175. rocznica urodzin Zofii Kowalewskiej

 

Wielu, którzy mieli okazję dowiedzieć się czegoś więcej o matematyce, myli ją z arytmetyką i uważali ją za jałową naukę. W rzeczywistości jednak jest to nauka wymagająca ogromnej ilości wyobraźni.

(Zofia Kowalewska)

 

Zofia Kowalewska, b.d., domena publiczna.

Jedna z najwybitniejszych matematyczek świata urodziła się 15 stycznia (3 stycznia) 1850 w Moskwie. Jej ojciec Wasilij Wasiljewicz Krukowski był oficerem pochodzenia polskiego (pochodził z rodu Korwin-Krukowskich), natomiast matka Jelizawieta Fiodorowna Schubert wywodziła się z rodziny niemieckich imigrantów. Na uwagę zasługuje fakt, że pradziadkiem przyszłej uczonej był astronom i geograf Theodor von Schubert, zaś dziadkiem generał i kartograf Friedrich von Schubert. Z kolei jej starszą siostrą była Anna Jaclard (1843–1887) socjalistka i rewolucjonistka, która nieśmiertelność zyskała na kartach powieści F. Dostojewskiego Idiota jako Anna. Wczesne lata życia spędziła w posiadłości Palibino w gubernii Witebskiej. Sonia – jak ją nazywała rodzina oraz przyjaciele – wspominała, że dom był niezwykle piękny i nowoczesny. Na krótko przed zamieszkaniem w nowej posiadłości została ona całkowicie poddana modernizacji. Niestety jej pokój z prozaicznej przyczyny – niewystarczającej ilości tapety – został wyklejony papierem znalezionym na strychu. Jak się okazało papier zawierał litografie wykładów z zakresu rachunku różniczkowego i całkowego, na które uczęszczał Wasilij jako młody oficer. Był to niewątpliwe pierwszy wielki bodziec matematyczny, który zaczął działać na wyobraźnię przyszłej uczonej. Zwykłam całymi godzinami ślęczeć przed tymi ścianami, raz po raz na nowo odczytując spisane tam symbole – wspominała po latach Sofija. Niestety nie zawsze miała możliwość pełnego pochłaniania wiedzy, tym bardziej, że jej ojciec niespecjalnie była zadowolony z kształcenia kobiet. Trwałam w chronicznym stanie głodu książek – wspominała. W dużej mierze Sonia uczyła się samodzielnie – czytała książki, próbowała poznawać świat nauki. Jeden z zaprzyjaźnionych przyjaciół ojca, profesor fizyki Nikolai Nikanorowicz Tyrtov podarował mu swój nowy podręcznik. Dziewczynka bez wiedzy ojca przeczytała książkę i przy następnej wizycie profesora zaczęła z nim rozmawiać o optyce. Niewątpliwie był bardzo zdziwiony, gdy kilkuletnia dziewczynka dokładnie mu wyjaśniła czego nie rozumie, ale co wydaje jej się logiczne i powinno mieć takie a nie inne rozwiązanie. Tyrtov nazwał ją nowym Pascalem i zasugerował, aby dać jej szansę kontynuowania studiów matematycznych. Nie ulega wątpliwości, że dziewczynka była bardzo zdolna. Znała doskonale język angielski, francuski i niemiecki. W latach 1866-67 spędzała większość zimy z rodziną w Petersburgu, gdzie otrzymywała prywatne lekcje rachunku różniczkowego.

Jednak rozbudziło to tylko głód wiedzy dziewczyny. Jej marzeniem były studia, ale było to dość trudne, gdyż w carskiej Rosji kobiety nie mogły studiować, a wyjazd samotnej kobiety do innego kraju nie wchodził w grę. Salomonowym rozwiązaniem było zatem zawarcie w 1868 roku fikcyjnego małżeństwa ze starszym o osiem lat paleontologiem Włodzimierzem Kowalewskim. Należał on do radykalnego ugrupowania politycznego walczącego o równouprawnienie kobiet i zapewnienie im dostępu do edukacji. Sonia z mężem i siostrą wyjechała do Heidelbergu, gdzie studiowała między innymi u Hermanna von Helmholtza, Gustava Kirchhoffa i Roberta Bunsena. Później odbyła także podróż do Anglii, a następnie powróciła do Berlina, gdzie uczył ją Karl Weierstrass – jeden z najwybitniejszych matematyków niemieckich.

W 1874 roku Sofja Kowalewska przesłała z Berlina na uniwersytet w Getyndze rozprawę doktorską opartą o trzy prace związane z teorią równań różniczkowych cząstkowych, redukcji całek abelowych oraz postaci pierścieni Saturna. Dzięki staraniom Weierstrassa nie musiała zdawać egzaminów doktorskich i przyznano jej doktorat… in absentia. Została tym samym pierwszą Europejką posiadającą doktorat z matematyki!

Zofia Kowalewska, po 1880, domena publiczna

Sukcesy zawodowe szły w parze z prywatnymi. Pomiędzy Sonią i Włodzimierzem zaczęło rodzić się autentyczne uczucie. W 1874 roku powrócili do Rosji, a cztery lata później przyszła na świat ich córka Zofia nazywana Fufą. Po prawie dwóch latach poświęconych wychowaniu córki Kowalewska pozostawiła ją pod opieką krewnych oraz przyjaciół i chcąc wznowić pracę w dziedzinie matematyki opuściła Włodzimierza po raz ostatni. W wyniku namowy Weierstrassa w 1881 roku powróciła do Berlina, gdzie natychmiast powróciła do pracy naukowej. Zaowocowała ona opublikowaniem prac związanych z refrakcją światła w kryształach. Kiedy w 1883 roku przebywała w Paryżu otrzymała wstrząsającą wiadomość o śmierci męża. Włodzimierz zapadł na głęboką depresję związaną z poważnymi kłopotami finansowymi, w wyniku czego odebrał sobie życie.

W tym samym czasie uczona otrzymała propozycję pracy na uniwersytecie w Sztokholmie. Jej zdolnościami matematycznymi zachwycił się jeden z nielicznych w tamtych czasach zwolenników kobiet w nauce Magnus Mittag-Leffler. Po sześciu miesiącach pracy w Sztokholmie przyznano jej tytuł profesorski oraz etat redaktora w prestiżowym czasopiśmie matematycznym „Acta Mathematicaˮ. Co ciekawe w tym czasie biegle władała już językiem szwedzkim. W 1885 roku Kowalewska objęła funkcję dziekana Wydziału Matematyki. Początkowo zaproszono mnie w charakterze docenta. Przed upływem roku jednak mianowano mnie profesorem zwyczajnym, którym jestem od roku 1884. Poza wykładami spoczywa na mnie także obowiązek uczestniczenia w posiedzeniach rady i mam prawo głosu na równi z pozostałymi profesorami – wspominała uczona. Trzy lata później, w 1888 roku wygrała konkurs paryskiej Akademii Nauk – w temacie ścisłego rozwiązania równań ruchu bryły sztywnej, za co otrzymała Nagrodę Bordina. W 1889 roku wybrano ją na członkinią Petersburskiej Akademii Nauk. Poza matematyką była także zdolną pisarką. Napisała między innymi Uniwersytet chłopski w Szwecji, Wspomnienia z dzieciństwa, Nihilistka, Docent prywatny, Siostry Rejewskie i Rodzina Woroncowych, stąd nazywano ją nie tylko „Królową  Matematyki” ale także „Michałem Aniołem Konwersacji”.

Zofia Kowalewska, ok. 1880, Institut Mittag-Leffler, domena publiczna.

W 1889 roku uczona zakochała się w Maxie Kowalewskim dalekim krewnym zmarłego męża. Nie nalegała jednak na małżeństwo, gdyż wiedziała, że nie byłaby w stanie osiąść i zamieszkać z Maxem.

Sofja Kowalewska zmarła w kwiecie wieku, licząc zaledwie czterdzieści jeden lat, w Sztokholmie w lutym 1891 roku w wyniku powikłań po zapaleniu płuc. Została pochowana w mieście Solna na Cmentarzu Północnym, gdzie spoczywa wiele wybitnych i znanych ludzi.

Jeden z badaczy jej życia, Roger Cooke napisał: […] im bardziej zastanawiam się nad jej życiem i biorę pod uwagę ogrom jej osiągnięć, przeciwstawiając się ciężarowi przeszkód, które musiała przezwyciężyć, tym bardziej ją podziwiam. Dla mnie przyjęła bohaterską postawę osiągniętą przez niewielu innych ludzi w historii. Aby wejść, tak jak ona, do świata akademickiego, świata, którego prawie żadna kobieta jeszcze nie zbadała, i być konsekwentnie obiektem ciekawskiej analizy, podczas gdy wątpiące społeczeństwo patrzyło, na wpół oczekując, że je zawiedzie, zebrała ogromną odwagę i determinację. Aby osiągnąć, tak jak ona, co najmniej dwa główne wyniki o trwałej wartości stypendium, jest dowodem znacznego talentu, rozwiniętego dzięki żelaznej dyscyplinie […].

 

Zalecana Literatura:

  1. Z. Kowalewska, Wspomnienia z dzieciństwa, PIW, Warszawa, 1978.
  2. J. Navarro, Kobiety w matematyce: od Hypatii do Emmy Noether, RBA, Toruń, 2012, ss 84-91.
  3. R. L. Cooke, The life of S. V. Kovalevskaya, [w]: V. B. Kuznetsov, ed., The Kowalevski Property, American Mathematical Society, 2002, ss 1–19.
  4. P. Połubarinowa-Koczina: Zofia Kowalewska: Wielki matematyk rosyjski, Czytelnik, Warszawa, 1951.
  5. J. Spicci, Beyond the Limit: The Dream of Sofya Kovalevskaya, Forge Books, New York, 2002.

145. rocznica urodzin Ellen Gleditsch

 

Ellen Gleditsch jest jedną z niewielu pionierek radiochemii, która jest nie tylko zapomniana w świecie, ale także w Norwegii – kraju rodzimym. Była niezwykle aktywna zawodowo, większą część życia spędziła podróżując i współpracując z innymi naukowcami. Działała także w organizacjach międzynarodowych.

Dom rodziny Gleditsch w Tromsø, National Library of Norway, domena publiczna

Uczona przyszła na świat 29 grudnia 1879 roku w Mandal – małym miasteczku położonym nad Morzem Północnym w południowej Norwegii. Była najstarszym z dziesięciorga rodzeństwa: Karl (1881–1974), Birgit (1882–1941), Eivind (1885–1943), Leif (1886–1946), August (1888–1913), Adler (1893–1978), bliźniaczki Liv (1895–1977) i Astrid (1895–1924) oraz Kristian (1901–1973). Rodzina Gleditschów przybyła do Norwegii około sto lat wcześniej z Jugosławii. Wędrowali przez Niemcy i Danię, gdzie przodek uczonej, Carl August Ludwig von Gleditsch z Sachsen-Weimar, podjął pracę jako kapral w duńskiej armii i poślubił Dunkę. Para później przeprowadziła się i osiedliła w Norwegii, która w 1790 roku była częścią Danii. Ojciec Ellen, Karl Kristian (1851–1913) był synem luterańskiego ministra. Szybko zyskał opinię szanowanego nauczyciela przedmiotów ścisłych, a później także jako dyrektor szkoły średniej w Mandal. W 1889 roku rodzina przeprowadziła się do Tromsø na dalekiej północy Norwegii, gdzie Karl Kristian kontynuował karierę nauczycielską. Kilka lat później został także szanowanym politykiem. Z kolei matka Ellen, Petra Birgitte Hansen (1857–1913) była córką kapitana żeglugi. Była silną i niezależną kobietą angażującą się w politykę. Należała do pierwszego ruchu sufrażystek w Norwegii. Uwielbiała muzykę ludową i tą pasją zainspirowała także swoje dzieci. Według Ellen matka miała niezwykłe zdolności językowe. Pasjonowała ją przyroda i astronomia. Gleditschowie lubili spędzać czas na wsi i zabierali dzieci na długie wędrówki po lasach i górach. Często także żeglowali. Podczas wycieczek ojciec zakochany w botanice uczył swoje dzieci jak rozpoznawać i stosować rośliny w lecznictwie.

Ellen z matką i ojcem, 1913/1914, National Library of Norway, domena publiczna

Miłość rodziców, ich wzajemna troska oraz otwartość na świat sprawiła, że dzieci wychowywały się w szczęśliwej i opiekuńczej rodzinie. Ellen bardzo wcześnie nauczyła się szacunku dla innych ludzi, ale również dla przyrody. Często także, jako najstarsza z rodzeństwa, pomagała matce w opiece nad młodszym rodzeństwem. Wydaj się, że właśnie wówczas rozwinęła się w niej etyka pracy, bezinteresowność, skromność, troska o innych i głębokie wartości humanitarne, które zdominowałyby jej osobowość i pozostały w niej przez całe życie. Ellen w wieku osiemnastu lat zdała egzamin końcowy będąc najlepszą uczennicą w klasie. Znała łacinę, niemiecki, angielski, ale najbardziej interesowała się naukami przyrodniczymi. Zdecydowała się na podjęcie stażu w aptece. W 1897 roku przeniosła się do Oslo, gdzie kontynuowała naukę. Po kilkuletniej praktyce zdała dwa ważne egzaminy: w 1900 roku egzamin na asystenta farmaceutycznego i w 1902 roku niezwykle trudny egzamin na farmaceutę dyplomowanego.

 

Ellen Gleditsch w stroju absolwentki, b.d., National Library of Norway, domena publiczna

 

Po latach uczona wspominała:

Po egzaminie z farmakologii dr Bødtker doradził mi kontynuację studiów w laboratorium uniwersyteckim pod kierunkiem profesora Hiortdahla. Tak bardzo chciałam kontynuować naukę, ale nie miałam pieniędzy, a trzeba było przetrwać, więc zacząłem pracować jako korepetytorka. Wszystko układało się nawet dobrze, ale nie miałam tyle czasu na naukę, ile bym chciała. To była najpierw kwestia przetrwania, a potem nauki. Ale tak naprawdę poszło lepiej, niż mogłoby się wydawać. W 1903 roku zostałam asystentką w uniwersyteckim laboratorium chemicznym, a w 1905 roku zdałam egzamin maturalny, zaś w 1906 roku kwalifikacyjny egzamin wstępny na uniwersytet.

 

Ellen Gleditsch (z lewej) i jej przyjaciółka — botaniczka Thekla Resvoll (1871–1948)[1900 roku prowadziła kursy z botaniki roślin dla farmaceutów], ok. 1905, Oslo Museum, CC BY–SA
Eyvind Bødtker, d.b., fot. Borgens Atelier, Norsk Farmasihistorisk Museum, CC BY–SA

Doktor Eyvind Bødtker (1867–1932) był jednym z najlepszych norweskich chemików organików. Przez lata był mentorem i przyjacielem Ellen. W 1907 roku opublikowała swój pierwszy artykuł naukowy, który za jego radą został przetłumaczony na język francuski i opublikowany we francuskim czasopiśmie naukowym. Bødtker często bywał we Francji i był pod wielkim wrażeniem francuskiego życia kulturalnego oraz naukowego. To on miał niewątpliwy wpływ na Ellen i zapewne obudził w niej pragnienie wyjazdu poza odizolowaną społeczność naukową Oslo. Kiedy podopieczna wyznała mu, że jej największym marzeniem jest nauka w laboratorium Marii Skłodowskiej-Curie, Bødtker postanowił działać. Pojechał do Paryża i odwiedził laboratorium Madame Curie. Ponieważ jej nie zastał zostawił wiadomość moja utalentowana asystentka bardzo chciałaby pracować dla Pani, wyłącznie z zamiłowania do nauki, nie dla zdobycia dyplomu. Kiedy po kilku dniach powrócił spotkał się z Marią. To początkowo odrzuciła prośbę Bødtkera twierdząc, że nie ma już miejsca w laboratorium. Uczony jednak nie ustępował. Pokazał Marii Curie pracę autorstwa Ellen. Praca wydawała się interesująca, ale noblistka nadal twierdziła, że nie ma miejsca w pracowni. Wówczas Bødtker stwierdził, że mademoiselle Gleditsch jest tak mała i lekka, że nie zajmie dużo miejsca w pracowni. W końcu Maria Curie ustąpiła. Według wielu historyków nauki decydującym czynnikiem było prawdopodobnie to, że większość stypendystów w laboratorium Marii była fizykami, a Curie bardzo potrzebowała chemika. Idealną kandydatką była Gleditsch. Wielkie marzenie się ziściło.

 

Instytut Radowy w Paryżu, 1929, Wellcome Images, CC BY–4.0

Gleditsch otrzymała stypendium królowej Norwegii i Szwecji. Było ono niezbędne, aby opłacić pobyt w laboratorium Curie. Jednak Maria Skłodowska-Curie zrobiła tym razem wyjątek. W liście do Ellen napisała: […] jeśli podejmie Pani tę pracę [rekrystalizacja soli baru i radu], która zajmie tylko część Pani czasu, a będzie stanowić ogólną korzyść dla laboratorium, mógłbym zwolnić Panią z opłat […]. Jednocześnie mogłaby Pani pracować nad innymi, bardziej interesującym problemami, które mogą prowadzić do nowych wyników. W październiku 1907 roku Ellen Gleditsch wyjechała do Paryża. Początkowo mieszkała ze swoim bratem Adlerem, a później wynajęła małe mieszkanko za Panteonem, skąd miała blisko do pracowni i Sorbony. Po latach wspominała:

Pomieszczenia, które miała do dyspozycji Maria Curie były położone rozłożyście. Przy wejściu znajdowało się duże biuro z przylegającym ciemnym pokojem, w pobliżu pokoju pełniącego funkcję biblioteki. Trzeba było przejść przez podwórko, by dostać się do dużego laboratorium, w którym można było znaleźć większość sprzętu naukowego. Obok znajdowało się mały gabinet Marii Curie i inny pokój używany przez André Debierneʼa.

 

Maria Skłodowskia-Curie, 1911, Library of Congress

Precyzja z jaką Ellen podjęła się rozdziału soli baru i radu była tak wielka, że Madame Curie szybko uczyniła z niej osobistą asystentkę. W 1907 roku obie rozpoczęły prace nad eksperymentem, który miał obalić teorię Williama Ramsaya (1852–1916). Chemik ów twierdził, że w wyniku działania emanacji radu na miedź, otrzymał lit i sód. Maria Curie wraz z Ellen przeprowadziły niezwykle staranne doświadczenia, stosując w miejsce szklanych naczyń, naczynia platynowe. Stosunkowo szybko uczone stwierdziły, że efekt opisany przez Ramsaya nie istnieje, a obecność litu i sodu jest związana z używanymi przez niego szklanych i kwarcowych naczyń. Pomimo wielu różnic w osobowościach obie panie szybko się polubiły i być może zaprzyjaźniły. Gleditsch była często zapraszana do domu Curie w Sceaux, gdzie poznała córki Marii. Wydaje się również, że był to początek przyjaźni pomiędzy Ellen i Irène. Podczas jednej z krótkich wizyt w Norwegii Gleditsch zaręczyła się z młodym oficerem. Według biografów uczonej, para była bardzo różna i intelektualnie niedobrana. Zaręczyny – prawdopodobnie jedyny związek uczuciowy Gleditsch, który mógł zakończyć się małżeństwem – wkrótce zostały zerwane. W 1926 roku Gleditsch mówiła:

Często wymagana jest obecność [kobiety] w domu. Kobieta, która chce zostać badaczem, musi pogodzić dwa przeciwstawne żądania. Badania wymagają przede wszystkim refleksyjnej atmosfery, możliwości myślenia w ciszy i spokoju oraz skoncentrowania się na konkretnym problemie. Materialne obawy, troska o męża lub dzieci pozostawione w domu bez odpowiedniej pomocy lub opieki zabiją wszelkie szanse na pierwszorzędne wysiłki.

W 1912 roku Gleditsch otrzymała licencjat, z którym powróciła do Norwegii. Przyznano jej skromne stypendium na uniwersytecie w Oslo. Uczona próbowała kontynuować badania związane z czasem połowicznego zaniku radu, a jeszcze rozpoczęte w Paryżu, jednak na przeszkodzie stał brak odpowiednio wyposażonego laboratorium. Bardzo szybko zorientowała się, że swoją pasję i zainteresowanie radioaktywnością będzie mogła rozwijać w Stanach Zjednoczonych. Niestety los pisze własny scenariusz.

 

Portret dr Ellen Gleditsch, b.d., National Library of Norway

Na początku 1913 roku Ellen straciła oboje rodziców i jednego z braci. Została tym samym głową rodziny. Starała się utrzymywać dom i łożyła na edukacje rodzeństwa. Więzi rodzinne były bardzo mocne, co manifestowało się między innymi tym, że Ellen do końca życia mieszkała z bratem Adlerem. Pod koniec feralnego roku Gleditsch otrzymała stypendium Fundacji Amerykańsko-Skandynawskiej. Napisała do Bertrama Boltwooda (1870–1927) z Yale oraz Theodore’a Lymana (1874–1954) z Harvardu wyrażając chęć podjęcia z nimi współpracy. Po odmowie Lymana, który stwierdził, że żadna kobieta nigdy nie pracowała w jego laboratorium, i nie do końca optymistycznym liście Boltwooda, uparta i zdecydowana Ellen pojechała do Stanów Zjednoczonych. Może budzić to zdziwienie, bowiem Boltwood słyną ze swoich szowinistycznych poglądów. Po latach Gleditsch mówiła (nie odnosząc się do jego nazwiska), że pracowała z uczonym, który był znany z nienawiści do kobiet. I ją akceptował bo nie krzyczała. Według uczonej był to największy komplement w mojej karierze naukowej. To właśnie tutaj w semestrze 1913–1914 uczona określiła okres połowicznego zaniku radu na 1686 lat (dziś wiadomo, że wynosi on 1620 lat). Praca ta sprawiła, że uczona została rozpoznawalna w świecie nauki. Stała się wiodącą specjalistką w izolacji i oddzielaniu substancji promieniotwórczych od minerałów. Theodore W. Richards (1868–1928), zaprosił ją na Harvard, a wiosną 1914 roku otrzymała doktorat honoris causa Smith College w Massachusetts. Również Lyman zmienił zdanie i zaproponował jej posadę. Gleditsch wykładała teorię atomu, omawiając powstałą właśnie teorię kwantów oraz ostatnie prace Bohra, Rutherforda i Moseleya. Rozszerzyła swoje prace o badania nad radioaktywnymi minerałami, którymi interesowała się przez całe życie. Opracowała procedury analityczne izolacji wielu substancji radioaktywnych znalezionych w norweskich minerałach i dostarczała próbki do laboratorium Curie. Jako pierwsza zwróciła uwagę na znaczenie izotopów ołowiu w celu dokładnego określenia wieku Ziemi.

Na Uniwersytecie Harvarda Gleditsch zaangażowała się w badania izotopów. W tamtym czasie wiadomo było, że masa atomowa pierwiastków promieniotwórczych (lub tych, które powstawały w wyniku rozpadu promieniotwórczego) może się różnić w zależności od ich pochodzenia geologicznego. Na przykład, w rudach bogatych w naturalnie występujący tor obfitował ołów-208. Natomiast w rudach bogatych w uran dominował ołów-206. Problem pojawił się kiedy Francis Aston (1877–1945) ogłosił, że znalazł dwie różne masy atomowe dla chloru (odpowiednio 35 i 37), a średnia masa atomowa wynosi 35,46. Chlor nie jest pierwiastkiem radioaktywnym, zatem trudno było wytłumaczyć tą anomalię. Wyglądało na to, że także w tym przypadku skład izotopowy zmieniał się w zależności od źródła (tak jak w dla pierwiastków radioaktywnych). Gleditsch i jej współpracownicy badając chlor pochodzący z różnych źródeł, odkryli, że skład izotopowy chloru w rzeczywistości nie różnił się w zależności od źródła. Badacze określili masę atomową pierwiastka na dwa różne sposoby. W pierwszej metodzie strącili chlorek srebra za pomocą azotanu srebra. Chlorek srebra przemyli, wysuszyli i zredukowali do srebra metalicznego za pomocą gazowego wodoru. Na podstawie masy wysuszonego chlorku srebra i srebra metalicznego wyznaczyli ciężar atomowy chloru. Druga metoda polegała na określeniu gęstości nasyconych roztworów chlorku sodu, a następnie masy chloru. Jednakże Irène Curie w Paryżu otrzymała inny wynik. Gleditsch doszła jednak do wniosku, że próbki Curie musiały być zanieczyszczone. Masa atomowa chloru była zatem stała.

Oczywiście bardzo szybko zaczęła się uczoną interesować prasa. Podczas jednego z wywiadów zapytano ją o chęć wyjścia za mąż. Ze względu na sporą ilość pracy zwyczajnie nie mam [na małżeństwo] czasu; moimi zainteresowaniami są badania [naukowe], które pochłaniają wszystkie moje myśli – odpowiedziała Gleditsch.

Eva Ramstedt, ok. 1910, Uppsala University Library

Wybuch pierwszej wojny światowej przyniósł uczonej naukową izolację. Nie mogła wyjeżdżać, miała kłopoty z dostępem do światowej literatury specjalistycznej. W listopadzie 1915 roku pisała do Marii Skłodowskiej-Curie:

Minęło dużo czasu, odkąd miałam od Ciebie jakieś wiadomości. Mam nadzieję, że radzisz sobie tak dobrze, jak pozwalają na to takie czasy… Jak zapewne wiesz, tego lata spotkałam się z panią Ramstedt. Wspólnie badałyśmy radioaktywność w źródłach i wodzie oraz elektryczność w atmosferze. Mamy nadzieję, że będziemy mogły kontynuować [badania] w przyszłym roku. Miło było rozmawiać o Paryżu, laboratorium Curie i wspomnieniach z naszych czasów studenckich. Przydało mi się przynajmniej rozmawiać z kimś, kto pracuje nad radioaktywnością. Mam tu przyjaciół, chemików i fizyków, ale żaden z nich nie zajmował się wiele promieniotwórczością… Chciałabym pojechać do Paryża i Cię odwiedzić! Oby tylko warunki na to wkrótce pozwoliły!

W 1916 roku otrzymała stanowisko docenta oraz uczciwą pensję. Mogła prowadzić badania i zatrudniać współpracowników. Napisała pierwszy podręcznik dotyczący radioaktywności wydany jednocześnie w Szwecji i Norwegii pt. Rad i procesy radiochemiczne. W 1917 roku została wybrana na członkinię Akademii Nauk w Oslo. Została tym samym drugą kobietą, która dostąpiła tego zaszczytu (pierwszą była Kristine Bonnevie). Uważała, że współpraca międzynarodowa jest niezwykle ważna dla nauki. Ellen Gleditsch twierdziła, że:

W tej atmosferze [wyjazdów] dowiedziałam się, w jaki sposób problem [naukowy] rodzi się w jednym laboratorium, jest podejmowany w innym, a potem może zostać rozwiązany w jeszcze innym. Dowiedziałam się, że konkurencja i wyścig związany z rozwiązaniem [problemów naukowych] jest ściśle powiązany z postępem nauki. Powstaje rodzaj braterstwa między tymi, którzy pracują w tym samym laboratorium, w którym powstają różne problemy, gdzie są omawiane i być może ich rozwiązania skutkują publikacją. Rozwiązanie to dociera w końcu do laboratoriów w innych krajach, w których badane są te same problemy. I w końcu człowiek zdaje sobie sprawę – być może tylko poprzez małe osobiste rozczarowania lub sukcesy, że ktokolwiek podejmuje ten decydujący, ostatni krok związany z rozwiązaniem [problemu], czy płynie z zagranicy czy nie, ma drugorzędne znaczenie.

W 1919 roku Gleditsch wyjechała na dziewięciomiesięczne stypendium do Paryża. Rok później pojechała do Rutherforda do Cambridge i Soddy’ego do Oxfordu, z którym się zaprzyjaźniła i którego prace szczególnie ceniła. Następnie powróciła do Paryża, aby zastąpić podróżującą do Ameryki Południowej Marię Curie w laboratorium. Po powrocie do Norwegii została uhonorowana przez Norweską Akademię Nauk prestiżową nagrodą Nansena.

 

Ellen Gleditsch na schodach Instytutu Radowego w Paryżu, 1924 [za:] Natalie Pigeard-Micault, Les femmes du laboratoire Curie, Glypche, Paris 2013

W 1922 roku Gleditsch po raz pierwszy w liście do Marii Skłodowskiej-Curie skarżyła się na problemy zdrowotne. Pisała, że cierpi na anemię, która powoduje częste przeziębienia. Być może było to związane z pracą z substancjami radioaktywnymi, jednakże zważywszy na fakt, że uczona żyła prawie osiemdziesiąt dziewięć lat można wnioskować, że miała wyjątkowo silny organizm.

W okresie międzywojennym Gledisch skoncentrowała się na badaniu izotopów w minerałach. Część prac wykonała wspólnie z młodszą siostrą Liv, która także była chemikiem. Uczona zaangażowała się również w jedną z komisji działających przy Lidze Narodów. Głośno mówiła:

Nie ma znaczenia, czy praca jest wykonywana przez niską kobietę w Bułgarii czy przez wysokiego mężczyznę w Stanach Zjednoczonych, jeśli wykonano ją dobrze. I właśnie to musimy zrobić: pracować tak dobrze, aby nikt nie ośmielił się powiedzieć – to dobra robota dla kobiety, ale aby wszyscy mogli powiedzieć – to dobra robota w ogóle. Rasa i płeć nie mają znaczenia w nauce.

Ellen Gledtisch, ok. 1935, Oslo Museum, CC CC 1.0

W 1929 roku po wielu perturbacjach została profesorem chemii. W liście do Marii Curie pisała: Dokonało się. Trzy dni temu zostałam profesorem. Mam szczerą nadzieję, że będę w stanie wykonać dobrą robotę; i że nie będzie brakowało pracy. Mam również nadzieję, że od czasu do czasu będę Cię odwiedzać i że te wizyty będą dla mnie źródłem inspiracji i zachęty. Uważała, że praca ze studentami oznacza pracę nad przyszłością. To uczeń jutro będzie kontynuował naszą pracę. Aby popularyzować naukę, Gleditsch zaczęła wygłaszać wykłady popularnonaukowe w radio, pisała też artykuły w języku francuskim, angielskim, niemieckim i norweskim. Była autorką biografii wielu naukowców, których znała osobiście.

Podczas drugiej wojny światowej Gleditsch przyczyniła się do znalezienia bezpiecznej przystani w Norwegii dla uchodźców, głównie ze społeczności uniwersyteckiej. W jej laboratorium w Oslo i innych częściach kraju znaleziono miejsca dla uciekających naukowców. Wśród nich znaleźli się Elizabeth Rona i Marietta Blau. Kiedy Niemcy okupowali Norwegię, Gleditsch nigdy nie rezygnowała z wysiłków przeciwstawienia się okupantom i marionetkowemu reżimowi. Starała się utrzymać ducha oporu i przygotować się na spodziewane ataki na wolność akademicką i osobistą. Nic jej nie złamało. Jej brat, Adler był przez kilka lat jeńcem wojennym. Siostra Liv została aresztowana w ostaniem roku wojny. Ellen Gleditsch nadal okazywała pogardę okupantom, pomagając studentom, naukowcom i innym ludziom, którzy znaleźli się w niebezpieczeństwie. Kilkakrotnie ukrywała ich w swoim mieszkaniu. W 1943 roku uczona została aresztowana. Przesłuchiwał ją dobrze wykształcony niemiecki oficer. Po niemiecku przekonała go, aby ją wypuścił. I właściwie nie wiadomo dlaczego, oficer podziękował jej za miłe spotkanie i wyraził nadzieję, że spotkają się ponownie w przyjemniejszych okolicznościach. Wkrótce jednak została oskarżona o działalność polityczną na uniwersytecie i zakazano jej pracy na uczelni.

 

Zebranie Komisji Norm i Jednostek Promieniotwórczości w Sztokholmie w 1953; od lewej m.in: Raymond Delaby (1.),  Irène Joliot-Curie (6.), Ellen Gleditsch (9.), Friedrich Paneth (10.), austriacka fizyk Berta Karlik (11.) i George de Hevesy (12.), National Library of Norway

 

Po wojnie pozostała w kontakcie z przyjaciółmi i kolegami, takimi jak np. Lise Meitner, którą regularnie odwiedzała w Sztokholmie. W 1946 roku uczona przeszła na emeryturę i rozpoczęła współpracę z UNESCO. Jej celem była walka z analfabetyzmem. W 1947 roku na zaproszenie Frederica Joliota-Curie wzięła udział w ceremonii z okazji dziesiątej rocznicy śmierci Rutherforda. W 1952 roku została powołana do norweskiej komisji ds. koordynacji naukowej jako przedstawicielka rządu, gdzie była rzecznikiem międzynarodowej kontroli nad bombą atomową. W tym samym roku zrezygnowała z pracy w UNESCO w proteście przeciwko przyjęciu Hiszpanii pod faszystowskim reżimem Franco jako członka instytucji. Przez cały czas publikowała. Pod koniec życia zainteresowała się szczególnie historią nauki. Jej ostatni artykuł dotyczący życia i pracy szwedzkiego chemika Carla Wilhelma Scheele’a został opublikowany w 1968 roku. Uczona otrzymała wiele nagród i wyróżnień, w tym między innymi w 1962 roku jako pierwsza kobieta doktorat honoris causa Sorbony, medal miasta Paryża, została także honorowym obywatelem Paryża. Otrzymała również doktorat honoris causa Uniwersytetu w Strasburgu.

Irena Joliot-Curie i Ellen Gleditsch w Warszawie na obchodach 20. rocznicy śmierci Marii Skłodowskiej-Curie. Fotografia ze zbiorów Muzeum Marii Skłodowskiej-Curie w Warszawie

Pod koniec maja 1968 roku spędzała weekend w swoim wiejskim domu w Enebakk pod Oslo. Poczuła się źle. Straciła przytomność. Lekarze orzekli, że dostała udaru. Kilka dni później, 5 czerwca w wieku osiemdziesięciu dziewięciu lat Ellen Gleditsch zmarła.

Można by oczekiwać, że w Norwegii pamięć o uczonej będzie pielęgnowana i trwała. Niestety niewiele osób zna tą wyjątkową kobietę i jej osiągnięcia. Niestety mało kto pamięta Ellen Gleditsch – wybitną uczoną, działaczkę pokojową oraz przyjaciółkę i współpracowniczkę Marii Skłodowskiej-Curie.

 

W styczniu 2019 roku Svein Stølen – rektor Uniwersytetu w Oslo – odsłonił pamiątkową plakietę na budynku przy ulicy Jonas Reins 1 w Oslo, gdzie Ellen Gleditsch mieszkała w latach 1931–1968, fot. Eivind Torgersen, [za:] https://forskning.no
_______________

Literatura zalecana:

[1] A.-M. Weidler Kubanek, Nothing Less Than An Adventure: Ellen Gleditsch and Her Life in Science, CreateSpace Independent Publishing Platform, 2010.

[2] A. Lykknes, Ellen Gleditsch and Research on Radium, Chlorine and Potassium, [w]: Women in Their Element: Selected Women’s Contributions To The Periodic System, ed., Annette Lykknes, Brigitte Van Tiggelen, World Scientific Publishing Co, Singapore 2019.

[3] A. Lykknes, L. Kvittingen, A. K. Børrese, Ellen Gleditsch: Duty and responsibility in a research and teaching career, 1916-1946, Historical Studies in the Physical and Biological Sciences, 36 (1), 2005, str. 131–188.

[4] A. Lykknes, H. Kragh, L. Kvittingen, Ellen Gleditsch: Pioneer Woman in Radiochemistry, Phys. Perspect., 6, 2004, str. 126–155.

[5] A. Lykknes, Ellen Gleditsch: Woman Chemist in IUPAC’s Early History, Chemistry International, 2019, str. 26–27.

[6] A.-M. Weidler Kubanek, C. P. Grzegorek, Ellen Gleditsch: Professor and Humanist, [w]: A Devotion to Their Science: Pioneer Women of Radioactivity, ed., Marlene F. Rayner-Canham, Geoffrey W. Rayner-Canham, McGill-Queen’s University Press, Québec 1997.

[7] A. Lykknes, Ellen Gleditsch: Professor, Radiochemist, and Mentor, Department of Chemistry Norwegian University of Science and Technology Trondheim, Norway, Ph. D. thesis, 2005.

[8] M. F. Rayner-Canham, G. W. Rayner-Canham, Sir W. Grenfell College, Stefanie Horovitz, Ellen Gleditsch, Ada Hitchins, and the discovery of isotopes, Bull. Hist. Chem., 25(2), 2000, str. 103–108.

Lise Meitner i rozszczepienie jądra atomowego

 

Ostatnie dni grudnia 1939 roku należały do Lise Meitner i Ottona Hahna, którzy wymieniając niezwykle intensywnie korespondencję rozpisywali się o jednym z najważniejszych wydarzeń w historii nauki. O rozszczepieniu jądra atomowego.

Zapraszamy do lektury fragmentu książki Tomasza Pospiesznego pt. Zapomniany geniusz. Pierwsza dama fizyki jądrowej, Novae Res, Gdynia 2016.

 

***

Teraz Hahn musiał się spieszyć. Wyniki były może do końca niezrozumiałe, a wyjaśnienie dalekie, ale trzeba było się spieszyć. W Paryżu ta „przeklęta baba”, Irène Joliot-Curie, mogła mieć rację z lantanem i dreptała tuż za Hahnem. Kto wie, może równo z nim. Na gotowy maszynopis Hahn naniósł szybkie poprawki. W ostatnim momencie, uzgadniając to z Fritzem, zmienił tytuł na „Odkrycie izotopów metali alkalicznych powstających przy napromieniowaniu uranu neutronami i ich zachowanieˮ. W tej subtelnej zmianie – izotopów metali alkalicznych – ujął rad i bar, bowiem oba pierwiastki należą do metali alkalicznych. 22 grudnia oryginalny maszynopis odebrał Paul Rosbaud (redaktor „Naturwissenschaften”), a Hahn wrzucił do skrzynki pocztowej kopię zaadresowaną do Lise Meitner. W ciągu doby tekst pracy Hahna i Strassmanna przeczytały tylko te dwie osoby:

 

[…]Gdy wykonaliśmy odpowiednie badania promieniotwórczych próbek baru, które nie zawierały żadnych produktów późniejszych rozpadów, wyniki były zawsze negatywne. Substancja promieniotwórcza rozłożona była równomiernie we wszystkich frakcjach baru. […]Doszliśmy do wniosku, że nasze „izotopy radu” mają właściwości baru. Jako chemicy właściwie powinniśmy stwierdzić, że nowe produkty nie są radem, lecz barem. Żadne inne pierwiastki oprócz radu i baru nie wchodzą w rachubę.  […]

[…]Jako chemicy powinniśmy w istocie zmienić podany wyżej schemat rozpadu i wstawić symbole Ba [bar] , La [lantan] , Ce  [cer] na miejsce Ra  [rad] , Ac [aktyn] , Th [tor]. Jednakże jako „chemicy jądrowi”, pracujący w dziedzinie bardzo zbliżonej do fizyki, nie możemy zdobyć się na podjęcie tak drastycznego kroku, który byłby sprzeczny z wszystkimi dotychczas obowiązującymi prawami fizyki jądrowej. Być może wskutek szeregu niezwykłych zbiegów okoliczności otrzymaliśmy fałszywe wskazania[1].

 

Artykuł autorstwa niemieckich uczonych musiał wzbudzać kontrowersje. Po pierwsze, praca ta potwierdzała przypuszczenia Idy Noddack, która głośno i samotnie kwestionowała wcześniejsze prace Fermiego oraz zespołu Hahn–Meitner–Strassmann. Po drugie, ostatecznie przyznawała rację trudnej i zawiłej interpretacji doświadczeń przeprowadzonych przez Irène Joliot-Curie i Pavlé Savića. Po trzecie, podważała wcześniejsze badania nad transuranowcami, które zaowocowały przecież wieloma publikacjami grupy berlińskiej. Wreszcie nikt nie miał pewności, a wręcz przeciwnie: całą masę wątpliwości, że atom uranu jakimś sposobem przekształca się w atom baru. Hahn cały czas rozmyślał o wynikach ostatnich doświadczeń. 27 grudnia zatelefonował do Rosbauda z zapytaniem, czy można jeszcze dodać krótki akapit uzupełniający wnioski.

Jeśli chodzi o „grupę transuranowców”, to pierwiastki te są chemicznie powiązane, ale nie identyczne z ich niższymi homologami renu, osmu, irydu i platyny. Nie zostały jeszcze wykonane eksperymenty, które by potwierdzały, że mogą one być chemicznie identyczne z jeszcze niższymi homologami mazurem [obecnie technet] , rutenem, rodem, palladem.  […]Suma mas atomowych Ba + Ma [mazur] , na przykład, 138+101 wynosi 239! [2]

 

I ponownie Hahn szukał poparcia dla swoich pomysłów u Lise Meitner. Dzień później napisał do niej i Frischa list[3] dotyczący dołączonego akapitu. Korespondencja była dynamiczna (skoro tak intensywnie pracowali na odległość, co mogłoby się wydarzyć, gdyby Lise nie musiała emigrować?).

 

28 grudnia 1938 roku

Chcę Ci jeszcze szybko napisać parę słów o moich fantazjach dotyczących Ba, etc. Może w Kungälv jest z Tobą Otto Robert i może omówicie ten problem przez chwilę. Wysłaliśmy Tobie rękopis naszej pracy*.  […]Czy byłoby możliwe, aby uran 239 rozpadł się na 1 Ba i 1 Ma? Ba 138 i Ma 101 dają razem 239. Nie musi być akurat taka liczba masowa. Mogłoby też być 136 + 103, czy coś podobnego. Oczywiście nie zgadzają się liczby atomowe. Kilka neutronów musiałby się przemienić w protony, aby uzyskać takie ładunki. Czy to energetycznie jest możliwe? Wszystko inne jest udowodnione,  […]wówczas transuranowce „ausenium” i „hesperium” [pierwiastki 93 i 94] znikną. Nie wiem, czy to by mnie bardzo smuciło, czy nie*[4].

 

Było to intrygujące stwierdzenie. Jeśli Hahn miał rację, to odkrył zupełnie nowe zjawisko i jednocześnie przekreślił lata wspólnych badań z Meitner. Swoimi badaniami podważył istnienie transuranowców! Powodowało to znaczne zamieszanie w fizyce i chemii jądrowej. Przekreślało prace Fermiego i jego rzymskiej grupy, przekreślało prace Meitner i Hahna. Nieco oszołomiona Lise wyznała:

Nie mogliśmy tego zauważyć. To jest zupełnie niespodziewane. Hahn jest dobrym chemikiem i ufałam, że jeśli zidentyfikował jakieś pierwiastki, to miał rację. Kto mógłby pomyśleć, że chodzi o coś znacznie lżejszego?[5]

Kiedy Hahn i Strassmann przeprowadzali pierwsze doświadczenia z neutronami i uranem, Lise Meitner obchodziła pierwsze Boże Narodzenie na emigracji. Z dala od rodziny, przyjaciół. Z dala od domu. Jedyną bliską osobą, która mieszkała w Szwecji, była Eva von Bahr-Bergius, z którą Meitner zaprzyjaźniła się jeszcze w latach dwudziestych. Eva wspólnie z mężem Niklasem Bergiusem (1871–1947) wybudowała piękny dom w Kungälv, oddalonym około dwadzieścia kilometrów od Göteborga, do którego zaprosiła na święta bożonarodzeniowe Meitner. Uczona chyba z radością przyjęła zaproszenie, tym bardziej że miała się tam spotkać z ukochanym siostrzeńcem Ottonem Robertem. Frisch – podobnie jak ciotka – był uchodźcą pracującym w Kopenhadze pod opieką Nielsa Bohra. Niestety święta 1938 roku były dla nich obojga bardzo przykre i smutne. Spędzali je z dala od rodziny i nie wiedzieli, czy osoby bliskie ich sercom nadal żyją. Od czasu aresztowania ojca Frischa nie było także kontaktu z jego matką.

Meitner zatrzymała się w przytulnym pensjonacie i z niecierpliwością oczekiwała na swojego siostrzeńca. Pojawił się wieczorem, zmęczony podróżą. Nazajutrz podekscytowana Meitner zaczęła relacjonować siostrzeńcowi doświadczenia Hahna. Frisch początkowo był bardzo sceptyczny wobec opowieści ciotki. W tym czasie zajmował go problem magnetycznych właściwości neutronów i miał nadzieję, że przedyskutuje go z Lise. Ta jednak nie dawała za wygraną. Zmusiła siostrzeńca, by przeczytał list Hahna z 19 grudnia. Po pierwszej lekturze listu Frisch nie był nastawiony przychylnie:

Bar? Nie wierzę. Gdzieś jest jakiś błąd[6].

Nie, Hahn był zbyt dobrym chemikiem. Ale jak bar może tworzyć się z uranu?[7]

– Ale to niemożliwe! Nie można jednym uderzeniem odłupać od jądra stu cząsteczek. Nie można go nawet przeciąć. Wystarczy oszacować siły jądrowe, wszystkie te wiązania, które musisz naraz zerwać – to fantazja. To zupełnie niemożliwe, by coś takiego mogło się z jądrem zdarzyć[8].

 

Uczona była przekonana, że nie może być mowy o błędzie. Błędy mogła popełniać Irène Joliot-Curie, ale nie współpracownicy jej, Lise Meitner. Wybrali się na wspólny spacer. Frisch założył narty, a ciotka towarzyszyła mu pieszo. Kiedy siostrzeniec wyraził obawę, że Lise za nim nie nadąży, odpowiedziała, że szybkie chodzenie ją odmładza i utrzymuje w ruchu[9]. Po latach Frisch wspominał:

 

[…]Usiedliśmy oboje na pniu drzewa (wszystkie dyskusje miały miejsce, gdy szliśmy przez las w śniegu, ja na moich biegówkach, a Lise Meitner, zgodnie z wcześniejszym zapewnieniem, szła równie szybko bez nart) i zaczęliśmy wykonywać obliczenia na skrawkach papieru[10].

Jak może z uranu powstać bar? Nikomu nigdy nie udało się oderwać od jądra żadnych fragmentów większych niż protony czy jądra helu (cząstki alfa) i należało odrzucić myśl, że możliwe jest oddzielenie naraz wielu takich cząstek.  […]Wykluczone również, by jądro uranu po prostu pękło. Naprawdę, jądro to nie krucha bryłka, którą można rozłupać lub przełamać. Bohr podkreślał, że jądro bardziej przypomina kroplę cieczy[11].

Rzeczywiście model kroplowy jądra atomowego zaproponowany przez Bohra umożliwił wyjaśnienie zagadki Lise i Robertowi. Frisch podsumowywał:

 

Powoli zdaliśmy sobie sprawę z tego, że rozszczepienie uranu na dwie w przybliżeniu równe części… należy ująć z innej strony. Obraz byłby taki… jądro atomu zmienia stopniowo pierwotny kształt, wydłuża się, zwęża pośrodku, po czym dzieli się na dwie połowy[12].

 

Im większy ładunek w jądrze atomowym, tym większa jego niestabilność. Uran ma aż 92 protony, zatem jest niestabilny (protony odpychają się, przez co niestabilność jądra wzrasta). Dlatego w przyrodzie nie ma naturalnie występujących pierwiastków o liczbie protonów większej niż 92. Wystarczył jeden jedyny neutron, który powodował zwiększenie energii jądra, wskutek czego jądro zaczęło drgać i w efekcie pękać. Powstające dwa nowe jądra oddalają się od siebie z dużą prędkością. Ich masa było nieco mniejsza niż jądro macierzyste, a ów ubytek masy zgodnie z równaniem Einsteina E = mc2 przekształcał się w energię wynoszącą 200 MeV![13] Frisch wspominał:

 

Lise Meitner obliczyła, że dwa jądra powstałe w wyniku podziału jądra uranu będą lżejsze niż pierwotne jądro uranu o około jednej piątej masy protonu… Zgodnie z formułą Einsteina E = mc2… jedna piąta masy protonu jest równoważna 200 MeV[14].

24 grudnia 1938 roku w przepięknie zaśnieżonym lesie w odległej Szwecji Meitner wspólnie ze swoim siostrzeńcem wyjaśniła jedną z zagadek Matki Natury. Wszystko stało się jasne. Lise napisała do Hahna, ale jeszcze nie wyznała mu, że wspólnie z Frischem odkryła rozwiązanie.

 

29 grudnia 1938

Drogo Otto,

bardzo dziękuję za Twój list z 28… Wyniki Ra-Ba są bardzo ekscytujące. Otto R. i ja łamiemy sobie głowy; niestety nie dostałam jeszcze maszynopisu, ale właśnie posłałam po niego i mam nadzieję otrzymać go jutro. Wtedy będziemy mogli o tym lepiej pomyśleć.

1 stycznia 1939, godz. 12:30

Drogi Otto,

rok zaczynam listem do Ciebie. Może to być dobry rok dla nas wszystkich. Przeczytaliśmy i przemyśleliśmy bardzo dokładnie Twoją pracę, ale czy energetycznie byłoby możliwe, żeby takie ciężkie jądro pękało. Wprawdzie Twoja hipoteza o powstawaniu Ba i Ma jest niemożliwa z kilku powodów[15].

_____________________________________

[1] Ibidem, str. 228.

[2] P. Rife, „Lise Meitner…”, op. cit., str. 187.

[3] Profesor Sime podaje, że korespondencja pomiędzy Hahnem i Meitner dochodziła z dnia na dzień. Co za czasy!

 

[4] K. Hoffmann, „Wina i odpowiedzialność…”, op. cit., str. 141.

*Cytuję zdanie za: P. Rife, „Lise Meitner…”, op. cit., str. 192.

* Cytuję zdanie za: R. L. Sime, „Lise Meitner…”, op. cit., str. 239.

[5] R. Rhodes, „Jak powstała bomba atomowa”, op. cit., str. 232.

[6] Ibidem, str. 230.

[7] O. R. Frisch, „What Little I Remember”, op. cit., str. 115.

[8] R. Rhodes, „Jak powstała bomba atomowa”, op. cit., str. 230.

[9] Ibidem, str. 209.

[10] O. R. Frisch, „What Little I Remember”, op. cit., str. 116.

[11] R. Rhodes, „Jak powstała bomba atomowa”, op. cit., str. 230.

[12] R. Jungk, „Jaśniej niż tysiąc słońc”, op. cit., str. 62.

[13] 200 milionów eV (elektronovoltów). Energia z jednego atomu nie oszałamia, ale z jednego grama uranu już tak. Znajduje się w nim bowiem 2,53 x 1022 atomów!

[14] N.-T. H. Kim-Ngan, „Niedoceniony przez komitet Nagrody Nobla…”, op. cit., str. 20.

[15] R. L. Sime, „Lise Meitner…”, op. cit., str. 240.

39. rocznica śmierci Dian Fossey

 

Dian Fossey obserwuje Pucker Pussa (dwuletniego goryla górskiego) i Coco (16-miesięcznego samca), w Parku Narodowego Volcanoes w Rwandzie. Opiekowała się nimi po tym, jak ich rodziny zostały zabite przez kłusowników. Fot. Robert I.M. Campbell, National Geographic Image Collection

 

W samym sercu Afryki Środkowej, tak wysoko, że człowiek częściej drży tam z zimna, niż się poci, znajdują się wielkie, stare wulkany, wznoszące się prawie cztery i pół tysiąca metrów, niemal całkowicie pokryte bujnym, zielonym tropikalnym lasem deszczowym – góry Wirunga.

Dian Fossey przeszła do historii jako kobieta, która oddając własne życie ocaliła goryle górskie. Historia jej życia jest nie tylko niezwykle ciekawa, ale przede wszystkim inspirująca. W swojej książce „Gorillas in the Mistˮ pisała:

Spędziłam wiele lat, tęskniąc za wyjazdem do Afryki, ponieważ kontynent ten był tak odległy i oferował ogromną różnorodność wolno żyjących zwierząt. W końcu zdałam sobie sprawę, że sny rzadko same się spełniają. Aby uniknąć dalszego wyczekiwania, zaciągnęłam trzyletnią pożyczkę bankową i sfinansowałam siedmiotygodniowe safari w tych częściach Afryki, które najbardziej mi się podobały. Po miesiącach spędzonych na planowaniu trasy, z której większość znajdowała się daleko od normalnych tras turystycznych, zatrudniłam kierowcę safari w Nairobi i we wrześniu 1963 roku poleciałam do krainy moich marzeń.

Tak narodziła się legenda kobiety kochającej przyrodę ponad własne życie…

Dian Fossey, b.d., [za:] https://gorillafound.org
Przyszła na świat 16 stycznia 1932 roku w San Francisco w Kalifornii jako córka Kathryn i Georgeʼa E. Fosseyʼa III. Matka była modelką, zaś ojciec agentem ubezpieczeniowym. Kiedy Dian miała sześć lat jej rodzice rozwiedli się. Rok później matka wyszła ponownie za mąż za biznesmena Richarda Priceʼa. Niestety rozwód rodziców i obecność ojczyma mocno zaważyły na życiu przyszłej uczonej. Matka utrudniała ojcu Dian kontakty z córką, natomiast ojczym nigdy jej nie traktował jak własnego dziecka. Wprowadził do domu prawdziwy rygor i dyscyplinę – na przykład nie pozwalał Dian spożywać posiłków w jadalni w obecności rodziców! Dian nie mogąc znaleźć miłości w domu rodzinnym zaczęła jej szukać wśród zwierząt. Szczególnie więź emocjonalna łączyła ją z końmi, na których zaczęła jeździć w wieku sześciu lat.

Pod wpływem ojczyma zapisała się na kurs ekonomii w College of Marin. Nie czuła się tam jednak dobrze i kiedy w wieku dziewiętnastu lat spędziła wakacje w Montanie postanowiła poświęcić swoje życie badaniu zwierząt. Zapisała się na wstępny kurs weterynaryjny na University of California. Ponieważ Dian postanowiła działać w zgodzie z własnymi zainteresowaniami i pasją, a wbrew woli ojczyma, rodzice odcięli ją od źródło finansowania. Fossey od wczesnej młodości charakteryzowała się uporem i wytrwałością, co później okazało się niezwykle cenne w jej pracach nad życiem goryli górskich. Chcąc się utrzymać rozpoczęła pracę jako urzędnik, laborant, a nawet mechanik w fabryce.

Dian Fossey, b.d., [za:] https://gorillafound.org
Niestety ze względu na trudności w przyswajaniu fizyki i chemii oblała egzaminy na drugim roku studiów. Przeniosła się do San Jose State College, gdzie zaczęła studia z terapii zajęciowej, uzyskując tytuł licencjata w 1954 roku. To właśnie te studia przyczyniły się do jej sukcesu. Staż odbyła w szpitalu w Kalifornii, gdzie opiekowała się chorymi na gruźlicę. Rok później rozpoczęła pracę jako terapeuta zajęciowy w Kentucky, a następnie w szpitalu dziecięcym Kosair Crippled w Louisville. Cechy jej niezwykłej osobowości pozwoliły Dian nawiązać szczególnie bliskie kontakty z dziećmi, które uwielbiały swoją terapeutkę. W tym czasie zaprzyjaźniła się z żoną jednego z lekarzy Michaela Henryʼego, Mary White. Była często zapraszana na ich farmę, gdzie opiekowała się zwierzętami i jeździła konno. Ta przyjaźń była namiastką uczuć utraconych przez Dian w dzieciństwie.

Życie Dian Fossey uległo radykalnej zmianie w 1963 roku. Pożyczyła wówczas równowartość rocznej pensji (około 8000 dolarów amerykańskich), zlikwidowała konto oszczędnościowe i pojechała na siedmiotygodniową wycieczkę do Afryki. W Nairobi w Kenii poznała aktora Williama Holdena, który przedstawił ją przewodnikowi safari Johnowi Alexanderowi. Alexander został jej przewodnikiem na następne siedem tygodni po Kenii, Tanzanii i Demokratycznej Republice Konga.

W Wąwozie Olduvai w Tanzanii Fossey spotkała Louisa i Mary Leakeyʼów, którzy byli już wtedy uznanymi badaczami historii człowieka. To właśnie Louis Leakey uważał, że kobiety nadają się doskonale do obserwacji i badań małp człekokształtnych. Jako pierwszą zatrudnił Jane Goodall do badania szympansów, później Dian Fossey do pracy z gorylami górskimi i Birute Galdikas do obserwacji orangutanów (wszystkie trzy panie były nazywane Aniołkami Leakeyʼa). Zauroczona pracą Jane Goodall, Fossey zaproponowała swoją osobę do badania innych małp człekokształtnych. Kiedy poznała parę fotografów przyrody – Joan i Alana Rootów jej los został przesądzony. Para zgodziła się, aby Fossey i Alexander rozbili obóz za ich obozem. W ciągu kilku dni Dian Fossey po raz pierwszy w życiu spotkała dzikie goryle górskie. Była to miłość od pierwszego wejrzenia, miłość obustronna. Miłość zmieniająca losy Dian Fossey i goryli górskich. Po powrocie do Stanów Zjednoczonych Fossey opublikowała trzy artykuły w gazecie „The Courier-Journalˮ relacjonując swoją wizytę w Afryce. Dzięki artykułom oraz wcześniejszemu spotkaniu z Leakeyʼem pozwoliły Fossey przekonać uczonego w 1966 roku do tego, że jest odpowiednią osobą do badania życia goryli górskich.

Mary Leakey i Louis Leakey, 1962, Smithsonian Institution, sygn. SIA Acc. 90-105

Leakey zdobył fundusze na badania goryli górskich i zaproponował Fossey posadę w Afryce. Bez wahania zrezygnowała z pracy i przeprowadziła się do Afryki, chociaż w dzienniku zanotowała – Mimo że miałam spełnić swoje marzenie, nie było mi łatwo powiedzieć „do widzenia” rodzinie, przyjaciołom i moim psom. Ktoś może to nazwać przeznaczeniem, inny czymś niepokojącym. W grudniu 1966 roku przeszła podstawowy kurs suahili i prymatologii, zgromadziła odpowiednie zapasy, kupiła stary Land Rover i pojechała tworzyć legendę. W drodze do obozu spotkała się z Jane Goodall, od której dowiedziała się kilku niezbędnych spraw technicznych w pracy badawczej z naczelnymi.

Dość szybko uczona w swoim obszarze badań zidentyfikowała trzy odrębne grupy goryli. Naśladując zachowanie zwierząt, pokazując uległość wobec nich, wydając charakterystyczne, uspakajające je stęknięcia oraz jedząc ich przysmak – dziki seler została zaakceptowana przez kolejne grupy stając się z czasem członkiem ich stada. Poszczególne osobniki zaczęła, podobnie jak kilka lat wcześniej inny badacz goryli George Schaller, rozpoznawać po indywidualnych liniach i zmarszczkach wokół nosa. Początkowo wykonywała setki szkiców, a później zaczęła używać aparatu fotograficznego. Zaczęła nadawać im imiona: Wuj Bert, Digit, Beznosa, Ferdynand, Mzee, Zmarszczka, Salamon, Dora, Przylepa, Kozioł Ofiarny, Monarcha, Popcorn, Cień, Pani Moses, Kasjusz. Żeby być całkowicie szczerą: myślę, że one ciągle się zastanawiają, do którego gatunku należę! – zanotowała uczona. Podczas późniejszych wykładów mówiła, że sukces zawdzięcza doświadczeniu i pracy z dziećmi dotkniętymi autyzmem. W swojej doskonałej książce wspominała:

 

Nigdy nie zapomnę pierwszego spotkania z gorylami. Dźwięk wyprzedził wzrok. Zapach poprzedzał dźwięk w postaci przytłaczającego piżmowego odoru, przypominającego ludzki zapach. Powietrze zostało nagle rozerwane przez wysoką serię wrzasków, a następnie rytmiczne, ciągłe ostre uderzenia „pok-pokˮ w klatkę piersiową wielkiego, srebrnnogrzbietego samca zasłoniętego czymś, co wydawało się nieprzeniknioną ścianą roślinności. Joan i Alan Root, byli na leśnym szlaku jakieś dziesięć jardów dalej, dali mi znak, żebym się nie ruszała. Nasza trójka zamarła, dopóki echa krzyków i uderzeń w klatkę piersiową nie ucichły. Dopiero wtedy powoli pod osłoną gęstych krzewów skradaliśmy się do przodu około pięćdziesięciu stóp od grupy. Zerkając przez roślinność, mogliśmy dostrzec równie ciekawą grupę czarnych, futrzanych naczelnych wpatrujących się w nas. Ich jasne oczy wystrzeliły nerwowo spod ciężkich brwi, jakby próbując zidentyfikować nas jako znajomych przyjaciół lub potencjalnych wrogów. Natychmiast zostałam powalona przez fizyczną okazałość ogromnych kruczoczarnych ciał zmieszanych z zielenią grubej liściastej leśnej roślinności.

Centrum Badań „Kari”, 1967, [za:] http://gorillasfound.org
Niestety sytuacja polityczna w Kongo była bardzo niestabilna i jednocześnie bardzo niebezpieczna dla białej, samotnej kobiety. Dian przeniosła się do Rwandy, gdzie 24 września 1967 na obszarze Parku Narodowego Wulkanów utworzyła centrum badawcze Karisoke zajmujące się gorylami. Miejscowi dość szybko nazwali ją „Samotną kobietą mieszkającą na górze”. Praca w górach Wirunga była szczególnie trudna. Było wyjątkowo wilgotno i duszno, często padał deszcz, było mrocznie i błotniście, a ścieżki trzeba było samodzielnie wycinać maczetą. Jej upór był godny podziwu. Fossey odkryła między innymi, że samice przenosiły się między rożnymi grupami dobrowolnie, jednakże czasem były porywane. Zauważyła, że samice preferowały samców samotników, gdyż mogły wówczas zając najwyższą pozycję w tworzonym przez niego haremie. Odkryła także, że goryle żyją w stałych, poligynicznych rodzinach tworzonych przez jednego srebrnogrzebietego samca, kilka samic i ich potomstwo. Najwyższą pozycję w haremie zajmowała ta samica, która została pierwszą wybranką. Jej prace przyczyniły się do tego, że goryle przestały być postrzegane jako agresywne i rządne krwi bestie. Dostrzeżono w nich łagodność, troskliwość i emocje. Prace te już w 1974 roku pozwoliły uczonej przedstawić rozprawę opartą o wieloletnie obserwacje, dzięki którym otrzymała tytuł doktora zoologii na Uniwersytecie Cambridge. Warto podkreślić, że doktorat rozpoczęła nie mając magisterium – podobnie zresztą jak Jane Goodall. Od 1974 roku nie przerywając obserwacji terenowych, prowadziła jednocześnie wykłady gościnne na Cornell University w Nowym Yorku.

 

Dian Fossey właściwie od początku przebywała na ścieżce wojennej z kłusownikami. W pamiętniku napisała: Ten, kto dzisiaj zabija zwierzęta, jutro będzie zabijał zawadzających mu ludzi. Wprawdzie prawo zabraniało nielegalnych polowań na goryle w parku narodowym, ale rzadko było egzekwowane. Kłusownicy lub zleceniodawcy często przekupywali urzędników. Fossey trzykrotnie relacjonowała, że była świadkiem schwytania gorylich niemowląt do ogrodów zoologicznych. Zawsze w obronie młodych ginęły dorosłe osobniki. Nierzadko mordowano dziesięć dorosłych goryli. Z ich dłoni preparowano popielniczki, które były sprzedawane jako lokalne gadżety… W 1978 roku Fossey próbowała zapobiec eksportowi dwóch młodych goryli, Coco i Puckera, z Rwandy do zoo w Kolonii w Niemczech. Podczas schwytania niemowląt na polecenie zoo i konserwatora parku w Rwandzie, zabito dwadzieścia dorosłych goryli! Małe goryle zostały przekazane Fossey, aby wyleczyła zadane im rany odniesione podczas schwytania i niewoli. Ze znacznym wysiłkiem przywróciła je do dobrego stanu zdrowia. Wbrew zastrzeżeniom uczonej goryle zostały wysłane do Kolonii, gdzie żyły w niewoli przez dziewięć lat. Oba zmarły w tym samym miesiącu. Dian wraz z grupą pomocników patrolowała okoliczne lasy i osobiście niszczyła pułapki. W ciągu tylko czterech miesięcy w 1979 roku grupa Fossey zniszczyła 987 pułapek kłusowników w pobliżu obszaru badawczego! Natomiast w tym samym czasie oficjalni strażnicy parku narodowego w Rwandzie, składający się z dwudziestu czterech pracowników, nie wyeliminowali ani jednej pułapki. Dian przyczyniła się do schwytania i aresztowania kilku kłusowników, z których niektórzy odbywali długie kary więzienia.

Karisoke – stacja terenowa, którą Dian założyła w Parku Narodowym Volcanoes. Fot. Robert I.M. Campbell, National Geographic Image Collection

Uczona zdawała sobie sprawę, że może wygrać walcząc bronią kłusowników. Wiedziała, że bali się magii. Podczas pobytów w Ameryce lub Europie kupowała czerwone maski, którymi ich straszyła, petardy, tanie zabawki i tzw. magiczne sztuczki, aby trzymać ich na dystans. Plunęłam na niego, uderzyłam go, a następnie przystąpiłam do rutynowych czynności magicznych, tym razem dodając do nich trochę gazu łzawiącego – napisała. Czasami paliła ich obozy, porwała także syna jednego z kłusowników, aby dowiedzieć się jak dotrzeć do ojca. Niektórzy twierdzili, że zdziwaczała i sama sobie zgotowała okrutny los. Jane Goodall w jednym z wywiadów mówiła, że Fossey straciła dystans naukowca zbytnio angażując się w pracę. Stawała się jednym z członków rodziny obserwowanych gorylich grup.

Bob Campbell, b.d., [za:] https://alchetron.com/Bob-Campbell-(photographer)#-
W tej nierównej walce nie była sama. National Geographic Society przysłało jej do pomocy Roberta (Boba) Cambella, fotografa dzikiej przyrody. Miał on filmować pracę uczonej. Kilka dni po jego przybyciu Dian dostała telegram o samobójczej śmierci ojca. Cambell okazał się idealnym słuchaczem jej długich opowieści. Rozmawiali godzinami – tak, jakby znali się od zawsze. To dzięki zdjęciom i filmom Boba świat dowie sie o problemie ochrony goryli górskich. Przy okazji przyniosły one także międzynarodową sławę Fossey. Na jednym z filmów Boba widać Dian, obok której siedzi wielki goryl. Patrzy na nią ciekawie, bierze do dłoni długopis, który trzymała uczona. Fossey opiera głowę o jego ramię. Później go dotyka, mrucząc w charakterystyczny sposób. Wielki samiec był ulubieńcem Fossey. Nazwała go Digit.

W 1970 roku Dian zorientowała się, że jest w ciąży. W Anglii dokonała aborcji. Nie możesz być dziewczyną z okładki „National Geographic” i być w ciąży – tłumaczyła potem tę decyzję. Był to pierwszy krok prowadzący do rozpadu jej związku z Cambellem. Niestety ich historia miłosna zakończyła się w 1972 roku, kiedy fotograf wyjechał do Azji. Później wrócił do żony. Teraz Fossey jeszcze bardziej poświeciła się ukochanym zwierzętom. W dzienniku napisała: Nie zaznałam jeszcze takiej rozpaczy… Niestety miała nadejść gorsza.

W 1978 roku ulubiony goryl Fossey, Digit został zamordowany przez kłusowników. Jego ciało pozbawione głowy i dłoni przyniesiono do obozu Dian. Zapłakana, przyklęknęła i z czułością pogłaskała ciało po nodze. Potem przyjaciela pochowała na cmentarzu, który urządziła nieopodal swojej chaty. Napisała list do prezydenta Rwandy: Jestem pewna, że pamięta Pan pokazanego na filmie National Geographic goryla, który zabrał mi notes i długopis, a potem bardzo łagodnie oddał je, po czym zwinął się w kłębek koło mnie i zasnął. Ten sam goryl, nazywany Digit, 31 grudnia został zakłuty przez kłusowników. Zabili go, ucięli mu głowę i dłonie i uciekli z nimi. Proszę, aby mordercy ponieśli surową karę za swoje zbrodnie. Oddałabym życie za uratowanie Digita, ale jest już za późno. W tym samym roku postrzelono w serce innego ulubieńca Dian Wuja Berta. Bronił stada. Zginała również samica Macho, która broniła syna Kwelego. Wuj Bert zdołał obronić Kwelego przed kłusownikami. Młody został jednak ranny i zmarł w mękach na gangrenę. Dian napisała:

Fot. Robert I.M. Campbell, National Geographic Image Collection

 

Najnowsza wiadomość jest niewiarygodnie tragiczna. Dwudziestego czwartego lipca majestatyczny, srebrnogrzbiety Wuj Bert został zabity strzałem w serce. W trakcie tej samej napaści zastrzelono szesnasto- czy siedemnastoletnią samicę Macho, matkę trzyletniego Kwelego; pocisk przeszedł przez jej prawe ramię, następnie przez serce, złamał żebro i wyszedł na zewnątrz. Jej syn został zraniony w prawe ramię, prawdopodobnie tym samym pociskiem, ale żyje. […] Ślady wskazują, że Wuj Bert biegł na czele grupy, tak jak to miało miejsce w czasie zabójstwa Digita, starając się wyprowadzić ją na bezpieczne górskie stoki. Gdy strzelano do Macho, zawrócił, żeby jej pomóc, i został trafiony z małej odległości. Chociaż kłusownicy zabrali głowę Wuja Berta, zależało im przede wszystkim na Kwelim. Prawdopodobnie zdobyliby go, gdyby Wuj Bert nie zawrócił i za cenę własnego życia nie uniemożliwił mu ucieczki.

Okładka książki „Goryle we mgle”, [za:] https://www.worthpoint.com
Z czasem Fossey stanowczo sprzeciwiała się również turystyce, ponieważ goryle były bardzo podatne na choroby przenoszone przez ludzi. Nie miały na przykład odporności na wirusa grypy, który mógł je zdziesiątkować. Uważała turystykę za ingerowanie w ich naturalne dzikie zachowanie. Zaczęto głośno mówić o jej szaleństwie, że jest niezrównoważona, że ma kłopoty z alkoholem. Fossey wyjechała do Stanów Zjednoczonych z serią wykładów, aby zdobyć fundusze do walki z kłusownikami. Napisała też książkę „Gorillas in the Mistˮ, która ukazała się w 1983 roku. Książkę dedykowała pamięci Digita, Wujowi Berta, Macho i Kweli.

Kiedy wracała do Karisoke w 1983 roku była pełna obaw, czy goryle będą ją pamiętają. Effie, gryząc łodygę selera, zerknęła na mnie, odwróciła się w bok, […] odrzuciła seler i szybko ruszyła w moją stronę – zanotowała. Z gęstwiny roślin wyłoniła się kolejna małpa i położyła się na bezgranicznie szczęśliwej Dian. Zwabiona charakterystycznymi pomrukami przybiegła reszta grupy. Wszystkie ją pamiętały. Zaczęły ją trącać, przytulać. Dian Fossey wróciła do rodziny.

Nic nie osłabiło jej miłości do zwierząt. W obozie mieszkała uratowana przez nią małpka – koczkodan czarnosiwy – Kim oraz suczka Cindy. Fossey co roku organizowała przyjęcia świąteczne dla swoich współpracowników i studentów. Wydaje się, że szczerze przyjaźniła się z Jane Goodall. Z czasem zaczęły się jej problemy z płucami. Cierpiała na zaawansowaną rozedmę płuc spowodowaną intensywnym paleniem papierosów. Na jej chorobę miały wpływ także wysokie góry i wilgotny klimat. Cierpiąc na duszność podczas wspinaczki lub pieszych wędrówek na duże odległości musiała korzystać ze zbiornika tlenowego. Wytrwale walczyła z kłusownikami. Zdarzało się też, że strzelała nad głowami turystów, aby ich zniechęcić do odwiedzania parku. Postrzeliła pani turystę? – To nieprawda. Strzelałam nad ich głowami. Nie zamienią tej góry… w jakieś zoo! – odpierała zarzuty.

Grób Dian Fossey, b.d., domena publiczna

Wczesnym rankiem 27 grudnia 1985 roku Dian Fossey została znaleziona martwa w swojej sypialni w górach Wirunga. Została zamordowana równie brutalnie jak jej człekokształtni przyjaciele. Prawdopodobnie się broniła. Obok ciała leżał automatyczny pistolet i magazynek z nabojami. Rana, którą jej zadano była śmiertelna. Rozcięto jej głowę maczetą. Została pochowana 28 grudnia na cmentarzu obok tych, dla których poświęciła życie. Ostatni wpis w jej dzienniku brzmiał jak motto – Gdy uświadomisz sobie wartość całego życia, mniej będziesz zastanawiać się nad przeszłością, a bardziej skoncentrujesz się na zachowaniu przyszłości.

Dzięki jej pracy goryle górskie nadal żyją na wolności.

Sprawcy morderstwa nigdy nie odnaleziono.

 

Literatura zalecana:

  1. Dian Fossey, Gorillas in the Mist, Boston, Mass: Houghton Mifflin, 1983.
  2. Farley Mowat, Wirunga. Pasja życia Dian Fossey, Warszawa: Prószyński i S-ka, 1996.
  3. Farley Mowat, Woman in the Mists: The Story of Dian Fossey and the Mountain Gorillas of Africa, New York, NY: Warner Books, 1987.

126. rocznica odkrycia radu

 

Z okazji 126. rocznicy odkrycia radu zapraszamy do lektury fragmentu rozdziału Robaczki świętojańskie z książki Tomasza Pospiesznego pt. Maria Skłodowska-Curie. Zakochana w nauce, Wydawnictwo Sophia & Polskie Towarzystwo Chemiczne, Warszawa 2024.

 

 

***

Na kolejny sukces małżonkowie Curie nie musieli zbyt długo czekać. Po spędzonych wakacjach w Owernii na południu Francji z większym zapałem zabrali się do pracy. Ich wnuczka Hélène Langevin-Joliot uważa, że

[…] po ślubie Maria i Piotr oczywiście pracowali wspólnie. Tak urządzili swoje życie by móc dużo czasu poświęcić pracy. To badaniom naukowym podporządkowali wszystko. Ale chciałabym wspomnieć, że pomimo tak intensywnej pracy mieli czas na rozrywkę np. spędzali razem wakacje. Między odkryciem polonu i radu wyjeżdżają z rodziną Piotra do Owernii, a więc przerywają badania naukowe na całe dwa miesiące. Dziś to może się wydawać absolutnie niesamowite.[1]

 

W połowie listopada przeprowadzili serię doświadczeń, dzięki którym otrzymali bardzo promieniotwórczy produkt. Przy udziale Gustave Bémonta udało im się pozyskać próbkę zawierającą pierwiastek bar (symbol Ba, liczba atomowa 56) o promieniotwórczości dziewięćset razy większej niż uran! 26 grudnia 1898 roku wspólnie z asystentem Bémontem ogłosili, że odkryli drugi pierwiastek chemiczny – rad (symbol Ra, liczba atomowa 88)[2]. W komunikacie zatytułowanym O nowej silnie radioaktywnej substancji zawartej w blendzie smolistej[3] napisali:

 

Wyżej wyszczególnione fakty każą nam przypuszczać, że w tym nowym związku promieniotwórczym znajduje się nowy pierwiastek, który proponujemy nazwać radem. Nowy ten związek zawiera na pewno znaczną ilość baru, mimo to jednak jest on silnie promieniotwórczy. Promieniotwórczość radu musi być, zatem ogromna.[4]

Małżonkowie Curie na okładce czasopisma „Le Petit Parisien” z 10 stycznia 1904, archiwum Tomasza Pospiesznego

Maria będzie później żałowała, że rad przyćmił swą międzynarodową sławą polon. Poza tym polon bardziej strzegł swoich tajemnic. Jeden z pierwszych polskich współpracowników Marii, Mirosław Kernbaum, po latach powiedział o polonie – Dziwnym więc trafem dzieli on los narodu, ku czci którego otrzymał imię: egzystuje de facto, jako pierwiastek chemiczny, de iure jednak przez międzynarodową komisję chemików nie jest za taki uznawany.[5] Polska jeszcze długo nie będzie miała szczęścia…

Jaką rolę w odkryciu radu odegrał Bémont nie wiadomo do końca. Znakomita biografka Marii, Françoise Giroud, podaje, że uczestniczył w badaniach, ponieważ w zeszycie laboratoryjnym z maja 1898 roku istnieją notatki wykonane jego ręką.[6] Jego badania mogły jednak ograniczać się do drobnych prac laboratoryjnych. Nie mniej jednak jest współautorem komunikatu donoszącym o istnieniu radu.

Maria i Piotr Curie oraz Gustave Bemont w szopie przy ul. Lhomond 42, ok. 1898, domena publiczna

Polon i rad zostały zaobserwowane przez małżonków Curie dzięki dużej aktywności promieniotwórczej. Teraz uczeni potrzebowali dodatkowego dowodu, aby potwierdzić, że oba pierwiastki istnieją. Eugène Demarçay specjalista z zakresu spektroskopii emisyjnej wykonał widma nowo odkrytych pierwiastków. Demarçay rozgrzewał w płomieniu palnika substancje zawierające polon i rad do stanu gazowego, a następnie przeanalizował widma, które powstały w wyniku rozszczepienia światła przez nie emitowanego. Curie mieli dowód istnienia radu w postaci widma emisyjnego, na którym było widać słabą, ale wyraźną linię fioletową przy 381,48 nm odpowiadającą temu pierwiastkowi.[7] Niestety stężenie polonu w badanej próbce było zbyt słabe, żeby zaobserwować linię emisyjną. Dlaczego? Otóż trzy pierwiastki promieniotwórcze uran, tor i rad należą do pierwiastków długożyciowych, przez co uczeni prawie w ogóle nie obserwowali spadku ich promieniotwórczości. Z kolei polon należy do pierwiastków krótkożyciowych, dla których aktywność promieniotwórcza maleje wraz z upływem czasu. Ponadto jest też pierwiastkiem rzadkim. W jednej tonie blendy uranowej (w zależności od jej pochodzenia) znajduje się około 1,4 grama radu i tylko 0,1 miligrama polonu. Maria wysunęła hipotezę, że aktywność promieniotwórcza jest stała dla danego pierwiastka. Pojawiła się więc wątpliwość czy polon nie jest bizmutem, którego aktywność została wzbudzona przez rad. Dodatkowo przemawiała za tym faktem obecność w widmie emisyjnym tylko linii bizmutu. Z drugiej strony Maria wnioskowała, że ilość polonu w badanej próbce może być tak mała, że nie zauważono jego linii. Jedynym sposobem na potwierdzenie tej teorii było otrzymanie próbki o większym stężeniu polonu, przez co byłoby można dokładnie zbadać jego właściwości chemiczne. Niestety to zadanie przez długie lata było nieosiągalne. Dopiero w czerwcu 1902 roku niemiecki chemik pracujący w Berlinie, Willy Marckwald wydzielił wolny polon. Zanurzył on czysty bizmut w roztworze otrzymanym przez roztworzenie[8] bizmutu otrzymanego z odpadów po przerobie blendy uranowej w kwasie solnym. Bizmut jako aktywniejszy pierwiastek wyparł z soli polon, który osadził się na jego powierzchni[9]. W ten sposób roztwór stawał się nieaktywny, a powierzchnia bizmutu stawała się promieniotwórcza poprzez obecność cienkiej warstewki nowego ciała. Uczony sądząc, że odkrył nowy pierwiastek, który właściwościami zbliżony był do telluru, nazwał go radiotellurem. Maria Curie udowodniła, że radiotellur i polon mają te same właściwości fizyczne i chemiczne – są więc tą samą substancją. Koronnym argumentem było porównanie czasów połowicznego zaniku obu pierwiastków. Kiedy okazało się, że wynosi on w obu przypadkach 140 dni, Maria nie miała wątpliwości. W sprawozdaniu pt. O zmniejszeniu się radioaktywności polonu wraz z upływem czasu pisała: Polon Marckwalda wydaje się identyczny z naszym oraz nie ma wątpliwości […] że substancja przygotowana przez Marckwalda jest po prostu tą samą, którą odkryłam wcześniej i opisałam jako polon.[10] Maria zadbała, aby jej wyniki badań, wnioski i eksperymenty ukazały się także po niemiecku. Kiedy jest pewna swych racji potrafi być bezwzględna. W świecie mężczyzn to trudna sztuka, ale za to jak bardzo imponująca. Marckwald, uznając rację Marii, powołując się na Szekspira, napisał: Jeśli wonną różę nazwać inaczej, czyż przestanie pachnieć?* Proponuję w przyszłości zastąpić nazwę radiotellur przez polon.[11]

Widmo emisyjne było wystarczającym dowodem istnienia radu dla fizyków, nie przekonywało jednak chemików. Chemicy żądali właściwości chemicznych nowych pierwiastków, chcieli znać masę radu. Irena Joliot-Curie wspominała:

 

W tym czasie oznaczenie widma i ciężaru atomowego radu miało wielkie znaczenie dla przekonania chemików, że nowe radiopierwiastki były takimi samymi substancjami, jak inne, różniąc się jedynie posiadaniem właściwości promieniotwórczych.[12]

Maria i Piotr Curie w szopie przy ulicy Lhomond 42, ok. 1898, domena publiczna

Ażeby Maria mogła określić masę atomową radu potrzebowała dziesiątek ton smółki uranowej, a ta niestety po pierwsze zawierała bardzo małe ilości radu, a po drugie kosztowała fortunę. Z pomocą przyszła fabryka uranu z Czech, znajdująca się w Jachymowie. Wspaniałomyślnie rząd austriacki po namowach Franza Exnera – późniejszego nauczyciela fizyki eksperymentalnej Erwina Schrödingera i Mariana Smoluchowskiego – podarował małżonkom Curie najpierw sto kilogramów, a potem całą tonę ziemi, stanowiącą odpady po wydzieleniu uranu. W rozprawie doktorskiej Maria napisała:

 

To ta pozostałość zawiera substancje radioaktywne; jej czynność promieniotwórcza jest cztery i pół razy większa od aktywności uranu metalicznego. Rząd austriacki, do którego należą kopalnie blendy, uprzejmie zaoferował nam na cele naszych poszukiwań jedną tonę tych odpadków i upoważnił kopalnie do dostarczania nam większej ilości ton tego materiału.[13]

 

Odpady te zawierały drogocenny rad i polon. Wreszcie, fundacja barona Rothschilda za bardzo niską cenę odkupiła od rządu Austrii kilka ton ziemi. Maria rozpoczęła swoją przygodę z radem. Zaczęła rodzić się legenda.

Wnętrze laboratorium państwa Curie przy ul. Lhomond 42, 1898, Bibliotheque numerique du Cirad en agronomie tropicale, domena publiczna

 

Wejście do szkoły Fizyki i Chemii Przemysłowej przy ul. Lhomond 42 prowadzące na podwórze, gdzie mieściła się szopa-laboratorium małżonków Curie, ok. 1898. Musée Curie (Coll. ACJC)

W 1902 roku po serii bardzo żmudnych i ciężkich prac laboratoryjnych, udało się Marii pozyskać 1 decygram[14] chlorku radu (RaCl2) i wyznaczyć masę radu na 225±1 (dziś wiemy, że wynosi ona 226,025 u). Wszystkie prace małżonkowie Curie wykonywali w legendarnej, drewnianej szopie przy ulicy Lhomond 42 niedaleko Wyższej Szkoły Fizyki i Chemii Przemysłowej Miasta Paryża, gdzie wykładał Piotr. Nie było tam wentylacji, zimą było bardzo zimno, podczas deszczu przeciekał dach, a latem panował niewyobrażalny ukrop. Maria pisała:

 

Była to pozbawiona wszelkich sprzętów szopa z desek, o cementowej podłodze i oszklonym dachu, przez który miejscami przeciekał deszcz. Całe wyposażenie składało się ze zniszczonych drewnianych stołów, żelaznego pieca, dającego bardzo niedostateczne ciepło i z tablicy, na której Piotr chętnie pisał i rysował. Nie było tam wyciągu do robót, przy których wydzielają się szkodliwe gazy, trzeba było zatem wykonywać takie prace na podwórzu, gdy pogoda na to pozwalała. Podczas deszczu musieliśmy je prowadzić w szopie, przy otwartych drzwiach.[15]

 

________________________

[1] Maria, reż. A. Albrecht, Polska 2011.

[2] Rad leży w układzie okresowym pod barem. Oba pierwiastki należą do tej samej grupy berylowców.

[3] M. P. Curie, Mme. P. Curie, M. G. Bémont, Sur une nouvelle substance fortement radio-active, contenue dans la pechblende, CR 127, 1898, str. 1215–1217.

[4] E. Curie, Maria Curie, dz. cyt., str. 174.

[5] M. Skłodowska-Curie, Badanie ciał radioaktywnych, dz. cyt., str. <4>.

[6] F. Giroud, Maria Skłodowska-Curie, dz. cyt., str. 88.

[7] Linie w widmie emisyjnym są swoistymi odciskami palców pierwiastków chemicznych. Każdy z nich ma swoją własną, charakterystyczną dla siebie linię.

[8] Roztworzenie to zjawisko chemiczne, które polega na rozpuszczaniu ciała stałego przy jednoczesnej jego reakcji z rozpuszczalnikiem lub składnikiem roztworu. Po odparowaniu rozpuszczalnika nie powstanie substancja wyjściowa, ale produkt reakcji.

[9] Maria pisała: Można wydzielić radiopierwiastki z roztworu drogą elektrolizy lub osadzania na odpowiednio dobranym metalu, zanurzonym w roztworze. […] Tak np. w celu oddzielenia lub oczyszczenia polonu osadza się go zazwyczaj na miedzi lub srebrze. Zob. M. Skłodowska-Curie, Promieniotwórczość, reprint wydania z 1939, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa 2011, str. 340.

[10] S. Quinn, Życie Marii Curie, dz. cyt., str. 249–250.

[11] M. Fontani, M. Costa, M.V. Orna, The lost elements. The periodic table’s shadow side, Oxford University Press, New York, 2014, str. 472.

*W. Szekspir, Romeo i Julia, akt II, scena 3, przekład J. Iwaszkiewicz, Świat Książki, Warszawa 1999.

[12] I. Joliot-Curie, Naturalne pierwiastki, dz. cyt., str. 8.

[13] M. Skłodowska-Curie, Badanie ciał radioaktywnych, dz. cyt., str. 19.

[14] Decygram to 1/10 grama.

[15] M. Skłodowska-Curie, Autobiografia, dz. cyt., str. 117.

Róża – 90. rocznica śmierci Marii Skłodowskiej-Curie

Rok 1934 był ostatnim w życiu Marii Skłodowskiej-Curie. Kilka lat wcześniej – być może kierowana dziwnym przeczuciem nadchodzącego kresu – uczona napisała:

Kiedy mi mówią o »moich wspaniałych pracach«, wydaje mi się, jakbym już umarła, jak gdybym siebie samą widziała na marach i wydaje mi się, iż usługi, które im mogę jeszcze oddać, nic ich nie obchodzą. Że byłoby im znaczne wygodniej mnie chwalić, gdybym nie żyła.

 

Maria Skłodowska-Curie. Był to ulubiony portret Maniusi Skłodowskiej, córki Józefa Skłodowskiego, brata Marii. Dzięki uprzejmości dr. inż. Piotra Chrząstowskiego.

Jednak jak zawsze starała się żyć intensywnie. Intensywnie na ile mogła. Wstawała przed ósmą rano, zjadała w śniadanie, zakładała kapelusz, płaszcz, brała swoją starą teczkę wychodziła przed kamienicę i czekała na samochód. Nadal pracowała eksperymentalnie, chociaż z coraz większą trudnością, prowadziła wykłady z fizyki i kierowała katedrą fizyki na Sorbonie. Przygotowywała materiały do książki i publikacji. Stan zdrowia zaczynał jednak się pogarszać. Doskwierało jej permanentne zmęczenie, reumatyzm nękający ramię, bezustanne szumy w uszach, kłopoty ze wzrokiem. Już w 1920 roku w liście do siostry Bronisławy Dłuskiej pisała:

Osobiste moje kłopoty przedstawiają się tak przede wszystkim, że źle jest z moimi oczami. Oczy są bardzo osłabione i radziłam się co do nich lekarza, prawdopodobnie nie wiele można im dopomóc. Co do uszu, to dokucza mi szum prawie nieustanny, a przynajmniej bardzo częsty – nieraz bardzo silny. Bardzo mnie niepokoją te objawy, bo mi to może prace utrudnić, a może i uniemożliwić. Może być, że jest jaki związek z radem, ale niepodobna mieć o tym opinię. Tylko proszę Cię, nie mów o tym nikomu.

Prawdopodobnie przez kłopoty ze wzrokiem poślizgnęła się i upadła w laboratorium w wyniku czego złamała nadgarstek. W grudniu 1933 roku zaczęła narzekać na bóle brzucha. Szczegółowe badania wykazały, że ma duży kamień w woreczku żółciowym. Maria nie zgodziła się jednak na operację lecz zastosowała drakońską dietę. Wkrótce jednak poczuła się na tyle dobrze, że pojechała do Ireny i Fryderyka Joliot-Curie przebywających w Sabaudii. Po latach Irena wspominała:

W 1934 r. kilka miesięcy przed śmiercią matka pojechała z nami na sporty zimowe do Notre Dame de Bellecombe. Mój mąż, nasza siedmioletnia wówczas córeczka i ja jeździliśmy na nartach. Matka ślizgała się ze mną i z moją córeczką i chodziła na rakietach śnieżnych. Pamiętam, że pewnego wieczoru z niepokojem oczekiwałam jej powrotu. Wróciła już po zmroku z dalekiego spaceru do miejsca, z którego widać było Mont Blanc w zachodzącym słońcu.

Maria Skłodowska-Curie w towarzystwie Ireny, Fryderyka, Piotra Augera Georges’a Gricouroff’a i jego siostry, Notre-Dame de Bellecombe, 1934, [za:] „Korespondencja Marii Skłodowskiej-Curie z córką Ireną. 1905–1934 wybór”, PIW, Warszawa 1978.
19 lutego 1934 roku w liście do Ewy Maria pisała, że miała piękną pogodę w Notre-Dame de Bellecombe, ale nie mogła jeździć na nartach z powodu nieustannie bolącego nadgarstka. Na Wielkanoc przyjechała do Paryża Bronisława. Siostry razem spędziły wspólne pięć tygodni. Pojechały do Montpellier, aby odwiedzić Jakuba Curie. Kiedy się żegnały na dworcu nie sądziły, że widzą się po raz ostatni. 26 marca 1934 roku w liście do Ireny, Maria pisała o swojej ostatniej woli:

Sporządziłam tymczasowe oświadczenie na piśmie, mające ważność testamentu, co do grama radu, zapakowałam to razem z dokumentami z Ameryki i czerwonym atramentem napisałam na wierzchu pakiecika, co zawiera. Wszystko razem znajduje się w szafce w pokoju bawialnym, pod szufladkami zamykanymi na klucz, tam gdzie jest teczka z ważnymi listami, którą wręczył mi Fred.

Cztery dni później, Irena odpisała matce w nieco żartobliwym tonie:

Mimo dokumentu sporządzonego w odniesieniu do radu mam nadzieję, że nie będziesz się czuła zwolniona z obowiązku zachowania ostrożności i jeździła samochodem po drogach wijących się zbyt dużymi zygzakami, pod pretekstem, że przejeżdżasz przez Masyw Centralny, Pireneje lub Alpy Nadmorskie.

Rękopis „Testamentu Radowego” Marii Skłodowskiej-Curie, [za:] „Marie Curie. Une femme dans son siecle”, Paris 2017, s. 228
Maria nie zwalniała tempa pracy. Miała plany zawodowe i osobiste. 8 maja napisała do Broni, że odczuwa potrzebę posiadania domu z ogrodem i gorąco pragnę, aby ten projekt doszedł do skutku. Kosztorys udało się obniżyć, odpowiednio do moich środków materialnych, wkrótce więc będzie można kłaść fundamenty. Nie doczekała jednak budowy nowego domu.

W maju 1934 roku Maria była ostatni raz w laboratorium. Mam gorączkę, wrócę do domu powiedziała. Przechodząc przez ogród, który sama zaprojektowała i o który od lat dbała zobaczyła chorą różę. Jerzy ten krzak jest wyraźnie chory, trzeba się nim teraz zająć! […] Jerzy, proszę zaopiekować się tą różą… – poprosiła ogrodnika.

Niestety sama Maria również była już poważnie chora. Temperatura ciała była podwyższona i wciąż się utrzymywała. Miała nieustanne dreszcze. Lekarze zdiagnozowali grypę, później bronchit. Zaproponowali, aby wyjechała do sanatorium. Wraz z Ewą Maria odbyła długą, ostatnią podróż do Sancellemoz. Podczas podróży snuła plany związane z Instytutem Radowym w Paryżu i w Warszawie. Mówiła, że ostatnie odkrycie Ireny i Freda zapewne przyniesie im Nagrodę Nobla. W Sancellemoz została jeszcze raz gruntownie przebadana. Zalecono nowe terapie, zaaplikowano leki. Z nikłym uśmiechem mówiła – Może być, że się trudzimy całkiem niepotrzebnie… W końcu lekarze znaleźli prawdziwą przyczynę osłabienia Madame Curie – anemia złośliwa o przebiegu piorunującym. Ewa nigdy nie okazała słabości przy matce i nie dała poznać po sobie, że wie iż to koniec. Płakała na korytarzu. W listach do rodziny w Polsce regularnie opisywała stan zdrowia matki. 6 czerwca informowała Józefa Skłodowskiego, że jest źle, że matka cierpi na jakąś chorobę z gorączką, dreszczami i bólem głowy. Brat chciał przyjechać do siostry w kolejnym tygodniu i rozpoczął starania o paszport i bilety. Jednakże w liście z 11 czerwca Ewa prosiła, aby jednak nie przyjeżdżał. Obawiała się, że obecność rodzeństwa uzmysłowi Marii, że odchodzi. Dziesięć dni później, 21 czerwca, prosiła Józefa i Bronkę, żeby przyjechali do Marii. Dłuska wyjechała 3 lipca, Skłodowski chciał wyjechać między 10 a 15 lipca. W ostatniej niemal chwili 2 lipca do sanatorium przyjechała Irena i Fred. Zawsze opanowana i spokojna starsza córka uczonej nie miała siły by patrzeć jak odchodzi jej ukochana matka.

Ewa wspominała, że Maria Skłodowska-Curie sama sprawdzała termometr i nie było możliwości, aby ją oszukać. 3 lipca 1934 roku temperatura nagle spadła. To nie lekarstwa mi pomogły, ale te góry – ta przestrzeń – powietrze – powiedziała do Ewy. Czasami szeptała: Paragrafy… tytuły rozdziałów… Wszystkie jednakowymi czcionkami… Myślałam nad tą książką. Kilka godzin przed śmiercią próbowała resztkami sił zamieszać herbatę i patrząc na łyżeczkę i pytała – Czy to jest z radu, czy z mezotoru? Później zdoła jeszcze zaprotestować przed zrobieniem zastrzyku – Nie chcę. Chcę, żeby zostawiono mnie w spokoju. Szeptem powiedziała kilka niezrozumiałych słów. W końcu o świcie, kiedy słońce wzeszło i rozświetliło pokój, znalazło cichutką postać na łóżku i rzuciło jasne błyski na jej głowę i twarz. Po raz ostatni słońce oświetliło twarz Wielkiej Uczonej. Maria Skłodowska-Curie odeszła o godzinie czwartej rano 4 lipca 1934 roku.

Ewa napisała:

Biało ubrana, z białymi włosami, z twarzą zastygłą w wyrazie powagi i męstwa, jak twarz bojownika z odkrytym wyniosłym czołem – jest w tej chwili najwyższym symbolem piękna i szlachetności.

Jej szorstkie, stwardniałe ręce, głęboko poparzone przez rad, straciły wreszcie zwykły tick nerwowy. Leżą, sztywno wyciągnięte na prześcieradle, w straszliwym bezruchu. Ręce, które tak pracowały.

Nazajutrz, 5 lipca świat dowiedział się o śmierci Madame Curie. Oficjalny komunikat głosił: Maria Curie zmarła w Sancellemoz dnia 4 lipca r. 1934, na skutek anemii złośliwej aplastycznej o przebiegu gwałtownym, gorączkowym. Szpik kostny nie zareagował prawdopodobnie dlatego, że zaszły w nim zmiany, spowodowane długoletnim wpływem promieni.

Hołd Jej pamięci składali naukowcy, pisarze, politycy, studenci.

Zjazd fizyków w Rzymie, od lewej: Robert Millikan, Maria Skłodowska-Curie, Arthur Compton, Guglielmo Marconi, Jean Perrin i Niels Bohr, 1931, [za:] https://www.insidescience.org/file/mariecurieotherscientistsjpg
Niels Bohr w liście do Ireny napisał:

Musi dla Pani być wielkim ukojeniem myśl o radości, jaką sprawiły Pani Curie wspaniałe odkrycia, których dokonaliście Państwo w ostatnich latach. Były one ukoronowaniem wielkiego dzieła jej życia.

Maria Skłodowska-Curie i Albert Einstein nad Jeziorem Genewskim, lipiec 1924, Domena publiczna

Albert Einstein powiedział:

Miałem to szczęście, że przez dwadzieścia lat łączyły mnie z panią Curie więzy wzniosłej i niczym niezmąconej przyjaźni. Podziwiałem coraz bardziej jej wielkość jako człowieka. Jej siła, czystość charakteru, surowość wymagań wobec siebie samej, obiektywizm, nieskazitelne poglądy, wszystkie te cechy były tak wysokiego gatunku, że rzadko spotyka się je razem, połączone u jednej osoby. Stale uważała, że jest w służbie społeczeństwa, a jej wyjątkowa skromność nie dopuszczała pochlebstw.

 

Prezydent RP Ignacy Mościcki sadzi pamiątkowe drzewo w ogrodzie Instytutu Radowego w Warszawie, 29 maja 1932, Narodowe Archiwum Cyfrowe sygn. 1–N–818–5

Prezydent RP Ignacy Mościcki w kondolencjach wysłanych Irenie Joliot-Curie napisał:

Polska traci w ś.p. Pani Curie-Skłodowskiej nie tylko uczoną, która imię swej ojczyzny wsławiła w całym świecie, ale i wielką obywatelkę, zawsze przez całe życie czujnie stojącą na straży interesów swojego narodu.

André Broca – jeden z studentów Marii – napisał: Myśl o tym, że wejdę do jej gabinetu i nie znajdę jej za stertą starannie poukładanych papierów, sprawiła, że płakałem jak dziecko. Inny student dodał: Jak wyobrazić sobie Instytut bez niej? I tę słynną klatkę schodową, gdzie tak rozmawiała z nami oparta o poręcz, z nieco pochylonym szerokim czołem i rękoma w ustawicznym ruchu. To w tym Instytucie […] pani Curie pierwszy raz odezwała się do mnie, z takim ciepłem i zrozumieniem […] Wydaje mi się, że nadal ją widzę w piwnicy, kiedy rozważa zalety kalorymetru; […] albo w czasie ostatniej Wigilii w laboratorium […], kiedy tak dużo rozmawialiśmy o przyszłości fizyki teoretycznej we Francji. Im więcej wspomnień ożywa w mej pamięci […], tym trudniej jest mi wyobrazić sobie bez niej ten budynek, w którym nadwerężała swe siły i zdrowie. I wydaje mi się, że kamienie i cegły się rozpadną.

Grób rodziny Curie na cmentarzu w Sceaux pod Paryżem, b.d., [za:] E. Curie, „Maria Curie”, Wydawnictwo J. Przeworskiego, Warszawa 1938.
W piątek, 6 lipca 1934 roku, w gronie najbliższej rodziny i przyjaciół trumnę z ciałem Marii Skłodowskiej-Curie złożono w grobie na cmentarzu w Sceaux. Spoczęła obok Piotra Curie. Podczas ceremonii pogrzebowej nie przemawiano. Pochowano Ją tak jak żyła – cicho i skromnie. Bronia i Józef nie uzgadniając tego z sobą przywieźli z Polski garść ziemi, którą rzucili na trumnę siostry.

Maria Skłodowska-Curie na tarasie Instytutu Radowego w Paryżu, 1923, [za:] S. Quinn, „Życie Marii Curie”, Prószyński i S-ka., Warszawa 1997.
Pomnik Marii Skłodowskiej-Curie na Skarpie Warszawskiej, 2019, fot. Ewelina Wajs-Baryła

 

Róża posadzona przez Marię Skłodowską-Curie po dziś dzień rośnie przy Instytucie Radowym w Paryżu pod balkonem Laboratorium Curie…

Tomasz Pospieszny

 

 

Zmierzch – fragment książki „Irena Joliot-Curie. Radowa dziedziczka”

 

 

 

*

Irena Joliot-Curie przechodzi skomplikowaną operację ucha środkowego, ale dość szybko wraca do sił. Będzie pracowała. Będzie bawiła się z wnukami. Będzie czułą i kochaną żoną dla Freda. Niestety nie na długo. Zaczyna się męczyć. Nie może już chodzić na dłuższe spacery po okolicy. Wówczas obwozi ją swoim samochodem przyjaciółka Angèle Pompeï. To właśnie jej mówi ze śmiechem: „Czuję, że stałam się leniwaˮ[1]. Jedzie jeszcze raz w góry do Szwajcarii. Jednak tym razem wraca bez większej poprawy zdrowia. Zgłasza się do szpitala imienia Curie. Taksówkarz pyta, kiedy może ją odebrać. „Nie wiemˮ[2] – odpowiada cicho. Lekarze oznajmiają jej, że gruźlica, na którą cierpiała przez niemal całe życie, została pokonana. Niestety utrzymująca się gorączka oraz ciągły spadek wagi są niepokojącym symptomem innej podstępnej choroby.

Irena Joliot-Curie w Warszawie, lata 50. XX wieku, Polska Akademia Nauk Archiwum w Warszawie

Lew Kowarski w liście do Chadwicka pisał: „Z pewnością od kilku lat cierpiała na jakąś postać anemii albo brak odporności na zakażenia. Wygląda mi to na chroniczne zaburzenie komórek krwi i możliwe, że miało jakiś związek z długotrwałym wystawieniem na promieniowanieˮ[3]. Uważano, że jej choroba była początkowo spowodowana dużymi dawkami promieni rentgenowskich, na które była narażona podczas pierwszej wojny światowej. Chociaż Ellen Gleditsch twierdziła, że było to spowodowane poważnym wyciekiem roztworu zawierającego polon, który miał miejsce pewnego dnia w laboratorium. Aby chronić swoich współpracowników, Irena odesłała ich, podczas gdy sama sprzątała[4]. Zapewne oba wydarzenia przyczyniły się do przedwczesnej śmierci uczonej.

Irena Joliot-Curie na lotnisku w Warszawie, 1946, Narodowe Archiwum Cyfrowe

W końcu lekarze potwierdzają najgorsze obawy Ireny.

Diagnoza: białaczka.

Irena wie co to oznacza. „Cierpię na chorobę mojej mamyˮ[5] – mówi przyjaciółce. Mimo, że jest leczona przy użyciu najnowocześniejszych środków, nie ma nadziei. Traci siły z dnia na dzień. „Oddychanie, jedzenie, najzwyklejsze czynności życiowe sprawiają mi trudnośćˮ[6] – mówi do Angèle. Wie, że umiera. Zwracając się do Aline Perrin, wyznaje: „Nie boję się śmierci. Miałam przepiękne życieˮ[7]. Zachowała jasność umysłu do końca. 14 marca odwiedził ją Edmond Wellhoff, z którym zasiadała w rządzie Bluma. Podczas spotkania wyraziła swoje obawy o niedostateczne działanie rządu wobec najuboższych.

Irena Joliot-Curie odeszła trzy dni później, w sobotę 17 marca 1956 roku. Miała zaledwie pięćdziesiąt osiem lat.

Jej ciotka Helena Skłodowska-Szalayowa w liście z 25 kwietnia 1956 roku do Maniusi Goetlowej-Szancenbachowej pisała:

 

Irena umarła identycznie na tę samą chorobę, co Maria Curie’owa, t.j. na leukemię ([Franciszek] Łukaszczyk także jest chory i cudem się jeszcze trzyma przy życiu). Chorowała krótko, prawie śpiąc ustawicznie przez ostatnie parę tygodni. Przed rozwinięciem się choroby wysłali ją lekarze w góry na sporty zimowe, radząc wrócić, o ile gorączka się powiększy. Pojechała z rodziną (z synem i Langevinami) po 6 dniach wróciła. Po zbadaniu lekarze orzekli, że stan jest beznadziejny. Postawili diagnozę. Nie cierpiała i nie orientowała się do śmierci, że musi umierać. Jeszcze z Fredem na krótko przed ostatnim etapem choroby, w szpitalu już, pisała jakiś artykuł, czy wykańczała pracę. Fred jest niezdrów, ale nie przypuszczam aby też bardzo ciężko, chyba, że mu się stan zdrowia ostatecznie pogorszył po śmierci żony. Jest chory na wątrobę, przez kilka miesięcy mieszkał w szpitalu, żeby być ciągle pod ścisłą obserwacją lekarzy. W ten sposób odchodzą ludzie względnie młodzi, mogący jeszcze długo żyć dla świata, dla nauki i dobra ludzkości.

[…] jeszcze pisała mi Ewa [Curie-Labouisse], że obawia się o Pierre, który matkę szalenie kochał i którego rozpacz jest niepokojąca[8].

Joliotowie w 1940 roku, [za:] https://prabook.com/web/irene.joliot-curie/3771575#gallery
W dzień śmierci Ireny Joliot-Curie ogłoszono żałobę narodową. Pogrzeb odbył się 31 marca z wielkimi honorami na koszt państwa. Trumna z ciałem uczonej okryta trójkolorowym sztandarem Francji ustawiona była na katafalku wzniesionym między pomnikami Louisa Pasteura i Victora Hugo na dziedzińcu Sorbony. Profesorowie i studenci Wydziału Nauk Ścisłych pełnili wartę przez 24 godziny. Zmieniali się co piętnaście minut. Anonimowa staruszka, trzymająca w ręku bukiet zawilców, powiedziała: „[Irena] była dobrą kobietąˮ[9]. Obok trumny stali Fred, Helena z mężem, Piotr, Ewa i pozostała rodzina zmarłej. Obecni byli także „szef kancelarii prezydenta, sekretarz stanu w prezydium rady ministrów, przewodniczący Zgromadzenia Narodowego, przewodniczący Rady Republiki, członkowie rządu, deputowani do parlamentu, członkowie paryskiej rady miejskiej, przywódcy Francuskiej Partii Komunistycznej, Związku Kobiet Francuskich, Francuskiej Rady Pokoju, Powszechnej Konfederacji Pracy i innych organizacji społecznych. Na placach i ulicach przylegających do gmachu uniwersytetu zgromadziło się tysiące mieszkańców Paryża. W czasie uroczystości pogrzebowych przemówienie wygłosił minister oświaty René Billeresˮ[10]. Po zakończeniu uroczystości kondukt żałobny udał się ulicami Paryża na cmentarz w Sceaux, gdzie Irena Joliot-Curie spoczęła blisko swoich rodziców.

Pogrzeb Ireny Joliot-Curie, fot. Thomas Mcavoy, „Life” Magazine

Paryski korespondent ,,Trybuny Luduˮ, Robert Lambotte pisał: ,,Niebo Paryża pokrywały chmury ciężkie i szare, padał drobny deszcz. Trumna, otoczona oddziałem Gwardii Republikańskiej, niesiona była na ramionach przyjaciół od Sorbony aż do małego cmentarza podparyskiej miejscowości Sceaux. Wzdłuż trasy pogrzebu tysiące kobiet i mężczyzn żegnało wielką uczoną[11]ˮ. Jarosław Iwaszkiewicz, który wchodził w skład delegacji polskiej[12] żegnającej Irenę, w swoich dziennikach, napisał:

 

Paryż, 22 marca 1956

Wczoraj był pogrzeb Ireny Joliot-Curie. Po dziwnym i bardzo wspaniałym obrządku znaleźliśmy się wszyscy na cmentarzu w Sceaux. Wszyscy zaproszeni defilowali przed małą, płaską, żółtą trumną ustawioną na dwóch balach nad przepaścią grobu. W końcu alejki stała rodzina. Fryderyka nie było, jest on bardzo chory, więc zaraz sobie poszedł. Ale stała cała rodzina, dzieci i Ewa. Kiedyśmy podchodzili do rodziny, nagle stanąłem oko w oko z Ewą. Ona mnie jak gdyby poznała i uśmiechnęła się lekko. Coś się między nami wytworzyło, rodzaj jakiegoś prądu. Cóż ja ją w życiu widziałem? To był chyba dokładnie czwarty raz. Raz u Godebskich, drugi raz na naszym śniadaniu dla Karola aux Ambassadeurs. Trzeci raz po wojnie u Mühlsteinów z Arturem [Rubinsteinem], i to – czwarty. Ale przez tę chwileczkę, co stałem naprzeciwko niej, stała się dla mnie symbolem tych wszystkich dni spędzonych ongi w Paryżu, symbolem wszystkiego, i Godebskich, i Karola, i Lechonia, całego tego świata – który nigdy nie był moim światem w pełnym znaczeniu tego słowa. Podszedłem do niej, pocałowałem ją w rękę i powiedziałem jej po polsku: ,,W imieniu Polski…ˮ, na co ona mile powiedziała: ,,Bahdzo panu dziękuję…ˮ. Wyglądała jeszcze prześlicznie za czarną woalką. Pozostawiło to we mnie jakieś osobliwe wspomnienie[13].

 

Irenę pochowano w skromnym grobie niedaleko grobu Marii i Piotra Curie. Nie było asysty wojskowej ani kościelnej. Uszanowano jej zamiłowanie do pokoju i absolutny ateizm. Oddano jej hołd. Hołd należny królowej radioaktywności i obrończyni pokoju.

Grób rodziny Joliot-Curie na cmentarzu w Sceaux pod Paryżem, fot. Thomas Haas

Irena chciała, aby postęp naukowy przyniósł korzyści ludzkości w świecie, w którym kobiety są równe w prawach i obowiązkach mężczyznom. Jej indywidualna praca była napędzana przez jej własną ciekawość, a jej podstawowe podejście do nauki pozostało filozoficzne. Mówiła: „Jeśli odkrywca próbuje zaspokoić zamiłowanie do przygody w badaniach, mogłoby się wydawać, że spokojne życie laboratorium ma niewiele do zaoferowania… Jednak możemy znaleźć się w obliczu pojedynczych faktów… Raz rozpoczęte zadanie rozwija się w nieoczekiwany sposób, otwierając nowe ścieżki dla przyszłej pracy. Zaspokajamy naszego ducha przygody[14]”.

Irena Joliot-Curie kiedyś powiedziała:

Człowiek musi swoją pracę traktować poważnie, musi być niezależny, a nie tylko czerpać z życia przyjemność. To zawsze powtarzała mi matka, nigdy natomiast nie usłyszałam od niej, że kariera naukowa jest jedyną drogą, którą warto iść[15].

___________________

[1] E. Cotton, Rodzina Curie, s. 136.

[2] R. Pflaum, Grand Obsession, s. 463.

[3] D. Brian, Rodzina Curie, s. 384.

[4] E. T. Crossfied , Irène Joliot-Curie, s. 123.

[5] Cytat za filmem: Wyjście z cienia – historia Ireny i Fryderyka Joliot-Curie, reż. R. Reed, USA 2009.

[6] E. Cotton, Rodzina Curie, s. 137.

[7] S. B. McGrayne, Nobel Prize Women in Science, s. 142.

[8] Archiwum rodzinne dr. inż. Piotra Chrząstowskiego.

[9] R. McKown, Irène Joliot-Curie…, s. 180.

[10] J. Iwaszkiewicz, Dzienniki 1956–1963, tom II, Czytelnik, Warszawa 2010, s. 40–42.

[11] R. Lambotte, Kwiaty dwóch narodów, ,,Trybuna Luduˮ, 22 marca 1956.

[12] 19 marca wyjechała do Paryża na pogrzeb Ireny Joliot-Curie delegacja polska, w skład której poza Iwaszkiewiczem weszli: minister szkolnictwa wyższego Adam Rapacki i kierownik Zakładu Instytutu Jądrowego PAN w Krakowie prof. Henryk Niewodniczański. Delegatom towarzyszyła wnuczka Heleny Skłodowskiej-Szalay – Maria Elżbieta Staniszkis (1920–1999). 20 marca o godz. 16.00 delegacja polska udała się do Sorbony, aby złożyć wieńce na trumnie Ireny Joliot-Curie.

[13] J. Iwaszkiewicz, Dzienniki 1956–1963…, s. 40–42.

[14] R. Pflaum, Grand Obsession. …, s. 295.

[15] S. Emling, Maria Skłodowska-Curie …, s. 293.

 


 

Książkę prof. Tomasza Pospiesznego pt. „Irena Joliot-Curie. Radowa dziedziczka” kupią Państwo w księgarni Wydawnictwa Sophia w serwisie allegro.pl – także z autografem Autora!

 

 

          

 

 

 

 

 

Międzynarodowy Dzień Układu Okresowego Pierwiastków Chemicznych

 

 

W układzie okresowym pierwiastków chemicznych jest dzisiaj 118 pierwiastków (lipiec 2022 roku). Spośród tych podstawowych cegiełek Wszechświata tylko kilka zostało odkrytych przez kobiety. Jednak historia tych odkryć jest nader fascynująca.

Maria Skłodowskiej-Curie i polon oraz rad (1898)

Pierwszą kobietą, której nazwisko na trwałe wpisało się w historię odkryć pierwiastków chemicznych jest Maria Skłodowska-Curie. Badając fascynujące promieniowanie uranu odkryte przez Becquerela stwierdziła, że niektóre minerały zawierające ten pierwiastek np. blenda smolista, chalkolit czy autunit wysyłają znacznie silniejsze promieniowanie niż wynikało to z zawartości w ich składzie uranu. Uczona dokonała fenomelnego zabiegu – przeprowadziła syntezę chalkolitu i stwierdziła, że wykazuje on normalną promieniotwórczość, czyli taką jakiej należy się spodziewać ze względu na zawartość uranu w próbce. W związku z powyższym w naturalnym minerale musiała istnieć domieszka nowego, nieznanego nauce pierwiastka. Maria zanotowała: Obie rudy uranu: blenda smolista (tlenek uranu) i chalkolit (fosfat miedzi i uranylu) są o wiele bardziej aktywne niż sam uran. Fakt ów jest godny uwagi i pozwala sądzić, że te minerały mogą zawierać pierwiastek o wiele bardziej aktywny niż uran. Niestety Maria i Piotr nie byli w stanie wyodrębnić potencjalnych pierwiastków chemicznych znanymi wówczas metodami. Ich córka Irena Joliot-Curie wyjaśniała po latach:

Irena Joliot-Curie, b.d., Musée Curie, col. ACJC

Ze względu na to, że jedyną znaną właściwością hipotetycznego ciała [nowego pierwiastka] była jego promieniotwórczość, Piotr i Maria Curie wprowadzili nową metodę pracy, która stała się podstawową w całej radiochemii. Przeprowadzali oni chemiczne rozdzielanie różnych ciał zawartych w minerale i mierzyli promieniotwórczość każdej frakcji. Wkrótce stwierdzili, że promieniotwórczość koncentruje się z jednej strony w siarczkach strącanych z kwaśnych roztworów, z drugiej – w pierwiastkach ziem alkalicznych i niebawem przekonali się o istnieniu dwóch nowych pierwiastków promieniotwórczych: polonu i radu […], wyższych homologów telluru i baru.

Upór Madame Curie doprowadził ją do odkrycia, które zrewolucjonizowała spojrzenie na teorię materii. 18 lipca 1898 roku małżonkowie Curie ogłosili, że odkryli nowy pierwiastek chemiczny, który nazywali polonem (symbol Po, liczba atomowa 84). Donosili:

Przypuszczamy, że ciało, które wyodrębniliśmy ze smółki uranowej, zawiera nieznany jeszcze metal, zbliżony do bizmutu ze swoich właściwości chemicznych. Jeśli istnienie tego metalu się potwierdzi, proponujemy dla niego nazwę polon – od imienia ojczyzny jednego z nas.

Maria i Piotr Curie w laboratorium przy ulicy Cuvier, 1904, Musée Curie, col. ACJC

Jednak na tym nie koniec. W połowie listopada przeprowadzili eksperymenty, dzięki którym otrzymali bardzo promieniotwórczy produkt. Wraz z Gustawem Bémontem otrzymali próbkę zawierającą bar, która była dziewięćset razy bardziej promieniotwórcza niż uran. 26 grudnia 1898 roku ogłosili, że odkryli drugi pierwiastek chemiczny, który nazwali radem (symbol Ra, liczba atomowa 88). W pracy pt. „O nowej silnie radioaktywnej substancji zawartej w blendzie smolistej” napisali:

Wyżej wyszczególnione fakty każą nam przypuszczać, że w tym nowym związku promieniotwórczym znajduje się nowy pierwiastek, który proponujemy nazwać radem. Nowy ten związek zawiera na pewno znaczną ilość baru, mimo to jednak jest on silnie promieniotwórczy. Promieniotwórczość radu musi być, zatem ogromna.

Tak zrodziła się legenda godna najwybitniejszej uczonej.

 

Harriet Brooks i radon (1901)

Harriet Brooks, 1898, McCord Museum, Montreal, Quebec

Ernest Rutherford zauważył, że związki toru nieustannie emitują radioaktywny gaz, który zachowuje właściwości promieniotwórcze przez kilka minut. Nazwał to zjawisko emanacją gazu, a później emanacją torową (ThEm). Uczony pisał: promieniowanie z tlenku toru nie było stałe, ale zmieniało się w najbardziej kapryśny sposób, podczas gdy wszystkie związki uranu emitują promieniowanie w sposób niezwykle stały. Pod kierunkiem Rutherforda ( a właściwie na jego prośbę) Harriet Brooks przeprowadziła serię eksperymentów mających na celu określenie charakteru radioaktywnych emisji toru. Wykazała także, że emanację wysyła również rad. Jej prace dowiodły, że emanacja była gazem o specyficznych właściwościach fizycznych, takich jak na przykład mniejsza masa cząsteczkowa niż masa radu. Brooks wspólnie z Rutherfordem zmierzyła szybkość dyfuzji cząsteczek gazu w powietrza. W 1901 roku uczeni ogłosili pracę pt. „Nowy gaz z raduˮ (Trans. R. Soc. Can., 7, str. 21–25), w której pisali: termin „emanacjaˮ został zastosowany do substancji emitowanej w ten sposób, ponieważ w tamtym czasie nie było dowodów, czy emisja materii była parą substancji, radioaktywnym gazem (nasze podkreślenie) czyli cząstkami materii, z których każda zawiera dużą liczbę cząsteczek. […] Musimy zatem stwierdzić, że emanacja jest w rzeczywistości ciężkimi radioaktywnymi oparami lub gazem. […] specjalne eksperymenty pokazują, że szybko się rozprasza, a także ma charakter gazowy.

Ernest Rutherford, 1908, domena publiczna

Nie ulega wątpliwości, że w 1901 roku Harriet Brooks i Ernest Rutherford udowodnili, że emanacja (dziś zwana radonem, pierwiastek 86) jest radioaktywnym gazem. Należy zauważyć, że Rutherford i Brooks […] opisali swoje wysiłki, aby określić naturę emanacji. Nie można było wyizolować znacznej objętości gazu ani zidentyfikować żadnych nowych linii widmowych. W rezultacie doszli do wniosku, że objętość jakiegokolwiek gazu była niewielka. Wykorzystali urządzenie do dyfuzji gazów jako środek nie tylko potwierdzający, że emanacja jest gazem, ale także w celu uzyskania przybliżonej wartości jego masy cząsteczkowej. Podali (błędnie), że gaz miał masę atomową między 40 a 100. Niemniej jednak fakt, że wartość była znacznie mniejsza niż wartość toru, przekonał ich, że emanacja była wcześniej nieznanym gazem. Nie twierdzili wówczas, że jest to nowy pierwiastek, choć wydaje się, że tę implikację pozostawili czytelnikowi. Jak podkreślają małżonkowie Reyner-Canhamowie (badacze historii odkrycia radonu, biografowie Brooks) Rutherford został przekonany o gazowej naturze emanacji w 1901 roku w wyniku badań przeprowadzonych przez jego pierwszą studentkę, Harriet Brooks.

 

Lise Meitner i protaktyn (1918)

W 1899 roku André-Louis Debierne odkrył pierwiastek, który nazwał aktynem (89Ac). Był to niezwykle tajemniczy pierwiastek, bowiem charakteryzował się dość krótkim czasem połowicznego zaniku, wynoszący zaledwie trzynaście i pół lat. Powinien zatem już dawno zniknąć z powierzchni Ziemi. Ponieważ jednak wciąż zdradza swoją obecność musiał powstawać w wyniku przemiany promieniotwórczej z innego nieznanego dotąd pierwiastka chemicznego. Pierwiastek ten powinien znajdować się w układzie okresowym pomiędzy torem i uranem (90Th  9192U).

Lise Meitner i Otto Hahn w laboratorium, Beriln 1912, domena publiczna

W 1900 roku William Crookes wyizolował nowy pierwiastek jako materiał o wysokim stopniu radioaktywności z uranu. Nie potrafił jednak scharakteryzować go jako nowego pierwiastka chemicznego. Nadał mu nazwę uran X (UX). Nie odniósł on sukcesu bowiem rozpuszczał azotan uranu w eterze, zaś pozostałość roztworu wodnego zawierała w większości mieszaninę dwóch pierwiastków: toru-234 i szukanego protaktynu-234.

W 1909 roku Frederick Soddy z 50 kg uwodnionego azotanu(V) uranylowego otrzymał osad, który wykazywał radioaktywność i emitował cząstki alfa. Według dedukcji uczonego z osadu powstawał w niewielkiej ilości produkt, którego ilość stale i regularnie rosła. Soddy zidentyfikował go jako aktyn (jego obserwacje trwały cztery lata!). Jednak nie potrafił on wyizolować szukanego pierwiastka i podać jego właściwości fizycznych i chemicznych. Warto zauważyć, że cztery lata później Soddy (i niezależnie od niego Polak Kazimierz Fajans) odkrył prawo przesunięć, na podstawie, którego stało się jasne, że pierwiastkiem, z którego powstawał obserwowany przez niego aktyn był poszukiwany pierwiastek 91.

Kazimierz Fajans, 1931, Narodowe Archiwum Cyfrowe, sygn. 1–Z–830

W 1913 roku wspomniany Kazimierz Fajans zaczął prace nad uranem X. Wraz ze swoim doktorantem Osvaldem H. Göhringiem doszedł do wniosku, że jest to mieszanina pierwiastków. Nazwał je uranem X1 i uranem X2. Pierwszy z nich zidentyfikowali jako izotop toru-234, natomiast drugi izotop wchodził w skład szeregu uranowo-radowego i powstaje w wyniku przemiany beta z zidentyfikowanego izotopu toru-234. W związku z tym uran X2 powinien znajdować się dokładnie za torem, a przed uranem, czyli powinien być nowym pierwiastkiem 91. Za pomocą metod analitycznych Fajansowi udało się rozdzielić i wyizolować oba izotopy. Pierwiastek 91 charakteryzował się krótkim czasem połowicznego zaniku, wynoszącym około 1,1 minuty, dlatego uczeni nazwali go brewium (ang. Brevium) od łacińskiej nazwy brevis czyli krótki.

Otto Hahn, 1933, Archiv der Max-Planck_Gesellschaft, Berlin-Dahlem

Wszystkie te zagadki zaczęły w szczególności interesować Lise Meitner, która wspólnie z Ottonem Hahnem rozpoczęła poszukiwania pierwiastka 91. Nadała mu nawet nazwę – Abrakadabra. Meitner i Hahn udoskonalili technikę rozdziału oraz założyli, że nowy pierwiastek powinien mieć właściwości zbliżone do tantalu (pierwiastek 73). Zaczęli – wzorem Marii Skłodowskiej-Curie – badać pechblendę, w której pokładali dużą nadzieję. Hahn i Meitner odkryli nową metodę analityczną umożliwiającą oddzielanie wyizolowanych z pechblendy pierwiastków należących do grupy tantalu z minimalnymi ilościami innych substancji promieniotwórczych.

Lise Meitner, 1912, Archiv der Max-Planck-Gesellschaft, Berlin-Dahlem

Kiedy wybuchła pierwsza wojna światowa Hahn pojechał na front, zaś główne prace nad pierwiastkiem Abrakadabra wykonywała Lise Meitner. W listach do Hahna donosiła o postępach pracy. Pisała między innymi, że otrzymała wystarczającą ilość materiału do badań, że zamówiła specjalne platynowe naczynia odporne na działanie fluorowodoru, że jedna z próbek wykazuje znaczną aktywność, której nie można przypisać żadnemu znanemu pierwiastkowi. Praca, którą wykonała Lise Meitner polegała na izolacji oraz zbadaniu właściwości fizycznych i chemicznych nowego pierwiastka chemicznego, a także wykazaniu, że jest on pierwiastkiem macierzystym aktynu. Uczona długo i bardzo skrupulatnie mierzyła wysyłane promieniowanie przez protaktyn. Na podstawie pomiarów doszła do wniosku, że w wyniku przemiany alfa nowy pierwiastek przekształca się w izotop aktynu. Po żmudnych i bardzo trudnych eksperymentach chemicznych Meitner 19 czerwca 1917 roku napisała do Hahna: Mam dobre wiadomości dotyczące naszej pracy. Preparat nr 9 naprawdę wydaje się istotny, aktywność alfa jest najwidoczniej już stała. Myślę, że mamy tę substancję w ręku. 17 stycznia 1918 roku donosiła: […] aktywność [pierwiastka] jest bardzo słaba, ale można ją zmierzyć z całkowitą pewnością i może być zweryfikowana przez prędkość zaniku… W każdym razie teraz możemy myśleć o bardzo szybkiej publikacji. 16 marca 1918 roku w prestiżowym niemieckim czasopiśmie naukowym, Physikalische Zeitschrift, Lise Meitner i Otto Hahn przedstawili artykuł pt. Macierzysta substancja aktynu, nowy pierwiastek radioaktywny o długim okresie półtrwania. Napisali między innymi: Przypuszczenie, że pechblenda była odpowiednim materiałem wyjściowym okazało się w pełni uzasadnione. Udało nam się odkryć nowy pierwiastek radioaktywny, wykazując jednocześnie, że jest to substancja macierzysta aktynu. Dlatego też proponujemy dla niego nazwę protaktyn. Później nazwę zmienili na protaktyn. Chociaż nie od razu była ona oczywista.

Stefan Meyer, b.d., Archiv der Uniwersitat Wien

Stefan Meyer w liście do Lise pisał: Z Twojego listu wynikają strasznie trudne pytania o protaktyn. Wolałbym nazwy Lisonium, Lisottonium, etc. W związku z tym proponuję symbol Lo, ale niestety one się nie nadają, jeśli ktoś pragnie ogólnej akceptacji… Chociaż mimo iż nadal wolę Lisotto, to wiele bardziej znaczące jest, że został odkryty Pa lub Pn, niż pojawiające się najpiękniejszej nazwy. Otto Hahn wspominał: Z powodu wybuchu wojny nie znaliśmy publikacji Soddy’ego i J. A. Cranstona, która ukazała się w tym samym czasie co nasza i donosiła o substancji macierzystej aktynu. Soddy i Cranston próbowali otrzymać tą substancję z pechblendy poprzez sublimację. Preparaty otrzymywali w wyniku zwiększenia ilości emanacji aktynowej, wykazując wzrastające stężenie aktynu. Przy pewnych założeniach, Soddy i Cranston wyliczyli w przybliżeniu czas półtrwania dla aktynu na 3500 lat. […] Nie mogli jednak określić żadnych informacji o charakterystycznych właściwościach nowej substancji. […] Oryginalnymi odkrywcami pierwiastka byli Fajans i Göhring, dlatego mieli prawo do nadania mu nazwy brewium, ze względu na krótki czas półtrwania. Ale Międzynarodowa Komisja Atomowa nie mogła stosować tej nazwy dla pierwiastka, który my odkryliśmy, ponieważ miał on czas półtrwania wielu tysięcy lat. W związku z tym, w pełni uzasadnione okazało się nazwanie długowiecznego izotopu brewium protaktynem (Pa).

Lise Meitner w laboratorium, Berlin, 1912, Archiv der Max-Planck-Gesellschaft, Berlin-Dahlem

Po długich i trudnych dyskusjach z Fajansem ustalono, że nowy pierwiastek będzie nazywał się protaktyn. A dziś, chociaż doskonale wiadomo, że całą pracę wykonała Lise Meitner, tylko dzięki jej uprzejmości i lojalności wraz z nią za odkrywcę pierwiastka 91 uważa się Ottona Hahna.

 

Ida Tacke-Noddack oraz mazur i ren (1925/1926)

György von Hevesy, b.d., domena publiczna
Dirk Coster, b.d., domena publiczna

W 1913 roku brytyjski uczony Henry Moseley przeprowadził systematyczne badania widma promieniowania rentgenowskiego emitowanego przez uprzednio wzbudzone pierwiastki chemiczne. W oparciu o otrzymane wyniki przewidział istnienie brakujących w układzie okresowym pierwiastków o liczbach atomowych 42, 43, 72 i 75. Dzięki jego badaniom Holender Dirk Coster oraz Węgier György von Hevesy pracujący w instytucie Bohra w Kopenhadze odkryli hafn (Hf, liczba atomowa72).

 

Ida i Walter Noddackowie w laboratorium Physikalisch-Technische Reichsamstalt, Berlin, lata dwudzieste XX wieku, Stadtarchiv Wesel

Ida Tacke-Noddack i jej mąż Walter skupili się na pierwiastkach chemicznych o numerach 43 i 75. Szczególnie ciekawym pierwiastkiem był pierwiastek 43. Na przestrzeni lat wielokrotnie donoszono o jego odkryciu i proponowano różne nazwy: w 1818 roku Polinium (gr. szary), w 1844 roku Pelopium (na cześć Pelopsa syna Tantala), w 1846 roku Ilmenium (od gór Ilmensky), w 1877 roku Davyum (na cześć wybitnego chemika Humphrey’a Davy’ego), w 1896 roku lucium (łac. lux, świato) czy w 1908 roku nipponium (jap. Japonia). Ida przystąpiła do pracy analizując dostępną literaturę naukową. Wspominała – Od wiosny 1923 r. spędziłam dziesięć miesięcy, od wczesnego rana do późnej nocy w Państwowej Bibliotece w Berlinie przeszukując prawie sto lat literatury dotyczącej chemii nieorganicznej. Niemieckie małżeństwo uczonych zaczęło badać rudy manganu i platyny. Ida i Walter najpierw mozolnie rozpuszczali, następnie wytrącali, ekstrahowali i zatężali roztwory zawierające nowe pierwiastki. Później wytrącali je w postaci osadów (siarczków), które redukowali gazowym wodorem, następnie ogrzewali w tlenie otrzymując sublimaty bogate w ren, ale nie mazur. Przy udziale Ottona Berga zastosowali analizę opartą na spektroskopii rentgenowskiej. Otrzymane wyniki wskazywały na obecność obu pierwiastków 43 i 75 w badanych rudach. 11 czerwca 1925 roku Walther Nernst przedstawił wyniki pracy w Pruskiej Akademii Nauk. Komunikat donosił o odkryciu w niobicie i tantalicie nowych pierwiastków 43 i 75, których ilości były rzędu 10–6 do 10–7 grama. Pierwiastek 43 uczeni nazwali Masurium (mazur, symbol Ma) dla uczczenia Mazur ojczystego kraju przodków W. Noddacka, zaś pierwiastek 75 Rhenium (ren, symbol Re) od rzeki Ren (łac. Rhenus) w Nadrenii miejsca urodzenia I. Tacke.

Ida Noddack, b.d., Stadtarchiv Wesel

Warto zauważyć, że równolegle z odkryciem Idy i Waltera nowy pierwiastek znaleźli Anglicy i Czesi. Podczas, gdy ci pierwsi uznali odkrycie Niemców, Czesi byli uparci i zaproponowali dla pierwiastka 75 nazwę pragium (na cześć Pragi). Musieli jednak w końcu ulec, gdyż Ida wysłała im swoje próbki, w których potwierdzono obecność pierwiastka Noddacków. W 1926 roku Ida i Walter wydzielili 2 miligramy czystego renu. Roku później Ida wydzieliła 120 miligramów tego metalu z molibdenitu, a w1928 roku z 660 kg molibdenitu gram renu. Noddackowie określili właściwości pierwiastka i zbadali jego związki. Nie zdołali jednak wydzielić czystego mazuru, ani – co gorsze –odtworzyć jego widma. Ernest O. Lawrence nazwał prawa Noddacków do odkrycia mazuru widocznymi urojeniami i dodawał, że najwyraźniej sobie ten fakt wmówili. Jednakże mazur figurował jako pierwiastek chemiczny w tablicy Mendelejewa i podręcznikach do chemii aż do 1949 roku, kiedy to w Amsterdamie podczas ustaleń konferencji Międzynarodowej Unii Chemii Czystej i Stosowanej (IUPAC) skreślono go z listy pierwiastków. W 1937 roku Carlo Perrier i Emilio Segrè otrzymali pierwiastek 43 w wyniku reakcji syntezy jądrowej, poprzez bombardowanie metalicznego molibdenu (pierwiastek 42) deuteronami (izotopami wodoru) lub neutronami. Nazwali go technetem (symbol Tc, z gr. technetos – sztuczny). W 1967 roku Segrè twierdził, że Noddackowie w kwestii mazuru byli zwyczajnie nieuczciwi.

Ida Noddack w laboratorium, b.d., Stadtarchiv Wesel

Historyk nauki William H. Brock wyjaśnił konkretnie, dlaczego Ida i Walter powinni zostać uznanymi odkrywcami mazuru. W książce Historia chemii napisał:

Ren został łatwo uznany i niezależnie odkryty w tym samym roku przez innych badaczy, natomiast odkrycie mazuru okazało się wątpliwe. Małżonkowie Noddack zdołali wydzielić miligramowe próbki renu z setek kilogramów rud, nie udało się to jednak w przypadku mazuru. W latach trzydziestych, mimo wzmianek o mazurze w podręcznikach i umieszczaniu go w zestawieniach pierwiastków, na ogół uważano, że dane rentgenowskie nie stanowią dostatecznego dowodu istnienia tego pierwiastka. Sądzono, że Noddackowie pośpieszyli się z ogłoszeniem swego odkrycia. Jak dziś wiadomo, pierwiastek 43 (technet) jest produktem rozszczepienia uranu i wykazano, że rudy badane przez Noddacków zawierały uran w ilości umożliwiającej pojawienie się linii mazuru (technetu) w widmach rentgenowskich.

Z perspektywy czasu wydaje się więc słusznym przywrócić mazur do układu okresowego i przypisać pierwszeństwo odkrycia pierwiastka 43 Idzie i Walterowi Noddackom. Czy jest to jednak możliwe?

 

Marguerite Perey i frans (1939)

Pracownicy Instytutu Radowego w Paryżu w bibliotece, 1930. Siedzą, od lewej: Marguerite Perey, Leonie Razet, Marie-Isabelle Archinard i Sonia Cotelle. Stojący od lewej: Andre Régnier, Alexis Yakimach, Raymond Grégoire, Renée Galabert, Tcheng-Da-Tchang i Frederic Joliot-Curie, Musée Curie, coll. ACJC

Poszukiwania fransu nazywanego eka-cezem były równie długie jak poszukiwanie pierwiastków Noddacków. W 1925 roku Radziecki chemik D. K. Dobroserdov twierdził, że znalazł eka-cez w próbce potasu (radioaktywność z próbki pochodziła z naturalnie występującego radioizotopu potasu-40). Opublikował wyniki pracy, a pierwiastek nazwał russium. Rok później angielscy chemicy Gerald J. F. Druce i Frederick H. Loring analizowali zdjęcia rentgenowskie siarczanu manganu(II). Zaobserwowali linie spektralne, które uważali za eka-cez. Zapowiedzieli odkrycie pierwiastka 87 i zaproponowali nazwę alkalium, gdyż byłby to najcięższy metal alkaliczny. W 1930 roku Fred Allison z Alabama Polytechnic Institute twierdził, że odkrył pierwiastek 87 podczas analizy minerałów polucytu i lepidolitu i zaproponował nazwę virginium. Cztery lata później H. G. MacPherson z UC Berkeley podważył i obalił odkrycie Allisona, co doprowadziło do otwartego sporu uczonych. W 1936 roku rumuński fizyk Horia Hulubei i jego koleżanka Yvette Cauchois przeanalizowali polucyt używając aparat rentgenowski o wysokiej rozdzielczości. Zauważyli kilka słabych linii emisyjnych, które przypuszczalnie należały do pierwiastka 87. Zgłosili swoje odkrycie i zaproponowali nazwę moldavium. Rok później prace Hulubeia zostały skrytykowane przez amerykańskiego fizyka F. H. Hirsha Jr., który odrzucił metody badawcze Hulubeja i Cauchois twierdząc, że analizowali oni linie rtęci lub bizmutu.

Marguerite Perey, 1940, Musée Curie, col. ACJC

W 1935 roku Marguerite Perey uczennica Marii Skłodowskiej-Curie przeczytała artykuł amerykańskich naukowców, którzy donosili, że odkryli promieniowanie beta wysyłane przez aktyn. Perey była sceptyczna względem ich doniesień, bowiem energia cząstek beta nie pasowała do cząstek emitowanych przez aktyn. Miała ona spore doświadczenie z aktynem, gdyż pracowała z nim już ponad siedem lat. Domyślała się, że amerykanie muszą dysponować zanieczyszczoną próbką, w której cząstki beta emituje atom potomny tj. taki, który powstaje z aktynu i pozostaje w badanej przez nich próbce. Chcąc udowodnić swoją hipotezę przystąpiła do pracy przygotowując niezwykle czystą próbkę aktynu-227. Zadanie było czasochłonne i bardzo precyzyjne. Uczona musiała działać szybko, aby w próbce nie powstawały atomy potomne. Jej finezyjne badanie polegało na spostrzeżeniu, że niewielka część – około 1,2% – całkowitej radioaktywności aktynu pochodziła z emisji cząstek alfa. Nikt nie podejrzewał, że aktyn-227 emituje cząstki alfa przekształcając się w pierwiastek 87 o czasie połowicznego zaniku 22 minuty i jednocześnie cząstki beta (98,8%) przechodząc w izotop toru-227 (chociaż pierwsze doniesienia na ten temat pojawiły się już w 1914 roku). Jest to tzw. rozgałęzienie. Powstający w ten sposób izotop pierwiastka 227 Perey nazwała aktynem K (Ac-K).

Andre Debierne, 1940, Musée Curie, col. ACJC

Jej bezpośrednim przełożonym był Debierne, chociaż pracowała w laboratorium kierowanym przez Irène Joliot-Curie. Dlatego też o swoim zaskakującym odkryciu poinformowała najpierw Irène. Zaproponowała nawet nazwę catium, ale Joliot-Curie odradziła jej ją, gdyż mylnie by się mogła kojarzyć z kationem. Idąc wzorem Marii Skłodowskiej-Curie Perey zaproponowała więc nazwę dla nowego pierwiastka frans. W tym samy czasie o odkryciu dowiedział się Debierne. Uważał, że jego pracownica powinna najpierw poinformować o odkryciu jego i poczuł się urażony. Jego złość była tak potężna, że nie chciał uznać odkrycia Perey. Nie trafiały do niego żadne argumenty. Konflikt trwał kilka miesięcy. Ostatecznie zgodził się, aby uznać Perey za odkrywczynię pierwiastka i zaakceptował proponowaną przez nią nazwę frans (87Fr). Uczona w jednym z listów pisała: Mam wielką nadzieję, że frans przyda się do leczenia wcześnie rozpoznanego raka. Moim największym życzeniem jest, aby wykonać to zadanie w przyszłości. Niestety sama padła ofiarą radioaktywności – zmarła na nowotwór 15 maja 1975 roku…

 

Zalecana literatura:

  1. T. Pospieszny, Pasja i geniusz. Kobiety, które zasłużyły na Nagrodę Nobla, Wydawnictwo Po Godzinach, Warszawa, 2019.
  2. M. Fontani, M. Costa, M. V. Orna, The lost elements. The periodic table’s shadow side, Oxford University Press, New York, 2014.
  3. I. Eichstaedt, Księga pierwiastków, Wiedza Powszechna, Warszawa 1970.
  4. S. Kean, Znikająca łyżeczka. Dziwne opowieści chemicznej treści, Ferria Science, Łódź, 2017.

106. rocznica urodzin Gertrude Bell Elion

Przez całe życie walczyła o poprawę ludzkiego życia. Cicha, spokojna i niezwykle skromna uczona spędziła większą część życia w laboratorium oddając się swojej największej pasji – poszukiwaniu nowych związków chemicznych, które o szerokim spektrum aktywności farmakologicznej. Dzięki jej pracom ludzkość otrzymała leki zwalczające między innymi białaczkę, gościec, malarię czy wirusy grupy Herpes. Trudno się nie zgodzić z opinią Jamesa Burchalla, że Gertrude Belle Elion żyła w świecie nauki i tworzenia leków. Uważała, że jest to wielkie wyzwanie, fascynacja i wielki cel jej życia. To jej wyzwanie i jej radość.

 

Uczona urodziła się 23 stycznia 1918 roku w Nowym Jorku. Jej rodzicami byli żydowski imigrant z Litwy Robert Elion i polska imigrantka Bertha Cohen. We wspomnieniach Gertrude pisała:

 

Gertude w wieku 5 lat, [za:] www.nobelprize.org
          Urodziłam się w Nowym Jorku w zimną styczniową noc, w trakcie której w naszym mieszkaniu rury z wodą zamarzły i pękły. Na szczęście moja matka była wtedy w szpitalu, a nie w domu. Mój ojciec wyemigrował z Litwy do Stanów Zjednoczonych w wieku 12 lat. Studia wyższe ukończył w 1914 r. w New York University School of Dentistry. Moja matka w wieku 14 lat wyjechała z części Rosji, która po wojnie była częścią Polski; miała dopiero 19 lat, kiedy wyszła za mąż za mojego ojca. Pierwsze siedem lat spędziłem w dużym mieszkaniu na Manhattanie, gdzie mój ojciec miał gabinet dentystyczny, który przylegał do naszego mieszkania.

Mój brat [Herbert] urodził się około sześć lat po mnie, a wkrótce potem przeprowadziliśmy się do Bronxu, który wówczas był uważany za przedmieście Nowego Jorku. Wciąż było tam wtedy wiele otwartych przestrzeni, w których dzieci mogły się bawić – w tym duże parki z ogrodem zoologicznym na czele, gdzie spędzałam sporo czasu. Mój brat i ja mieliśmy szczęśliwe dzieciństwo. Poszliśmy do pobliskiej naszego mieszkania szkoły publicznej, do której chodziliśmy spacerem. Nasze sale lekcyjne były na ogół dość zatłoczone, ale otrzymaliśmy dobre wykształcenie podstawowe.

 

Gertrude jako absolwentka szkoły średniej, 1933, [za:] http://musings-on-science-and-math.blogspot.com/2012/09/gertrude-belle-elion-nobel-prize-winner.html
Elion była doskonałą uczennicą. W wieku piętnastu lat ukończyła z wyróżnieniem szkołę średnią. Wówczas też w jej życiu wydarzyła się tragedia – po długich cierpieniach na raka żołądka zmarł ukochany dziadek. Uczona wspominała:

Byłam dzieckiem z nienasyconym pragnieniem zdobywania wiedzy i pamiętam, że prawie tak samo cieszyłem się wszystkimi moimi kursami. Kiedy przy końcu szkoły średniej przyszedł czas, aby wybrać naukę, w której mam się specjalizować, byłem w rozterce. Gdy miałam piętnaście lat mój dziadek, którego bardzo kochałem, zmarł na raka. Sądzę, że było to jednym z decydujących czynników decydującym o wyborze mojej kariery naukowej. Byłam bardzo zmotywowana do zrobienia czegoś, co ostatecznie może doprowadzić do wyleczenia tej strasznej choroby. Kiedy wstąpiłam do Hunter College w 1933 roku, zdecydowałam się na nauki ścisłe, w szczególności na chemię.

 

Gertrude Elion ok. 1940 roku, [za:] https://amazingwomeninhistory.com/gertrude-b-elion-biochemist/
Dyplom summa cum laude otrzymała w 1937 roku. Po ukończeniu studiów Gertrude nie mogła znaleźć płatnej pracy naukowej. Początkowo pracowała jako sekretarka i nauczycielka fizyki i chemii w szkole średniej. Później znalazła nieodpłatny etat w laboratorium chemicznym. Zaoszczędziła wystarczająco dużo pieniędzy, aby studiować na New York University i ukończyć studia w 1941 roku jako magister inżynier. Podczas drugiej wojny światowej Elion pracowała w laboratorium kontroli artykułów żywnościowych w przedsiębiorstwie Quaker Maid. Później pracowała też w laboratorium farmaceutycznym Johnson & Johnson. Wcześniej odmawiano uczonej etatu podając jako argument między innymi jej urodę, która miałaby rozpraszać innych pracowników. Wojna wszystko zmieniła. Wszystkie zastrzeżenia co do zatrudniania kobiet w laboratoriach po prostu się ulotniły – wspominała.

 

W 1944 roku za sugestią ojca złożyła podanie w firmie farmaceutycznej Burroughs-Wellcome (obecnie GlaxoSmithKline). Podczas rozmowy kwalifikacyjnej natrafiła na biochemika i kierownika działu badawczego Georgeʼa H. Hitchingsa. Był on zwolennikiem innowacyjnego sposobu prowadzenia badań. Uważał, że poszukiwanie nowych leków powinno opierać się na podobieństwie strukturalnym do ich naturalnych pochodnych. Twierdził ponadto, że syntetyczne leki powinny hamować przemianę materii mikroorganizmów, przez co powinny być skutecznymi w walce z wieloma chorobami. Hitchings zlecił Elion prace nad purynami (zasadami azotowymi wchodzącymi w skład kwasów nukleinowych DNA i RNA) – adeniną i guaniną. Gertrude oddała się pracy z nieopisaną wręcz pasją. Pracowała w weekendy, wakacje, zostawała po godzinach, każdą wolną chwilę poświęcała chemii i biochemii. Przez krótki czas podjęła się studiów doktoranckich, ale gdy dziekan wydziału oświadczył jej, że powinna zrezygnować dla nich ze swojej pracy i uczestniczyć w zajęciach w pełnym wymiarze godzin Elion zrezygnowała. Wykluczone, nigdy nie zrezygnuję z mojej pracy. Wiem doskonale, kiedy mam to co jest dla mnie najlepsze i czego pragnę – powiedziała. Gertrude Elion nigdy nie zrobiła doktoratu i nie miała formalnego stopnia doktora. We wspomnieniach pisała:

Z biegiem lat moja praca stała się zarówno moim powołaniem, jak i przeznaczeniem. Ponieważ tak bardzo mi się podobała, nigdy nie czułam potrzeby wychodzenia na zewnątrz w celu relaksu. Mimo to zostałam zapaloną fotografką i podróżniczką. Być może moja miłość do podróży wynika z wczesnych lat, kiedy moja rodzina rzadko wyjeżdżała na wakacje. […] Podróżowałam dość dużo po świecie, ale wciąż jest wiele miejsc do odkrycia. Innym moim ważnym zainteresowaniem jest muzyka, nie dlatego, że jestem utalentowana muzycznie, ale dlatego, że uwielbiam jej słuchać. Jestem miłośniczką opery i jestem subskrybentem Metropolitan Opera od ponad 40 lat. Lubię też koncerty, balet i teatr.

Elion w swoim laboratorium ok. 1960 roku, [za:] Jewish Women’s Archive
Jednak najważniejsza była praca. Jej motywacja, aby poświęcić się i oddać swój twórczy geniusz pracy naukowej była jeszcze większa. W 1941 roku narzeczony uczonej Leonard Canter – znakomity statystyk w City College – zachorował na ostre bakteryjne zapalenie wsierdzia. Niestety choroba była na tyle inwazyjna, że spowodowała zatrzymanie akcji serca i śmierć ukochanego Trudy. To złamało mi serce i tak naprawdę nigdy w pełni ta rana się nie zabliźniła – wyznała bratu. Nigdy nie wyszła za mąż. Później na raka szyjki macicy zmarła matka Elion oraz na białaczkę umarł jej bliski przyjaciel. Natomiast po śmierci ojca uczona wyznała – Zupełnie jakby [jego śmierć] zawierała wiadomość skierowaną do mnie: »To jest choroba, z którą będziesz musiała walczyć«. Pierwszy sukces przyszedł w 1948 roku, kiedy Elion i Hitchings otrzymali w swoim laboratorium 2,6-diaminopurynę substancję, która hamowała rozwój białaczki. Niestety okazała się także dość toksyczna, dlatego Elion otrzymała inną pochodną puryny 6-merkaptopurynę. Ten związek hamował białaczkę, był mniej toksyczny, i co najważniejsze, można było go stosować w terapii u dzieci. Lek ten włączając się w szlak biosyntezy nukleotydów purynowych, powoduje zahamowanie replikacji DNA, co stanowi o jego wysokiej skuteczności w terapii. Wkrótce uczeni przeprowadzili syntezę 6-tioguaniny, która skutecznie hamowała rozwój leukocytów, co z kolei wiąże się z osłabieniem reakcji układu odpornościowego. Prace nad lekami pochodnymi puryn stanowiły krok milowy związany z przeszczepianiem narządów, bowiem niektóre z nich wywoływały cytotoksyczność limfocytów. Elion i Hitchings otrzymali serię związków, które służyły już nie tylko do walki z chorobami nowotworowymi, ale osłabiały także reakcję organizmu na odrzucenie przeszczepów.

Innym wielkim osiągnięciem uczonych było przeprowadzenie przez nich syntezy allopurynolu leku będącego inhibitorem oksydazy ksantynowej, który zmniejsza wytwarzanie ksantyn i kwasu moczowego. Powoduje on zahamowanie powstawania kwasu moczowego, a co za tym idzie, zmniejszenie jego stężenia we krwi i moczu. Największą radość Elion sprawił, za sprawą allopurynolu, powrót do zdrowia w 1963 roku pewnego stróża nocnego, który od lat zmagał się z dną moczanową.

Elion i Hitchings na Uniwersytecie Georga Washingtona, 1969, Jewish Women’s Archive

Z wielu innych sukcesów uczonych należy wymienić syntezę azatiopryny leku o silnym działaniu immunosupresyjnym i cytotoksycznym, pirymetaminy stosowanej w leczeniu malarii, toksoplazmozy i zapalenia płuc, trimetoprymu – chemioterapeutyku, będącego inhibitorem reduktazy kwasu dihydrofoliowego czy nelarabiny – cytostatyku, antymetabolitu, stosowanego w trzecim rzucie leczenia białaczki limfoblastycznej i chloniaka limfoblastycznego. Najtrafniej wspólnie spędzony czas w laboratorium ujął Hitchings:

            Badania, które rozpoczęliśmy w latach czterdziestych XX wieku, przyniosło także nowe terapie lekowe na malarię (pirymetaminę), białaczkę (6-merkaptopurynę i tioguaninę), dnę moczanową (allopurinol), przeszczepianie narządów (azatiopryna) i infekcje bakteryjne (kotrimoksazol). Nowa wiedza wniesiona przez nasze badania wskazała drogę do badań, które doprowadziły do opracowania głównych leków przeciwwirusowych stosowanych w zakażeniach opryszczki (acyklowir) i AIDS (azydotymidyna).

W 1967 roku Hitchings przeszedł na emeryturę, a Gertrude została mianowana kierowniczką wydziału doświadczalnej terapii w Burroughs Wellcome Department of Experimental Therapy. Oboje uczonych, poza przeszło trzydziestoma latami niezwykle owocnej współpracy, łączyły więzy szczerej i prawdziwej przyjaźni. Elion zaprzyjaźniła się również z żoną Hitchingsa Beverly Reimer i dziećmi. Często spędzali razem wakacje. Kilkadziesiąt lat później nadal odwiedzała jego dzieci i ich rodziny. Po śmierci Beverly w 1985 roku Hitchings ożenił się ponownie w 1989 roku z Joyce Carolyn Shaver-Hitchings, która także zaprzyjaźniła się z Trudy.

 

Wraz z objęciem funkcji kierowniczej Elion skierowała swoje zainteresowania na syntezę leków zwalczających choroby wywoływane przez wirusy. Ogromnym sukcesem uczonej była synteza acyklowiru leku hamującego rozwój herpeswirusów. Uczona założyła, że lek powinien być koniem trojańskim dla wirusa. Wirus powinien go aktywować i tym samym doprowadzać swojej dezaktywacji. W końcu udało nam się wykazać, że środki antywirusowe mogą działać selektywnie i że można wykorzystać różnice między enzymami komórki i wirusa – napisała uczona. Warto zaznaczyć, że jej podejście zostało także zastosowane w projektowaniu i syntezie AZT (3′-azydo-3′-deoksytymidyny) leku pomocnego w zwalczaniu wirusa HIV.

Gertrude Elion i George Hitchings — laureaci Nagrody Nobla, 1988, Domena Publiczna

Nie powinno dziwić, że o 6:30 rano 17 października 1988 roku Elion otrzymała telefon z informacją, że otrzymała Nagrodę Nobla z fizjologii i medycyny. Nagrodę dzieliła z Georgeʼm Hitchingsʼem i Jamesem W. Black’iem z University of London, który jako pierwszy opracował klinicznie użyteczny lek do blokowania receptorów beta. Elion i Hitchings zostali wyróżnieni za sformułowanie znaczących zasad leczenia farmakologicznego (w szczególności nad wytycznymi dotyczącymi chemioterapii) i stworzenie w oparciu o nie nowej generacji leków przeciwnowotworowych. Podczas ceremonii odebrania nagrody w Sztokholmie towarzyszyło Trudy jedenastu członków najbliższej rodziny. Z całą pewnością uczona należy do niewielkiego grona laureatów Nagrody Nobla bez formalnego doktoratu. Otrzymała natomiast co najmniej dwadzieścia doktoratów honorowych oraz ogrom innych wyróżnień.

 


George Herbert Hitchings zmarł 27 lutego 1998 roku w wieku dziewięćdziesięciu trzech lat. Rok później 21 lutego 1999 roku w Północnej Karolinie w wieku osiemdziesięciu jeden lat zmarła spokojnie Gertrude Belle Elion. Wielka uczona, której ludzkość zawdzięcza tak wiele, pod koniec życia napisała:

            Po moim oficjalnym przejściu na emeryturę z funkcji kierowniczki działu w Burroughs Wellcome, pozostałam tam jako emerytowany konsultant naukowy i starałam się brać czynny udział w dyskusjach, seminariach i spotkaniach personelu związanych z badaniami. Ponadto zostałam profesorem nauk medycznych i farmakologii na Uniwersytecie Duke’a i co roku pracuję z jednym studentem medycyny trzeciego roku, który chce prowadzić badania w dziedzinie biochemii i farmakologii nowotworów. To było bardzo stymulujące doświadczenie, które mam nadzieję kontynuować przez pewien czas. Zasiadam w wielu redakcjach i nadal wykładam i piszę. W pewnym sensie wydaje mi się, że moja kariera zatoczyła koło od wczesnych lat bycia nauczycielką do dzielenia się teraz moimi doświadczeniami badawczymi z nowymi pokoleniami naukowców.

 

Literatura zalecana:

[1] G. B. Elion, Autobiography, dostęp online 25-06-2020.

[2] R. Swaby, Upór i przekora. 52 kobiety, które odmieniły naukę i świat, Warszawa 2017.

[3] S. Mukherjee: Cesarz wszech chorób. Biografia raka, Warszawa 2015.

[4] S. B. McGrayne, Nobel Prize Women in Science: Their Lives, Struggles, and Momentous Discoveries: Second Edition, Joseph Henry Press 2001.

174. rocznica urodzin Zofii Kowalewskiej

 

Wielu, którzy mieli okazję dowiedzieć się czegoś więcej o matematyce, myli ją z arytmetyką i uważali ją za jałową naukę. W rzeczywistości jednak jest to nauka wymagająca ogromnej ilości wyobraźni.

(Zofia Kowalewska)

 

Zofia Kowalewska, b.d., domena publiczna.

Jedna z najwybitniejszych matematyczek świata urodziła się 15 stycznia (3 stycznia) 1850 w Moskwie. Jej ojciec Wasilij Wasiljewicz Krukowski był oficerem pochodzenia polskiego (pochodził z rodu Korwin-Krukowskich), natomiast matka Jelizawieta Fiodorowna Schubert wywodziła się z rodziny niemieckich imigrantów. Na uwagę zasługuje fakt, że pradziadkiem przyszłej uczonej był astronom i geograf Theodor von Schubert, zaś dziadkiem generał i kartograf Friedrich von Schubert. Z kolei jej starszą siostrą była Anna Jaclard (1843–1887) socjalistka i rewolucjonistka, która nieśmiertelność zyskała na kartach powieści F. Dostojewskiego Idiota jako Anna. Wczesne lata życia spędziła w posiadłości Palibino w gubernii Witebskiej. Sonia – jak ją nazywała rodzina oraz przyjaciele – wspominała, że dom był niezwykle piękny i nowoczesny. Na krótko przed zamieszkaniem w nowej posiadłości została ona całkowicie poddana modernizacji. Niestety jej pokój z prozaicznej przyczyny – niewystarczającej ilości tapety – został wyklejony papierem znalezionym na strychu. Jak się okazało papier zawierał litografie wykładów z zakresu rachunku różniczkowego i całkowego, na które uczęszczał Wasilij jako młody oficer. Był to niewątpliwe pierwszy wielki bodziec matematyczny, który zaczął działać na wyobraźnię przyszłej uczonej. Zwykłam całymi godzinami ślęczeć przed tymi ścianami, raz po raz na nowo odczytując spisane tam symbole – wspominała po latach Sofija. Niestety nie zawsze miała możliwość pełnego pochłaniania wiedzy, tym bardziej, że jej ojciec niespecjalnie była zadowolony z kształcenia kobiet. Trwałam w chronicznym stanie głodu książek – wspominała. W dużej mierze Sonia uczyła się samodzielnie – czytała książki, próbowała poznawać świat nauki. Jeden z zaprzyjaźnionych przyjaciół ojca, profesor fizyki Nikolai Nikanorowicz Tyrtov podarował mu swój nowy podręcznik. Dziewczynka bez wiedzy ojca przeczytała książkę i przy następnej wizycie profesora zaczęła z nim rozmawiać o optyce. Niewątpliwie był bardzo zdziwiony, gdy kilkuletnia dziewczynka dokładnie mu wyjaśniła czego nie rozumie, ale co wydaje jej się logiczne i powinno mieć takie a nie inne rozwiązanie. Tyrtov nazwał ją nowym Pascalem i zasugerował, aby dać jej szansę kontynuowania studiów matematycznych. Nie ulega wątpliwości, że dziewczynka była bardzo zdolna. Znała doskonale język angielski, francuski i niemiecki. W latach 1866-67 spędzała większość zimy z rodziną w Petersburgu, gdzie otrzymywała prywatne lekcje rachunku różniczkowego.

Jednak rozbudziło to tylko głód wiedzy dziewczyny. Jej marzeniem były studia, ale było to dość trudne, gdyż w carskiej Rosji kobiety nie mogły studiować, a wyjazd samotnej kobiety do innego kraju nie wchodził w grę. Salomonowym rozwiązaniem było zatem zawarcie w 1868 roku fikcyjnego małżeństwa ze starszym o osiem lat paleontologiem Włodzimierzem Kowalewskim. Należał on do radykalnego ugrupowania politycznego walczącego o równouprawnienie kobiet i zapewnienie im dostępu do edukacji. Sonia z mężem i siostrą wyjechała do Heidelbergu, gdzie studiowała między innymi u Hermanna von Helmholtza, Gustava Kirchhoffa i Roberta Bunsena. Później odbyła także podróż do Anglii, a następnie powróciła do Berlina, gdzie uczył ją Karl Weierstrass – jeden z najwybitniejszych matematyków niemieckich.

W 1874 roku Sofja Kowalewska przesłała z Berlina na uniwersytet w Getyndze rozprawę doktorską opartą o trzy prace związane z teorią równań różniczkowych cząstkowych, redukcji całek abelowych oraz postaci pierścieni Saturna. Dzięki staraniom Weierstrassa nie musiała zdawać egzaminów doktorskich i przyznano jej doktorat… in absentia. Została tym samym pierwszą Europejką posiadającą doktorat z matematyki!

Zofia Kowalewska, po 1880, domena publiczna

Sukcesy zawodowe szły w parze z prywatnymi. Pomiędzy Sonią i Włodzimierzem zaczęło rodzić się autentyczne uczucie. W 1874 roku powrócili do Rosji, a cztery lata później przyszła na świat ich córka Zofia nazywana Fufą. Po prawie dwóch latach poświęconych wychowaniu córki Kowalewska pozostawiła ją pod opieką krewnych oraz przyjaciół i chcąc wznowić pracę w dziedzinie matematyki opuściła Włodzimierza po raz ostatni. W wyniku namowy Weierstrassa w 1881 roku powróciła do Berlina, gdzie natychmiast powróciła do pracy naukowej. Zaowocowała ona opublikowaniem prac związanych z refrakcją światła w kryształach. Kiedy w 1883 roku przebywała w Paryżu otrzymała wstrząsającą wiadomość o śmierci męża. Włodzimierz zapadł na głęboką depresję związaną z poważnymi kłopotami finansowymi, w wyniku czego odebrał sobie życie.

W tym samym czasie uczona otrzymała propozycję pracy na uniwersytecie w Sztokholmie. Jej zdolnościami matematycznymi zachwycił się jeden z nielicznych w tamtych czasach zwolenników kobiet w nauce Magnus Mittag-Leffler. Po sześciu miesiącach pracy w Sztokholmie przyznano jej tytuł profesorski oraz etat redaktora w prestiżowym czasopiśmie matematycznym „Acta Mathematicaˮ. Co ciekawe w tym czasie biegle władała już językiem szwedzkim. W 1885 roku Kowalewska objęła funkcję dziekana Wydziału Matematyki. Początkowo zaproszono mnie w charakterze docenta. Przed upływem roku jednak mianowano mnie profesorem zwyczajnym, którym jestem od roku 1884. Poza wykładami spoczywa na mnie także obowiązek uczestniczenia w posiedzeniach rady i mam prawo głosu na równi z pozostałymi profesorami – wspominała uczona. Trzy lata później, w 1888 roku wygrała konkurs paryskiej Akademii Nauk – w temacie ścisłego rozwiązania równań ruchu bryły sztywnej, za co otrzymała Nagrodę Bordina. W 1889 roku wybrano ją na członkinią Petersburskiej Akademii Nauk. Poza matematyką była także zdolną pisarką. Napisała między innymi Uniwersytet chłopski w Szwecji, Wspomnienia z dzieciństwa, Nihilistka, Docent prywatny, Siostry Rejewskie i Rodzina Woroncowych, stąd nazywano ją nie tylko „Królową  Matematyki” ale także „Michałem Aniołem Konwersacji”.

Zofia Kowalewska, ok. 1880, Institut Mittag-Leffler, domena publiczna.

W 1889 roku uczona zakochała się w Maxie Kowalewskim dalekim krewnym zmarłego męża. Nie nalegała jednak na małżeństwo, gdyż wiedziała, że nie byłaby w stanie osiąść i zamieszkać z Maxem.

Sofja Kowalewska zmarła w kwiecie wieku, licząc zaledwie czterdzieści jeden lat, w Sztokholmie w lutym 1891 roku w wyniku powikłań po zapaleniu płuc. Została pochowana w mieście Solna na Cmentarzu Północnym, gdzie spoczywa wiele wybitnych i znanych ludzi.

Jeden z badaczy jej życia, Roger Cooke napisał: […] im bardziej zastanawiam się nad jej życiem i biorę pod uwagę ogrom jej osiągnięć, przeciwstawiając się ciężarowi przeszkód, które musiała przezwyciężyć, tym bardziej ją podziwiam. Dla mnie przyjęła bohaterską postawę osiągniętą przez niewielu innych ludzi w historii. Aby wejść, tak jak ona, do świata akademickiego, świata, którego prawie żadna kobieta jeszcze nie zbadała, i być konsekwentnie obiektem ciekawskiej analizy, podczas gdy wątpiące społeczeństwo patrzyło, na wpół oczekując, że je zawiedzie, zebrała ogromną odwagę i determinację. Aby osiągnąć, tak jak ona, co najmniej dwa główne wyniki o trwałej wartości stypendium, jest dowodem znacznego talentu, rozwiniętego dzięki żelaznej dyscyplinie […].

 

Zalecana Literatura:

  1. Z. Kowalewska, Wspomnienia z dzieciństwa, PIW, Warszawa, 1978.
  2. J. Navarro, Kobiety w matematyce: od Hypatii do Emmy Noether, RBA, Toruń, 2012, ss 84-91.
  3. R. L. Cooke, The life of S. V. Kovalevskaya, [w]: V. B. Kuznetsov, ed., The Kowalevski Property, American Mathematical Society, 2002, ss 1–19.
  4. P. Połubarinowa-Koczina: Zofia Kowalewska: Wielki matematyk rosyjski, Czytelnik, Warszawa, 1951.
  5. J. Spicci, Beyond the Limit: The Dream of Sofya Kovalevskaya, Forge Books, New York, 2002.