla tej wyjątkowej pozycji na polskim rynku wydawniczym. Obyśmy mogli w przyszłości czytać takich powieści więcej.

Tomasz Pospieszny

 

fot. Piękniejsza Strona Nauki

 

 

 

Eva Ramstedt — uwielbiana przez studentów

 /   Tomasz Pospieszny   /

 

Do napisania tego krótkiego felietonu zachęcił mnie (a właściwie sprowokował) Jakub Müller z Piekar Śląskich. Kilka dni temu, gdy się spotkaliśmy, podarował mi małą książeczkę pt. Marie Curie och radium autorstwa Evy Ramstedt. Książka została wydana w 1932 roku (a więc jeszcze za życia Marii Curie) w Sztokholmie przez P. A. Norstedt & Söners Förlag (Svenska Bokförlaget). Bohaterka książki jest wszystkim doskonale znana, ale kim jest autorka?

Eva Ramstedt, ok. 1910, Uppsala University Library

Eva Julia Augusta Ramstedt urodziła się 15 września 1879 roku w Sztokholmie. Jej rodzicami byli burmistrz Sztokholmu Johan Ramstedt i Henrika Torén. Szkołę średnią ukończyła w mieście rodzinnym z bardzo dobrym ocenami. Wykazywała duże zainteresowanie naukami przyrodniczymi – zwłaszcza fizyką i chemią, dlatego postanowiła studiować fizykę na uniwersytecie w Uppsali.

W 1904 roku została współzałożycielką Stowarzyszenia Kobiet Akademickich, którego celem było propagowanie nauk ścisłych wśród dziewcząt. W tym samym roku obroniła licencjat z filozofii, a cztery lata później z fizyki. W 1910 roku obroniła rozprawę doktorską związaną z zachowaniem się cieczy w różnych warunkach fizycznych. Po doktoracie zwróciła uwagę na zjawisko radioaktywności. Sprowokowało ją to do rocznego wyjazdu do Paryża, gdzie miała sposobność poznawania tajników tej niezwykłej nauki od Marii Skłodowskiej-Curie. W laboratorium odkrywczyni polonu i radu Eva poznała i zaprzyjaźniła się z Ellen Gledtisch oraz May Sybil Leslie.

Po powrocie z Paryża Ramstedt została zatrudniona w Instytucie Chemii Fizycznej im. Alfreda Nobla na Wydziale Fizyki na stanowisku zastępcy profesora. Warto podkreślić, że przez rok pracowała jako adiunkt w pracowni laureata Nagrody Nobla z chemii, twórcy teorii dysocjacji elektrolitycznej słynnego Svante Arrheniusa. W 1915 roku Ramstedt została pierwszą kobietą zatrudnioną jako profesor na Uniwersytecie Sztokholmskim.

Eva Ramstedt, b.d., [za:] https://sok.riksarkivet.se/sbl/Presentation.aspx?id=7526
            Była jedyną kobietą, która wzięła udział w wyprawie do Jämtland (prowincja historyczna w środkowej Szwecji, położona w południowo-zachodniej części Norrland), gdzie mogła zobaczyć zaćmienie słońca. Podczas tego wydarzenia badała zmiany elektryczności w powietrzu. Niestety nie zawsze miała idealne warunki do pracy. W 1922 roku do Fredericka Soddy’ego pisała:

Pracujemy tutaj w dość trudnych warunkach. Budynek jest beznadziejnie mały, a każdy pokój jest zatłoczony. Pracuję w piwnicy w ogóle nie nadającej się do pracy. W tym roku jestem jednak zadowolona, gdyż mam asystenta. Sama jestem bardzo zajęta nauczaniem i pracą w komisji na Uniwersytecie, dlatego prace badawcze nie mogą być prowadzone tak, jak bym chciała. Teraz mój asystent może pracować, nawet jeśli ja nie mogę.

Od 1915 do 1932 roku była profesorem nadzwyczajnym radiologii na Uniwersytecie Sztokholmskim, a w latach 1919–1945 starszym wykładowcą matematyki i fizyki w Folk High School w Sztokholmie. Początkowo dla dydaktyki tylko częściowo zrezygnowała z pracy badawczej, ale z czasem poświęciła się całkowicie nauczaniu. Uznawano ją za bardzo dobrą wykładowczynię. Była podziwiana przez studentów, którym poświęcała dużo czasu i troski o ich osobisty rozwój. W liście do Marii Curie pisała: Co do mnie, byłam niewierna nauce, nigdy nie znajdowałam [wystarczająco dużo] czasu na badania. Niemniej jednak moja obecna praca bardzo mnie interesuje i mam nadzieję, że tej zimy będę mogła poprowadzić na uniwersytecie kurs [na temat budowy] atomu. Natomiast Lise Meitner donosiła: Czytając [artykuły] dotyczące pracy naukowej, czasami jest mi bardzo przykro, że zostawiłam pracę badawczą, ale jednocześnie bardzo lubię moją obecną pracę.

Uczona brała także aktywny udział w ruchu na rzecz praw kobiet, była między innymi członkinią Międzynarodowej Federacji Kobiet Uniwersyteckich. Zainteresowanie Ramstedt współpracą międzynarodową było naturalną konsekwencją jej badań. Uczona miała dobre kontakty z wieloma kobietami naukowcami, w tym Marią Skłodowską-Curie, Lise Meitner, Elizabeth Roną czy Ellen Gleditsch. Z tą ostatnią opublikowała książkę na temat radu i procesów radioaktywnych. Celem tej pracy było przedstawienie krótkiego przeglądu rozwoju nowej, ale szybko rozwijającej się nauki.

Dr Anna Beckman, dr Helena Klein, starszy wykładowca Eva Ramstedt, profesor Gabriella Josephson i prezes stowarzyszenia Vera Lindberg na przyjęciu herbacianym w siedzibie Stowarzyszenia Studentów w Uppsali, zdjęcie opublikowane w czasopiśmie „Upsala Nya Tidning” 2 listopada 1942, [za:] Europeana.eu
            Eva Ramstedt miała silną osobowość, którą wzbudzała szacunek. Nie dystansowała się jednak od otoczenia – wśród przyjaciół uchodziła za niezwykle towarzyską i oddaną. Kontynuowała nauczanie aż do przejścia na emeryturę w 1945 roku. Zmarła 11 września 1971 roku w wieku dziewięćdziesięciu pięciu lat.

Niestety uczona nie doczekała się pełnej biografii i do dziś pozostaje mało znaną pionierką nauki.

 

Zalecana literatura:

[1] M. F. Rayner-Canham, G. W. Rayner-Canham, …And Some Other Women of the French Group, [w:] A Devotion to Their Science. Pioneer Women of Radioactivity, red. Marlene F. Rayner-Canham, Geoffrey W. Rayner-Canham, McGill–Queen’s University Press, Québec, 1997.

[2] N. Pigeard-Micault, Les femmes du laboratoire de Marie Curie, Éditions Glyphe, Paris 2013.

[3] E. Ramstedt, Marie Curie och Radium, P. A. Norstedt & Söners Förlag (Svenska Bokförlaget), Stockholm, 1932.

Nobel i emulsje

 

Kończąc „tydzień noblowski” zapraszamy do lektury fragmentu rozdziału poświęconego Marietcie Blau — Pionierka fizyki cząstek — z książki Tomasza Pospiesznego pt. Pasja i geniusz. Kobiety, które zasłużyły na Nagrodę Nobla.

 

***

Cecil Powell, b.d., www.britannica.com

W 1950 roku Nagroda Nobla z fizyki została przyznana Cecilowi F. Powellowi (1903–1969) – jak podano – „za opracowanie fotograficznej metody badania procesów jądrowych i jego odkryć dotyczących mezonów wykonanych tą metodą”. Powell ukończył fizykę na Uniwersytecie Cambridge w roku 1925 roku. Później przez dwa lata pracował w Laboratorium Cavendisha pod kierunkiem Ernesta Rutherforda i Charlesa Wilsona. W roku 1929 roku obronił doktorat. Trzy lata później ożenił się ze swoją asystentką Isobel Therese Artner. Pracę nad promieniowaniem kosmicznym rozpoczął w 1933 roku, stosując emulsje światłoczułe. Był współodkrywcą pionu (mezonu pi), którego istnienie teoretycznie przewidział Hideki Yukawa (1907–1981). Ruth Sime podkreśla:

Powell przeszedł z komór mgłowych na metody fotograficzne w 1938 roku, po tym, jak on i pozostali [badacze] tej dziedziny zrozumieli znaczenie [prac] Blau i Wambacher w zastosowaniu emulsji do badania promieniowania kosmicznego i procesów jądrowych. Podczas wojny Powell zastosował technikę fotograficzną do przedsięwzięcia na dużą skalę, a w 1947 roku odkrył mezon pi na płytkach wystawionych na działanie promieniowania kosmicznego. Gdyby Blau otrzymała Nagrodę Nobla z Powellem w 1950 roku (Wambacher zmarła w kwietniu tego roku), zapewniłoby jej to miejsce w historii nauki. Ponieważ jednak nie dzieliła z nim nagrody, ona i jej praca zostały całkowicie zapomniane.

 

Warto zwrócić uwagę, że pierwszą nominację do Nagrody Nobla z fizyki Blau otrzymała wraz z Herthą Wambacher od Erwina Schrödingera (1887–1961) w 1950 roku. Uczony nominował Mariettę (samodzielnie) jeszcze w 1956 roku z fizyki i 1957 roku z fizyki i chemii. Schrödinger nie nominował później Herthy najprawdopodobniej pod wpływem Meyera, który uświadomił mu, że była ona zwolenniczką nazizmu i bardzo źle potraktowała Mariettę, a poza tym niezręcznie wyglądałaby nominacja samej uczennicy. W 1955 roku jej kandydaturę wystawił Hans Thirring (1888–1976). Powell otrzymał w sumie dwadzieścia trzy nominacje – w 1949 roku osiem, 1950 roku czternaście i jedną w 1951 roku*. Kiedy odebrał Nagrodę Nobla, w zwyczajowym wykładzie mówił o promieniowaniu kosmicznym i mezonach, ale nie powoływał się na żadną pracę sprzed 1947 roku, nie wspomniał też ani razu o uczonej… Fizyk Axel E. Lindh (1888–1960), członek komitetu noblowskiego, wymieniając osiągnięcia Powella, powiedział, że laureat z emulsji jądrowych stworzył niezwykle skuteczną pomoc w badaniu mezonów. Nie mówiąc o Blau, chciał wymazać ją z historii nauki. Sime tak skomentowała nieprzyznanie Blau Nagrody Nobla:

Marginalizacja Blau jest widoczna w procesie podejmowania decyzji o przyznaniu Nagrody Nobla w dziedzinie fizyki w 1950 roku dla Powella. Blau i Wambacher były również nominowane w tym roku przez Erwina Schrödingera. Chociaż w 1936 roku Nobel dla fizyków Victora Hessa i Carla Andersona został przyznany jako precedens, gdyż dzielący nagrodę otrzymali ją za fundamentalne wcześniejsze odkrycie i jego konsekwencję, która przyszła później, to jest oczywiste, że kandydatury kobiet nie były obiektywnie rozważane. Natomiast dokumentacja pokazuje, że komitet noblowski z fizyki przygotował rażąco niedokładną ocenę, która negowała znaczenie i priorytet pracy Blau czy Blau i Wambacher. Nazwiska kobiet są całkowicie nieobecne w opublikowanych tekstach noblowskich na ten rok, chociaż wspomniano o innych naukowcach, którzy nigdy nie zostali nominowani i wnieśli znacznie mniej. Sam Powell nie cytował Blau w swoim wykładzie noblowskim.

Marietta Blau w swoim laboratorium w Instytucie Radowym w Wiedniu, ok. 1925, z archiwum Marii Retenzi

Nie ulega wątpliwości, że Marietta Blau podzieliła los Lise Meitner. Obie wybitne uczone nie zostały docenione przez komitet noblowski w dużej mierze dlatego, że były kobietami i Żydówkami. „Nominujący do Nobla podają w wątpliwość wkład obu kobiet, wskazując na okres zmniejszonej produktywności po dokonaniu odkryć, nie biorąc pod uwagę tego, że przyczynę stanowiła ich emigracja i zesłanie” – konkluduje Sime. Herbert Pietschmann (ur. 1936) wspominał:

Lise Meitner [była] również starszą kobietą, [jednak] nie była tak delikatna i nieśmiała jak Marietta Blau, ale były podobieństwa. Gdy patrzę wstecz, te podobieństwa pojawiają się przede mną, by wyrazić, jaki los dzielą te dwie grandes dames austriackiej fizyki. Obie były namiętnie oddane swojej dyscyplinie i obie zostały pozbawione najwyższego uznania za swoją pracę.

Student Marietty Arnold Perlmutter pisał:

Wracam teraz do tematu, który musiał być źródłem wielkiego bólu i frustracji w osobistym życiu Marietty Blau, a mianowicie oficjalnego zaniedbania jej roli w odkryciu pionu. Była zbyt dumna i skryta, by otwarcie mi o tym powiedzieć, ale pamiętam, że żywiła wielką pogardę dla C. F. Powella.

 

Erwin Schrödinger (1887–1961), [za:] https://kierul.wordpress.com
Schrödinger jednak nie rezygnował. Uważał, że Marietta powinna zostać odznaczona nagrodą jego imienia. Przibram podał jej kandydaturę i w 1962 roku została czwartą laureatką wyróżnienia. W ramach nagrody Akademia przyznała dotację pieniężną w wysokości około tysiąca dolarów Blau i pośmiertnie Wambacher. Ich nazwiska zostały również wyryte na tablicy honorowej Uniwersytetu Wiedeńskiego. Trudno nie zgodzić się z następującą opinią: Marietta Blau jest najbardziej tragiczną postacią w historii wokół promieni kosmicznych. Jej życie i twórczość charakteryzowały przeciwności losu, ale jej osiągnięcia i wyniki pracy przewyższają osiągnięcia wielu innych osób, którym przyznano Nagrodę Nobla w kontekście promieni kosmicznych. Niestety historia Marietty jest kolejnym przykładem szowinistycznego traktowania przez komitet noblowski. W 1955 roku Blau przyjęła profesurę na Florydzie na Uniwersytecie w Miami, gdzie założyła i wyposażyła wydział fizyki cząstek elementarnych. W trakcie kariery wykazywała ogromne zdolności do dokonywania innowacji i pracowitość. Jej uczniowie uważali ją za „papieża” fizyki emulsji. Jeden z studentów w poświęconych jej wspomnieniach napisał:

Marietta Blau była raczej małą osobą – może 5 stóp i 2 cale wzrostu (158 cm) – oraz całkiem szczupłą, o słodkim, życzliwym wyrazie twarzy. Jej głowa była ledwie widoczna nad kierownicą małego plymoutha i chociaż nie była bardzo wyszkolona w prowadzeniu, kilka razy negocjowała podróż z Nowego Jorku do Miami […]. Początkowo robiła wrażenie kruchej osoby, którą mógłby przewrócić wiatr. Powiedziałabym, że była całkiem ładna, ale prezentowała się niepozornie, skromnie. Mówiła rozważnie, powoli i delikatnie, a jej angielski, choć z nieznacznym akcentem, był wytworny. Była dobrze zaznajomiona z klasyką, literaturą i sztuką. Uczestniczyliśmy w wielu koncertach muzycznych.

 

Pierre Radvanyi pamiętał, że rozmawiali po niemiecku lub francusku i tak charakteryzował Mariettę:

[…] była niskiego wzrostu, czarne włosy miała zaczesane w kok, a jej błyszczące czarne oczy lśniły inteligencją. Zwykle nosiła ciemne ubrania. W tym czasie mieszkała na jednym z wyższych pięter dużego budynku. Po raz pierwszy, kiedy ją odwiedziłem, mieszkała w innym mieszkaniu ze swoją równie drobną matką, która była uprzejma i powściągliwa.

 

* Nominowali go między innymi: Enrico Fermi, Werner Heisenberg, Wolfgang Pauli, Francis Perrin, Maurice de Broglie i Czesław Białobrzeski.

***

Noblistka z Katowic

 

Zapraszamy do lektury fragmentu rozdziału Tańcząca z atomami z książki Tomasza Pospiesznego pt. Pasja i geniusz. Kobiety, które zasłużyły na Nagrodę Nobla.

***

Od pewnego czasu coraz częściej mówiono, że uczona może zostać laureatką Nagrody Nobla. Pierwsze nominacje z fizyki pojawiły się w 1955 roku. Max Born w liście do Francka pisał: „Nie mam żadnych propozycji w tym roku z chemii, natomiast z fizyki pójdę za twoim głosem: nominuję Jensena i Marię Goeppert-Mayer”. W 1955 roku nominowano ją do Nagrody Nobla dwukrotnie, w 1956 roku już sześciokrotnie. W sumie w latach 1955–1963 nominowano ją dwadzieścia sześć razy z fizyki i raz z chemii (1958). Poza Bornem jej kandydaturę zgłaszali między innymi Franck, Urey, Wigner, Libby.

Joseph Mayer, fot. Bachrach [za:] „Biographical Memoirs National Academy of Sciences”, The National Academies Press, T. 65, 1994.
3 listopada 1963 roku o drugiej rano do domu Mayerów zadzwonił telefon. Odebrał Joe, który przekazał słuchawkę żonie, mówiąc, że to ze Sztokholmu. Zdziwiona Maria powiedziała, że nie zna nikogo w Sztokholmie. Szwedzki dziennikarz oznajmił jej, że wspólnie z Jensenem otrzymała Nagrodę Nobla. „Naprawdę nie wiem, co powiedzieć! Czy to prawda? Nadal nie mogę uwierzyć, że to prawda” – mówiła wzruszona. Po drugiej stronie oceanu Hans Jensen zareagował podobnie. Już raz dziesięć lat wcześniej poinformowano go, że otrzymał Nagrodę Nobla. Tym razem nie chciał uwierzyć. „Miałem wcześniejsze doświadczenia z tego rodzaju nonsensem” – powiedział.

Maria Goeppert-Mayer miała istotny powód, by wznieść toast. Marie-Anne wspominała: „Dostałam telefon w środku nocy i byłem pewna, że moja matka jest pijana. Rano zadzwoniłam do nich, ponieważ byłam pewna, że wszystko wyśniła”. Sześćdziesiąt lat po Marii Skłodowskiej-Curie, Maria Goeppert-Mayer została laureatką Nagrody Nobla z fizyki. Otrzymała ją po latach upokorzeń, wyrzeczeń i zwątpienia. Nagrodę przyznano jej za odkrycia dotyczące „struktury powłokowej jądra atomowego”. Kiedy dziennikarze pytali ją, jak może streścić swoje badania, powiedziała:

Wyobraź sobie salę pełną tańczących walca. Tancerze przesuwają się dookoła tej sali w koncentrycznych kołach. Następnie pomyśl, że w każdym kole możesz zmieścić dwa razy więcej tancerzy, jeśli jedna para wiruje w kierunku ruchu wskazówek zegara, a druga w przeciwnym. A potem dodatkowa wariacja: pomyśl, że ci tancerze wirują w porywach, jak mistrzowie. Te z par, które wirują w kierunku wskazówek zegara, robią porywy w tym samym kierunku. Porywy pozostałych par są w kierunku przeciwnym. Tak samo jest z parami wirującymi w kierunku przeciwnym do kierunku wskazówek zegara – niektóre wykonują zrywy w tym samym kierunku, inne w przeciwnym.

Eugene Wigner (1903–1995), b.d, [za:] www.atomicarchive.com
10 grudnia 1963 roku z rąk króla Szwecji Gustawa VI Adolfa Maria Goeppert-Mayer odebrała medal i dyplom Nagrody Nobla. Wraz z nią nagrodę otrzymali Hans Jensen i Eugene Wigner. Maria i Hans otrzymali połowę nagrody, drugą – „za wkład w teorię jądra atomowego i cząstek elementarnych, w szczególności poprzez odkrycie i zastosowanie fundamentalnych zasad symetrii” – odebrał Wigner. Pięćdziesięciosiedmioletnia, mała i krucha Maria z wyraźnymi oznakami niedowładu lewej strony ciała, ubrana w kwiecistą suknię i taką narzutkę, z delikatnym łańcuchem pereł na szyi, ostrożnie, uśmiechając się dość niewyraźnie, odebrała największy naukowy zaszczyt świata. Peter Mayer wspominał:

Właściwie, kiedy moja matka ściskała dłoń króla, odczuwała ból. Pamiętam zdjęcie w gazetach, na którym potrząsała jego ręką; wiele osób uważało, że to dobre zdjęcie mojej matki, a ja reagowałem z kamienną twarzą: „Ona cierpi”. Moja matka miała bardzo poważny paraliż w lewej ręce. Na próbie zdecydowano, że ktoś odbierze od niej medal i dyplom. Podczas ceremonii nie było tej osoby, więc matka przyciskała nagrodę do ciała, bojąc się, że ją upuści, jednocześnie ściskając dłoń króla.

Po ceremonii król podał jej ramię, a gdy szli na uroczysty bankiet, wszyscy się im kłaniali. „To było jak czarodziejska baśń” – powiedziała. Baśń, która dla Marii Goeppert-Mayer się urzeczywistniła. Po powrocie do domu powiedziała: „Ku mojemu zaskoczeniu zdobycie nagrody nie było aż tak ekscytujące, jak wykonanie samej pracy. To była fajna zabawa, widzieć, jak to działa”138. W 1964 roku grupie licealistek wyznała: Pewnego popołudnia znalazłam wskazówkę i po całym dniu pracy odkryłam, że wszystkie dane, wszystko, co miałam nadzieję wyjaśnić, było rzeczywiście przepowiedziane przez teorię, którą opracowałam. W takich chwilach nikt nie myśli o Noblu.

Maria Goeppert-Mayer z królem Szwecji Gustawem Adolfem w trakcie ceremonii wręczenia Nagrody Nobla, Sztokholm 1963, archiwum Bożeny Kubiak

 

Nagroda Nobla właściwie nie zrewolucjonizowała życia Marii. „Jeśli kochasz naukę, wszystko, czego naprawdę pragniesz, to kontynuowanie pracy. Nagroda Nobla wzbudza emocje, ale nie zmienia niczego” – stwierdziła kiedyś. Starała się nadal pracować, wykładała, zajmowała się ukochanymi orchideami, trochę podróżowała. W październiku 1967 roku z okazji setnej rocznicy urodzin Marii Skłodowskiej-Curie przyjechała do Polski. Zapytana przez sekretarza naukowego PAN Henryka Jabłońskiego (1909– 2003), czy ma jakieś szczególne życzenia, odparła bez namysłu: „chcę odwiedzić Katowice. Niestety nie miała okazji ich zobaczyć.

***

Mural na budynku Rektoratu Uniwersytetu Śląskiego w Katowicach, fot. Ewelina Wajs