Vera Rubin i ciemna materia

 

/   Tomasz Pospieszny   /

 

Vera Florence Cooper Rubin należy do grona najwybitniejszych uczonych, którzy nie zostali docenieni przez Szwedzką Akademię Nauk. Była amerykańską astrofizyczką, której badania nad szybkością rotacji galaktyk dały dowód na istnienie ciemnej materii. W „The New York Times” pisano, że jej prace dla współczesnej astronomii były początkiem zmian na skalę kopernikańską.

Vera (z prawej) i jej siostra Ruth z babcią, [za:] https://dtm.carnegiescience.edu/remembering-vera
Vera Rubin urodziła się 23 lipca 1928 roku w Filadelfii w Pensylwanii. Jej rodzice byli żydowskimi imigrantami — ojciec Philip Cooper miał Polskie korzenie (urodził się w Wilnie). Do czasu ślubu z Rose Applebaum pochodzącą z Mołdawii pracował jako inżynier w Bell Telephone. Vera miała dwie starsze siostry. Rodzina była mocno zżyta, a rodzice przywiązywali wagę do edukacji córek. W 1938 roku rodzina przeniosła się do Waszyngtonu. To właśnie tutaj dziesięcioletnia Vera po raz pierwszy zainteresowała się astronomią – z wielką fascynacją obserwowała nocne niebo. Moi rodzice byli bardzo, bardzo pomocni, poza tym, że nie lubili, gdy nie spałam całą noc – wspominała. Wspólnie z ojcem zbudowała pierwszy prymitywny teleskop, który umożliwiał jej oglądanie meteorytów. Po latach wspominała – Już wtedy bardziej interesowało mnie pytanie niż odpowiedź. Od wczesnych lat młodzieńczych byłam przekonana, że żyjemy w bardzo ciekawym świecie.

W 1944 roku ukończyła Coolidge Senior High School i nie słuchając nauczycieli, którzy radzili jej, aby wybrała studia artystyczne, podjęła studia licencjackie w Vassar College, na której kiedyś wykładała pierwsza kobieta astronom – Maria Mitchell. Cztery lata później, jako jedyna kobieta–absolwentka, otrzymała licencjat z astronomii. Postanowiła dalej kształcić się na Uniwersytecie w Princeton. Niestety jej podanie zostało odrzucone, gdyż… była kobietą!

 

Vera i Bob w dniu ślubu — 25 czerwca 1948 roku, [za:] https://dtm.carnegiescience.edu/remembering-vera

Latem 1947 roku rodzice przedstawili ją Robertowi (Bobowi) Rubinowi. Kształcił się na oficera marynarki wojennej Stanów Zjednoczonych i studiował chemię na Uniwersytecie Cornell. Był od niej starszy o dwa lata. Rok później Vera poślubiła Roberta, który prowadził już badania na Uniwersytecie Harvarda. Właśnie ze względu na męża, nie zdecydowała się na podjęcie pracy na tym samym uniwersytecie. W końcu wybrała Uniwersytet Cornell. Co znamienne, prace badawcze prowadziła wychowując jednocześnie czworo dzieci: Davida (ur. 1950), Judith Young (1952–2014), Karla (ur. 1956) i Allan (ur. 1960). Cała czwórka poszła w ślady rodziców i wybrała karierę naukową. David i Allan zostali doktorami geologii, Judith astronomii, a Karl matematyki.

 

Vera Rubin w Parku Narodowym Rocky Mountain z dziećmi. Od lewej: Karl, Dave, Allan, Vera i Judy, 1961, z albumu rodzinnego Allana Rubina, [za:] https://whyy.org/segments/son-of-vera-rubin-reflects-on-her-life-and-impact/

W 1951 roku Rubin obroniła magisterium, w trakcie którego badała ruchy galaktyk. Wytłumaczyła wówczas, w jaki sposób galaktyki oddalają się od siebie. Jej mistrzami byli między innymi Hans Bethe i Richard Feynman. W wieku dwudziestu trzech lat rozpoczęła pracę nad rozprawą doktorską na Uniwersytecie Georgetown. Jej promotorem został George Gamow – wybitny fizyk jądrowy i kosmolog, autor hipotezy powstawania pierwiastków oraz doskonałego cyklu książek o Panu Tompkinsie. Rubin  obroniła pracę doktorską w 1954 roku. Uczona wykazała w niej, że galaktyki skupiały się razem tworząc gromady, a nie były losowo rozmieszczane we Wszechświecie, co było wówczas dość kontrowersyjnym pomysłem.

Przez kolejne lata zajmowała różne stanowiska akademickie – była wykładowcą matematyki i fizyki w Montgomery College, asystentką astronoma, następnie ponownie wykładowcą i w końcu adiunktem na Uniwersytecie Georgetown. W 1963 roku rozpoczęła roczną współpracę z Geoffreyem i Margaret Burbidge’ami, podczas której dokonała pierwszych obserwacji rotacji galaktyk przy użyciu 82-calowego teleskopu w Obserwatorium McDonald.

 

Vera Rubin w Obserwatorium Lowell przy teleskopie Flagstaff, obok niej w kasku Kent Ford – jej długoletni współpracownik, 1965, z albumu rodzinnego Allana Rubina, [za:] https://whyy.org/segments/son-of-vera-rubin-reflects-on-her-life-and-impact/

Vera chcąc uniknąć kontrowersyjnych dziedzin astronomii, obejmujących między innymi badania nad kwazarami i ruchem galaktycznym, skupiła się na rotacji i zewnętrznych obszarach galaktyk. Wraz z Kentem Fordem z Carnegie Institution w Waszyngtonie zaczęła mierzyć prędkość gwiazd na obrzeżach Wielkiej Mgławicy Andromedy. Uczeni uważali, że tak jak planety w Układzie Słonecznym gwiazdy bardziej oddalone od masywnego centrum poruszają się wolniej. Z zaskoczeniem odkryli, że prędkość bliższych i dalszych gwiazd jest taka sama. Rubin zmierzyła dodatkowo krzywe rotacji ponad dwustu innych galaktyk. Za każdym razem wyniki pomiarów były takie same. Doprowadziło to uczoną do dwóch wniosków – albo prawo grawitacji nie działa, albo galaktyki są otoczone tzw. ciemną materią. Gwiazdy muszą być zatem przyciąganie przez coś, co ma ogromną masę i jest bardzo rozległe, a czego nie widać w teleskopach. Jej pierwsze publikacje z lat siedemdziesiątych ubiegłego stulecia zostały przyjęte z niedowierzaniem (podobnie jak magisterium i doktorat). Dopiero w latach osiemdziesiątych astrofizycy musieli przyznać jej rację – w galaktykach istnieje nieznana materia, która nie emituje i nie pochłania światła oraz ma masę aż dziesięć razy większą niż łącznie wszystkie gwiazdy widoczne w teleskopach. Dziś wiadomo, że ciemna materia stanowi dziewięćdziesiąt procent materii Wszechświata i jest wykrywana przez wywoływane efekty grawitacyjne. W 1999 roku laureat Nagrody Nobla z fizyki amerykański astrofizyk Saul Perlmutter powiedział – Wszechświat zrobiony jest głównie z ciemnej materii i ciemnej energii i nie wiemy, czym jest każda z nich. Sama uczona w 2000 roku wyjaśniła – W galaktyce spiralnej, stosunek ciemnej do jasnej materii wynosi jeden do dziesięciu. To prawdopodobnie taki sam stosunek jak naszej ignorancji do wiedzy. Wyszliśmy już co prawda z przedszkola, ale jesteśmy dopiero w trzeciej klasie.

 

Wielka Galaktyka Andromedy (M31), fot. M. Nyklewicz / Astro Niki, [za:] https://www.crazynauka.pl/wielka-galaktyka-andromedy-sam-mozesz-zrobic-takie-zdjecie/

Rubin była Żydówką, jednak nie widziała konfliktu pomiędzy nauką, a religią. W udzielonym kiedyś wywiadzie powiedziała – W moim życiu nauka i religia są oddzielone. Jestem Żydówką, więc religia jest dla mnie rodzajem kodeksu moralnego i rodzajem historii. Staram się prowadzić naukę w sposób moralny i uważam, że najlepiej byłoby, gdyby nauka była postrzegana jako coś, co pomaga nam zrozumieć naszą rolę we Wszechświecie.

Vera Rubin, fot. M. Godfrey, [za:] https://dtm.carnegiescience.edu/remembering-vera
Uczona otrzymała wiele prestiżowych nagród, między innymi: Henry Norris Russell Lectureship Prize (1994), Złoty Medal Królewskiego Towarzystwa Astronomicznego (1996), Bruce Medal (2003), Medal Jamesa Craiga Watsona (2004). Przyznano jej także doktoraty honorowe Harvard University, Yale University, Smith College, Grinnell College i … Princeton University. Jej imieniem została nazwana planetoida (5726) Rubin.

Vera Rubin zmarła w wieku osiemdziesięciu ośmiu lat w nocy 25 grudnia 2016 roku w wyniku powikłań związanych z demencją. Przeżyła męża o osiem lat. Prezes Carnegie Institution, gdzie wykonywała większość swoich badań, nazwał ją skarbem narodowym.

 

 

W 2011 roku powiedziała — Moje życie było ciekawą podróżą. Zostałam astronomką, ponieważ nie wyobrażałam sobie życia na Ziemi bez próby zrozumienia, jak działa Wszechświat. I nie ulega wątpliwości, że Vera Rubin zrozumiała.

 

Literatura zalecana:

[1] K. Jepsen, Vera Rubin, Giant of Astronomy, „Symmetry”, 01–07–2020.

[2] V. Rubin, Bright Galaxies, Dark Matters. Masters of Modern Physics, Woodbury, New York City: Springer Verlag/AIP Press,1997.

[3] A. Lightman, R. Brawer, Origins: The Lives and Worlds of Modern Cosmologists, Harvard University Press (1992).

[4] P. Frances (ed.), Encyklopedia Wszechświata. Astronomia, Planety, Galaktyki, Mapy nieba, Wydawnictwo Naukowe PWN, Warszawa 2006.

[5] D. Filkin, Wszechświat Stephana Hawkinga. Opisanie Kosmosu, Dom Wydawniczy Rebis, Poznań 1998.

 

Rosalyn Sussman Yalow

 

/   Tomasz Pospieszny  /

 

Urodziłam się 19 lipca 1921 w Nowym Jorku i zawsze tam mieszkałam i pracowałam, za wyjątkiem trzech i pół lat, kiedy studiowałam na Uniwersytecie Illinois. Być może moim najwcześniejszym wspomnieniem jest to, że byłam upartym, zdeterminowanym dzieckiem. Przez lata moja mama mówiła mi, że wielkim szczęściem jest to, że zdecydowałam się robić rzeczy dopuszczalne, bo gdybym wybrała inaczej, nikt nie zawróciłby mnie z obranej przeze mnie ścieżki.

Tak pisała o sobie Rosalyn Yalow amerykańska fizyczka, która za swoje pionierskie prace związane ze stworzeniem radioimmunologicznych metod wykrywania białek oraz badań związanych z hormonami peptydowymi otrzymała w 1977 roku Nagrodę Nobla w dziedzinie fizjologii lub medycyny.

Uczona przyszła na świat 19 lipca 1921 roku. Po skończeniu szkoły średniej zdecydowała się na studiowanie fizyki, która pasjonowała ją bez reszty. Ponieważ była niezwykle uparta i wytrwała osiągnęła swój wymarzony cel. W 1945 roku obroniła doktorat z fizyki. Samodzielną pracownię fizyczną urządziła z byłego pomieszczenia dozorcy tworząc pierwszą w USA pracownię badającą radioizotopy. Dwa lata wcześniej poślubiła Aarona Yalowa, z którym miała dwoje dzieci Benjamina i Elannę. Warto podkreślić, że najważniejsza w jej życiu była rodzina, której poświeciła się bez reszty. Jest to o tyle zaskakujące, że w pracy zawodowej osiągnęła bardzo wiele. Może to potwierdzać tylko jej twórczy geniusz.

Od 1947 pracowała w Bronx Veterans Administration Hospital, gdzie zajmowała się zastosowaniem radioizotopów w medycynie. Ściśle współpracowała z Solomonem Bersonem, z którym łączyła ją także serdeczna przyjaźń. Znajomi uczonych twierdzili, że potrafią oni porozumiewać się telepatycznie. Potrafili godzinami rozmawiać o nauce i swoich badaniach. Ich wspólnym sukcesem jest opracowanie testu radioimmunologicznego (RIA) polegającego na wykrywaniu reakcji antygenu z odpowiadającym mu przeciwciałem w oparciu o pomiar radioaktywności izotopu znakującego jeden składnik reakcji – albo antygen albo przeciwciało. Pierwsze testy polegały na badaniu poziomu insuliny w cukrzycy. Szybko jednak test został rozszerzony na inne klasy związków. Uczeni nigdy nie zgodzili się opatentować swojego odkrycia. Badania Yalow i Solomona przyczyniły się w znaczący sposób do rozwoju endokrynologii.

Uczona cieszyła się ogromnym szacunkiem studentów i współpracowników. Sama zdawała sobie sprawę z wagi swoich badań. Podobno przypuszczała, że może otrzymać Nagrodę Nobla, dlatego z tej okazji corocznie w grudniu miała przygotowaną butelkę szampana. Kiedy w 1972 roku na atak serca zmarł Berson Yalow robiła wszystko, aby świat nie zapomniał o jej towarzyszu naukowej przygody. Po jego śmierci walczyła także o własne samodzielne uznanie w świecie nauki – w ciągu czterech lat opublikowała 60 prac naukowych! Własne laboratorium nazwala Laboratorium Badawczym Solomona Bersona. W ten sposób w każdej kolejnej publikacji pojawiało się nazwisko Solomona obok jej. W końcu praca Yalow została doceniona. W 1977 roku otrzymała Nagrodę Nobla. Co znamienne jest to jedyny przypadek w historii, kiedy nagrodę wręczono jedynemu żyjącemu członkowi zespołu badawczego.

101. rocznica założenia Polskiego Towarzystwa Chemicznego

Leon Marchlewski (Narodowe Archiwum Cyfrowe) i Maria Skłodowska-Curie (Domena Publiczna). Opracowanie graficzne Ewelina Wajs

 

Dnia 29 czerwca 1919 roku z inicjatywy Leona Marchlewskiego (wybitnego biochemika), Stanisława Bądzyńskiego (chemika i fizjologa) oraz przyszłego Prezydenta RP Ignacego Mościckiego (chemika, ale i wynalazcy) zostało założenie Polskie Towarzystwo Chemiczne w Warszawie.

Maria Skłodowska-Curie została wpisana na listę współzałożycieli. W liście z 7 czerwca 1919 roku prof. Wojciech Świętosławski napisał do noblistki:

Wielce Szan. Pani,

            Z inicjatywy prof. Marchlewskiego odbyły się w Warszawie, Krakowie i Lwowie posiedzenia w sprawie organizacji Polskiego Towarzystwa Chemicznego, które by skupiło wszystkich chemików Polaków, pracujących zarówno na polu naukowym, jak też w technice i pedagogii. W dn. 29 VI ma się odbyć w gmachu chemicznym Politechniki Warszawskiej zjazd członków założycieli tego Towarzystwa.

            W imieniu Komisji Organizacyjnej mam zaszczyt prosić Wielce Szan. Panią o rozpatrzenie załączonego przy niniejszym projektu statutu Towarzystwa oraz o przybycie na zebranie członków założycieli Towarzystwa w dn. 29 VI. W razie niemożliwości i przybycia może W. Szan. Pani zechce zgłosić listownie swą zgodę na wpisanie W. Szan. Panią na listę członków założycieli Polskiego Towarzystwa Chemicznego.

            Za Sekretariat Komisji Organizacyjnej:

                                                                                                          Dr Wojciech Świętosławski

Pozostaję z głębokim szacunkiem i poważaniem.

 

[Za]: K. Kabzińska, M. H. Malewicz, J. Piskurewicz, J. Róziewicz, Korespondencja polska Marii Skłodowskiej-Curie. 1881–1934, Instytut Historii Nauki PAN, Polskie Towarzystwo Chemiczne, Warszawa 1994, s. 132.

 

Gertrude Belle Elion — w poszukiwaniu nowych związków chemicznych

/   Tomasz Pospieszny   /

 

 

Przez całe życie walczyła o poprawę ludzkiego życia. Cicha, spokojna i niezwykle skromna uczona spędziła większą część życia w laboratorium oddając się swojej największej pasji – poszukiwaniu nowych związków chemicznych, które o szerokim spektrum aktywności farmakologicznej. Dzięki jej pracom ludzkość otrzymała leki zwalczające między innymi białaczkę, gościec, malarię czy wirusy grupy Herpes. Trudno się nie zgodzić z opinią Jamesa Burchalla, że Gertrude Belle Elion żyła w świecie nauki i tworzenia leków. Uważała, że jest to wielkie wyzwanie, fascynacja i wielki cel jej życia. To jej wyzwanie i jej radość.

 

Uczona urodziła się 23 stycznia 1918 roku w Nowym Jorku. Jej rodzicami byli żydowski imigrant z Litwy Robert Elion i polska imigrantka Bertha Cohen. We wspomnieniach Gertrude pisała:

 

Gertude w wieku 5 lat, [za:] www.nobelprize.org
          Urodziłam się w Nowym Jorku w zimną styczniową noc, w trakcie której w naszym mieszkaniu rury z wodą zamarzły i pękły. Na szczęście moja matka była wtedy w szpitalu, a nie w domu. Mój ojciec wyemigrował z Litwy do Stanów Zjednoczonych w wieku 12 lat. Studia wyższe ukończył w 1914 r. w New York University School of Dentistry. Moja matka w wieku 14 lat wyjechała z części Rosji, która po wojnie była częścią Polski; miała dopiero 19 lat, kiedy wyszła za mąż za mojego ojca. Pierwsze siedem lat spędziłem w dużym mieszkaniu na Manhattanie, gdzie mój ojciec miał gabinet dentystyczny, który przylegał do naszego mieszkania.

Mój brat [Herbert] urodził się około sześć lat po mnie, a wkrótce potem przeprowadziliśmy się do Bronxu, który wówczas był uważany za przedmieście Nowego Jorku. Wciąż było tam wtedy wiele otwartych przestrzeni, w których dzieci mogły się bawić – w tym duże parki z ogrodem zoologicznym na czele, gdzie spędzałam sporo czasu. Mój brat i ja mieliśmy szczęśliwe dzieciństwo. Poszliśmy do pobliskiej naszego mieszkania szkoły publicznej, do której chodziliśmy spacerem. Nasze sale lekcyjne były na ogół dość zatłoczone, ale otrzymaliśmy dobre wykształcenie podstawowe.

 

Gertrude jako absolwentka szkoły średniej, 1933, [za:] http://musings-on-science-and-math.blogspot.com/2012/09/gertrude-belle-elion-nobel-prize-winner.html
Elion była doskonałą uczennicą. W wieku piętnastu lat ukończyła z wyróżnieniem szkołę średnią. Wówczas też w jej życiu wydarzyła się tragedia – po długich cierpieniach na raka żołądka zmarł ukochany dziadek. Uczona wspominała:

Byłam dzieckiem z nienasyconym pragnieniem zdobywania wiedzy i pamiętam, że prawie tak samo cieszyłem się wszystkimi moimi kursami. Kiedy przy końcu szkoły średniej przyszedł czas, aby wybrać naukę, w której mam się specjalizować, byłem w rozterce. Gdy miałam piętnaście lat mój dziadek, którego bardzo kochałem, zmarł na raka. Sądzę, że było to jednym z decydujących czynników decydującym o wyborze mojej kariery naukowej. Byłam bardzo zmotywowana do zrobienia czegoś, co ostatecznie może doprowadzić do wyleczenia tej strasznej choroby. Kiedy wstąpiłam do Hunter College w 1933 roku, zdecydowałam się na nauki ścisłe, w szczególności na chemię.

 

Gertrude Elion ok. 1940 roku, [za:] https://amazingwomeninhistory.com/gertrude-b-elion-biochemist/
Dyplom summa cum laude otrzymała w 1937 roku. Po ukończeniu studiów Gertrude nie mogła znaleźć płatnej pracy naukowej. Początkowo pracowała jako sekretarka i nauczycielka fizyki i chemii w szkole średniej. Później znalazła nieodpłatny etat w laboratorium chemicznym. Zaoszczędziła wystarczająco dużo pieniędzy, aby studiować na New York University i ukończyć studia w 1941 roku jako magister inżynier. Podczas drugiej wojny światowej Elion pracowała w laboratorium kontroli artykułów żywnościowych w przedsiębiorstwie Quaker Maid. Później pracowała też w laboratorium farmaceutycznym Johnson & Johnson. Wcześniej odmawiano uczonej etatu podając jako argument między innymi jej urodę, która miałaby rozpraszać innych pracowników. Wojna wszystko zmieniła. Wszystkie zastrzeżenia co do zatrudniania kobiet w laboratoriach po prostu się ulotniły – wspominała.

 

W 1944 roku za sugestią ojca złożyła podanie w firmie farmaceutycznej Burroughs-Wellcome (obecnie GlaxoSmithKline). Podczas rozmowy kwalifikacyjnej natrafiła na biochemika i kierownika działu badawczego Georgeʼa H. Hitchingsa. Był on zwolennikiem innowacyjnego sposobu prowadzenia badań. Uważał, że poszukiwanie nowych leków powinno opierać się na podobieństwie strukturalnym do ich naturalnych pochodnych. Twierdził ponadto, że syntetyczne leki powinny hamować przemianę materii mikroorganizmów, przez co powinny być skutecznymi w walce z wieloma chorobami. Hitchings zlecił Elion prace nad purynami (zasadami azotowymi wchodzącymi w skład kwasów nukleinowych DNA i RNA) – adeniną i guaniną. Gertrude oddała się pracy z nieopisaną wręcz pasją. Pracowała w weekendy, wakacje, zostawała po godzinach, każdą wolną chwilę poświęcała chemii i biochemii. Przez krótki czas podjęła się studiów doktoranckich, ale gdy dziekan wydziału oświadczył jej, że powinna zrezygnować dla nich ze swojej pracy i uczestniczyć w zajęciach w pełnym wymiarze godzin Elion zrezygnowała. Wykluczone, nigdy nie zrezygnuję z mojej pracy. Wiem doskonale, kiedy mam to co jest dla mnie najlepsze i czego pragnę – powiedziała. Gertrude Elion nigdy nie zrobiła doktoratu i nie miała formalnego stopnia doktora. We wspomnieniach pisała:

Z biegiem lat moja praca stała się zarówno moim powołaniem, jak i przeznaczeniem. Ponieważ tak bardzo mi się podobała, nigdy nie czułam potrzeby wychodzenia na zewnątrz w celu relaksu. Mimo to zostałam zapaloną fotografką i podróżniczką. Być może moja miłość do podróży wynika z wczesnych lat, kiedy moja rodzina rzadko wyjeżdżała na wakacje. […] Podróżowałam dość dużo po świecie, ale wciąż jest wiele miejsc do odkrycia. Innym moim ważnym zainteresowaniem jest muzyka, nie dlatego, że jestem utalentowana muzycznie, ale dlatego, że uwielbiam jej słuchać. Jestem miłośniczką opery i jestem subskrybentem Metropolitan Opera od ponad 40 lat. Lubię też koncerty, balet i teatr.

Elion w swoim laboratorium ok. 1960 roku, [za:] Jewish Women’s Archive
Jednak najważniejsza była praca. Jej motywacja, aby poświęcić się i oddać swój twórczy geniusz pracy naukowej była jeszcze większa. W 1941 roku narzeczony uczonej Leonard Canter – znakomity statystyk w City College – zachorował na ostre bakteryjne zapalenie wsierdzia. Niestety choroba była na tyle inwazyjna, że spowodowała zatrzymanie akcji serca i śmierć ukochanego Trudy. To złamało mi serce i tak naprawdę nigdy w pełni ta rana się nie zabliźniła – wyznała bratu. Nigdy nie wyszła za mąż. Później na raka szyjki macicy zmarła matka Elion oraz na białaczkę jej bliski przyjaciel. Natomiast po śmierci ojca uczona wyznała – Zupełnie jakby [jego śmierć] zawierała wiadomość skierowaną do mnie: »To jest choroba, z którą będziesz musiała walczyć«. Pierwszy sukces przyszedł w 1948 roku, kiedy Elion i Hitchings otrzymali w swoim laboratorium 2,6-diaminopurynę substancję, która hamowała rozwój białaczki. Niestety okazała się także dość toksyczna, dlatego Elion otrzymała inną pochodną puryny 6-merkaptopurynę. Ten związek hamował białaczkę, był mniej toksyczny, i co najważniejsze, można było go stosować w terapii u dzieci. Lek ten włączając się w szlak biosyntezy nukleotydów purynowych, powoduje zahamowanie replikacji DNA, co stanowi o jego wysokiej skuteczności w terapii. Wkrótce uczeni przeprowadzili syntezę 6-tioguaniny, która skutecznie hamowała rozwój leukocytów, co z kolei wiąże się z osłabieniem reakcji układu odpornościowego. Prace nad lekami pochodnymi puryn stanowiły krok milowy związany z przeszczepianiem narządów, bowiem niektóre z nich wywoływały cytotoksyczność limfocytów. Elion i Hitchings otrzymali serię związków, które służyły już nie tylko do walki z chorobami nowotworowymi, ale osłabiały także reakcję organizmu na odrzucenie przeszczepów.

Innym wielkim osiągnięciem uczonych było przeprowadzenie przez nich syntezy allopurynolu leku będącego inhibitorem oksydazy ksantynowej, który zmniejsza wytwarzanie ksantyn i kwasu moczowego. Powoduje on zahamowanie powstawania kwasu moczowego, a co za tym idzie, zmniejszenie jego stężenia we krwi i moczu. Największą radość Elion sprawił, za sprawą allopurynolu, powrót do zdrowia w 1963 roku pewnego stróża nocnego, który od lat zmagał się z dną moczanową.

Elion i Hitchings na Uniwersytecie Georga Washingtona, 1969, Jewish Women’s Archive

Z wielu innych sukcesów uczonych należy wymienić syntezę azatiopryny leku o silnym działaniu immunosupresyjnym i cytotoksycznym, pirymetaminy stosowanej w leczeniu malarii, toksoplazmozy i zapalenia płuc, trimetoprymu – chemioterapeutyku, będącego inhibitorem reduktazy kwasu dihydrofoliowego czy nelarabiny – cytostatyku, antymetabolitu, stosowanego w trzecim rzucie leczenia białaczki limfoblastycznej i chloniaka limfoblastycznego. Najtrafniej wspólnie spędzony czas w laboratorium ujął Hitchings:

            Badania, które rozpoczęliśmy w latach czterdziestych XX wieku, przyniosło także nowe terapie lekowe na malarię (pirymetaminę), białaczkę (6-merkaptopurynę i tioguaninę), dnę moczanową (allopurinol), przeszczepianie narządów (azatiopryna) i infekcje bakteryjne (kotrimoksazol). Nowa wiedza wniesiona przez nasze badania wskazała drogę do badań, które doprowadziły do opracowania głównych leków przeciwwirusowych stosowanych w zakażeniach opryszczki (acyklowir) i AIDS (azydotymidyna).

W 1967 roku Hitchings przeszedł na emeryturę, a Gertrude została mianowana kierowniczką wydziału doświadczalnej terapii w Burroughs Wellcome Department of Experimental Therapy. Oboje uczonych, poza przeszło trzydziestoma latami niezwykle owocnej współpracy, łączyły więzy szczerej i prawdziwej przyjaźni. Elion zaprzyjaźniła się również z żoną Hitchingsa Beverly Reimer i dziećmi. Często spędzali razem wakacje. Kilkadziesiąt lat później nadal odwiedzała jego dzieci i ich rodziny. Po śmierci Beverly w 1985 roku Hitchings ożenił się ponownie w 1989 roku z Joyce Carolyn Shaver-Hitchings, która także zaprzyjaźniła się z Trudy.

 

Wraz z objęciem funkcji kierowniczej Elion skierowała swoje zainteresowania na syntezę leków zwalczających choroby wywoływane przez wirusy. Ogromnym sukcesem uczonej była synteza acyklowiru leku hamującego rozwój herpeswirusów. Uczona założyła, że lek powinien być koniem trojańskim dla wirusa. Wirus powinien go aktywować i tym samym doprowadzać swojej dezaktywacji. W końcu udało nam się wykazać, że środki antywirusowe mogą działać selektywnie i że można wykorzystać różnice między enzymami komórki i wirusa – napisała uczona. Warto zaznaczyć, że jej podejście zostało także zastosowane w projektowaniu i syntezie AZT (3′-azydo-3′-deoksytymidyny) leku pomocnego w zwalczaniu wirusa HIV.

Gertrude Elion i George Hitchings — laureaci Nagrody Nobla, 1988, Domena Publiczna

Nie powinno dziwić, że o 6:30 rano 17 października 1988 roku Elion otrzymała telefon z informacją, że otrzymała Nagrodę Nobla z fizjologii i medycyny. Nagrodę dzieliła z Georgeʼm Hitchingsʼem i Jamesem W. Black’iem z University of London, który jako pierwszy opracował klinicznie użyteczny lek do blokowania receptorów beta. Elion i Hitchings zostali wyróżnieni za sformułowanie znaczących zasad leczenia farmakologicznego (w szczególności nad wytycznymi dotyczącymi chemioterapii) i stworzenie w oparciu o nie nowej generacji leków przeciwnowotworowych. Podczas ceremonii odebrania nagrody w Sztokholmie towarzyszyło Trudy jedenastu członków najbliższej rodziny. Z całą pewnością uczona należy do niewielkiego grona laureatów Nagrody Nobla bez formalnego doktoratu. Otrzymała natomiast co najmniej dwadzieścia doktoratów honorowych oraz ogrom innych wyróżnień.

 


George Herbert Hitchings zmarł 27 lutego 1998 roku w wieku dziewięćdziesięciu trzech lat. Rok później 21 lutego 1999 roku w Północnej Karolinie w wieku osiemdziesięciu jeden lat zmarła spokojnie Gertrude Belle Elion. Wielka uczona, której ludzkość zawdzięcza tak wiele, pod koniec życia napisała:

            Po moim oficjalnym przejściu na emeryturę z funkcji kierowniczki działu w Burroughs Wellcome, pozostałam tam jako emerytowany konsultant naukowy i starałam się brać czynny udział w dyskusjach, seminariach i spotkaniach personelu związanych z badaniami. Ponadto zostałam profesorem nauk medycznych i farmakologii na Uniwersytecie Duke’a i co roku pracuję z jednym studentem medycyny trzeciego roku, który chce prowadzić badania w dziedzinie biochemii i farmakologii nowotworów. To było bardzo stymulujące doświadczenie, które mam nadzieję kontynuować przez pewien czas. Zasiadam w wielu redakcjach i nadal wykładam i piszę. W pewnym sensie wydaje mi się, że moja kariera zatoczyła koło od wczesnych lat bycia nauczycielką do dzielenia się teraz moimi doświadczeniami badawczymi z nowymi pokoleniami naukowców.

 

Literatura zalecana:

[1] G. B. Elion, Autobiography, dostęp online 25-06-2020.

[2] R. Swaby, Upór i przekora. 52 kobiety, które odmieniły naukę i świat, Warszawa 2017.

[3] S. Mukherjee: Cesarz wszech chorób. Biografia raka, Warszawa 2015.

[4] S. B. McGrayne, Nobel Prize Women in Science: Their Lives, Struggles, and Momentous Discoveries: Second Edition, Joseph Henry Press 2001.

150. rocznica urodzin Clary Immerwahr-Haber — fragment książki „Pasja i geniusz”

 

 

Ojcem Clary był Philipp Immerwahr (1839–1900), doktor chemii, którą studiował we Wrocławiu i w Heidelbergu, między innymi u Roberta Bunsena. Człowiek oczytany, wykształcony, który pragnął wykorzystać zdobytą wiedzę w praktyce. Opisywano go jako miłego, bardzo przyjaznego, niezwykle przywiązanego do żony i córek. Pełnił funkcję sędziego komercyjnego, a przez krótki czas pracował też w aptece. Po studiach rozpoczął pracę w rodzinnej firmie, którą założył jego kuzyn Georg Lunge. Firma zajmowała się produkcją sody, salmiaku (chlorku amonu), kwasu winowego i soli ołowiu. Niestety fabryka nie utrzymała się zbyt długo na rynku i po zamknięciu produkcji Philipp zajął się handlem. Wkrótce mógł otworzyć sklep w Breslau, specjalizując się w sprzedaży kosztownych tkanin i dywanów angielskich i perskich. Wydaje się, że ojciec Clary był faktycznie obdarzony zmysłem kupieckim, gdyż firma bazowała nie tylko na produkcji własnej, ale również eksporcie wszelakich tkanin i materiałów. Ponadto zaczął interesować się agronomią. Początkowo dzierżawił gospodarstwo rolne, a następnie wykupił ziemię i został właścicielem cukrowni oraz majątku we wsi Polkendorf niedaleko Środy Śląskiej, trzydzieści kilometrów od Breslau. Philipp ożenił się ze swoją kuzynką Anną Krohn (1846–1890), której zamożni rodzice byli wiedeńskimi kupcami. Określano ją jako kobietę o niezwykłej życzliwości, dobroci i zdolności zjednywania sobie ludzi. Państwo młodzi otrzymali od matki Philippa Liny Immerwahr mieszkanie w Breslau, w którym przebywali podczas częstych wizyt w mieście i w którym w przyszłości podczas studiów będzie mieszkać Clara. Większość roku rodzina Immerwahrów spędzała na gospodarstwie rolnym, na okres zimowy natomiast zawsze zjeżdżali do matki Philippa do Breslau.

Clara przyszła na świat 21 czerwca 1870 roku w majątku Polkendorf. Była najmłodsza z rodzeństwa – miała dwie siostry: Elsbeth (Elli) i Gertrud Rosalie (Lotte lub Rose) oraz brata Paula. Rodzice przykładali niezwykłą wagę do wykształcenia swoich dzieci. I co dość dziwne w tamtych czasach, uważali, że nie tylko Paul powinien zdobyć podstawową edukację. Tak więc poza wpajaniem podstawowych cnót – prostoty, umiaru i skromności, w domu kładziono szczególny akcent na naukę, zainteresowanie którą Clara wykazywała od najmłodszych lat. Podczas gdy jej starsze siostry uczyły się, gdyż tak kazali rodzice, ona robiła to z przyjemnością. Z czasem zaczęła patrzeć z zazdrością na brata, który z wolna wkraczał w tajniki nauk ścisłych. Początkowo wszystkie trzy panny były posyłane do sąsiedniej wsi, gdzie na prywatnych lekcjach nauczyciel Robert Hoppe wprowadzał je w tajniki nauki. Clara była niezwykle ciekawa, wykazywała się dużą cierpliwością, gorliwością, a co najważniejsze, zadawała pytania, za czym szło swego rodzaju odkrywanie świata. Jej wielkim marzeniem było pójść w ślady brata i dostać się do gimnazjum. Po prywatnych lekcjach Clara wraz z siostrami trafiła do szkoły dla panien z tzw. dobrych domów. Jej fascynacja naukami ścisłymi doprowadzała „wykładowców” podstawowych umiejętności gospodarczych, na przykład szycia, haftu, gotowania, do pasji. Nauczycielka robót ręcznych zwykła mawiać, że „śpiewanie jest dla dziewcząt, elokwencja jest dla mężczyzn”. Podobna dewiza przyświecała siostrom Clary, które myślały raczej o szybkim zamążpójściu niż nauce. Pomimo skupienia całej uwagi na nauce Clara wraz ze swoją najlepszą przyjaciółką Lise Meffert uczęszczała na lekcje tańca. Poznała tam dwudziestodwuletniego przystojnego, obdarzonego gęstą czupryną i skupionym spojrzeniem zza binokli Fritza Habera. […]

Wydaje się, że Clara zauroczyła Fritza od pierwszego wejrzenia. Chciał się z nią ożenić jak najszybciej, ale dziewczyna nie była przekonana, czy to rzeczywiście dobry kandydat. Na przeszkodzie stanęli także jej rodzice, którzy chcieli wiedzieć, jak starszy od ich córki o zaledwie dwa lata Fritz, bez wykształcenia i pracy, chciałby utrzymać siebie, żonę i ewentualne dzieci. Ponadto dość szorstka powierzchowność kandydata do ręki ich córki pozostawiała także wiele do życzenia. Lisa Meffert, z którą Clara w dzieciństwie przysięgła mówić sobie zawsze prawdę – nawet tę najgorszą i niewygodną – i z którą mogła rozmawiać o wszystkim, szczerzej niż z rodzeństwem, powiedziała, że Fritz jest być może „błyskotliwy, ale to pozerski zarozumialec”. Wydawał się Clarze również „zbyt pewny siebie, jeśli nie arogancki”. Z drugiej strony, jak twierdzi Joanna Hytrek-Hryciuk, Clara: „ […] nie chciała rezygnować z tego uczucia. Chociaż miała wątpliwości, czy nadaje się do roli żony i matki, to była zakochana. Co równie ważne, bała się samotności, ówczesny świat nie miał bowiem zbyt wiele do zaoferowania niezamężnej kobiecie.” Przygnieciony ciężarem zarzutów Fritz musiał się jednak poddać. W 1886 roku wyjechał do Berlina, by podjąć studia chemiczne. W wyniku nacisków ojca przeniósł się na politechnikę, gdzie w 1891 roku pod kierunkiem profesora Carla Libermanna (1842–1914) uzyskał doktorat.

Fraulein Immerwahr mogła skupić się teraz całkowicie na wyznaczonym celu – nauce. Wydaje się, że przyszła uczona była szczególnie zainteresowana naukami biologicznymi i chemicznymi. Niestety zdobycie wymarzonej profesji w dziedzinie chemii czy biologii stało pod znakiem zapytania. Tym bardziej, że z wielkim politowaniem i drwiną spoglądał na nią nawet wuj Wilhelm Alexander Freund (1833–1917), uznany profesor ginekologii w Breslau, który 1878 roku dokonał pierwszego wycięcia nowotworowej macicy. Jak się okazuje, nawet oświeceni ludzie miewają konserwatywne poglądy. Szczególne zdolności wykazywała w naukach ścisłych. Można powiedzieć, że już na tak wczesnym etapie nauki przyrodnicze były jej dobrze znane. Należy podkreślić, że podobnie jak Maria Skłodowska Clara dużo czasu poświęcała na naukę w samotności. To, co było dla niej niedostępne w szkole, studiowała samodzielnie. Oczywiście seminarium nauczycielskie dawało możliwość poznawania języków obcych, z czego panna Immerwahr skorzystała. Łatwo przychodziła jej nauka języka angielskiego i francuskiego – to właśnie te języki miałby w przyszłości zapewnić jej nauczycielski byt. Zresztą zaraz po skończeniu nauki Clara krótko pracowała jako guwernantka. W seminarium nauczycielskim miała też szczęście spotkać pannę Hedwig Knittel, wykształconą podróżniczkę, która doceniła jej potencjał i jednocześnie stanowiła dla niej inspirację intelektualną. To najprawdopodobniej ona podarowała Clarze podręcznik dla dziewcząt autorstwa Jane Marcet z 1806 roku pod tytułem Rozmowy o chemii. I to właśnie ta książka całkowicie zmieniła spojrzenie przyszłej uczonej na nauki chemiczne…

Tomasz Pospieszny, Pasja i geniusz. Kobiety, które zasłużyły na Nagrodę Nobla, Wydawnictwo Po Godzinach, Warszawa 2019

 

108. rocznica urodzin Madame Wu

/   Tomasz Pospieszny   /

 

 

Jest tylko jedna rzecz gorsza niż powrót z laboratorium do domu, w którym zlew jest pełen brudnych naczyń, dzień bez laboratorium! – wyznała kiedyś Chien-Shiung Wu jedna z najwybitniejszych uczonych wszechczasów. Przyszła na świat 31 maja 1912 roku. Przeszła do historii jako Madame Wu, Pierwsza Dama Fizyki lub chińska Madame Curie. Wu słynęła z pracowitości i poświęceniu dla idei, dlatego nikogo nie powinien dziwić inny przydomek jakim nazywali ją współpracownicy – Smocza Dama. Dziś istnieje pogląd, że Chien-Shiung Wu była jedynym urodzonym w Chinach naukowcem pracującym przy projekcie Manhattan.

Za radą ojca – Ignoruj przeszkody i zawsze idź przed siebie – dążyła do wyznaczonego celu wiedząc, że tylko w USA może ziścić swoje największe marzenie – zostać fizyczką. Uczyła się i współpracowała z najlepszymi Ernestem O. Lawrencem czy Robertem Millikanem. W pracy doktorskiej wykazała, że ksenon-135, który ma krótki czas życia ma ogromne powinowactwo do wychwytywania neutronów. Powstaje on w reakcji rozszczepienia jądra uranu i natychmiast pochłania wolne neutrony wyhamowując tym samym reakcję łańcuchową, przez co reaktor jądrowy krótko bo rozpoczęciu pracy wygasa. Bardzo szybko zyskała sławę ekspertki od badania radioaktywności – w szczególności pasjonowało ją promieniowanie beta.

W 1956 roku dwóch amerykańskich fizyków Tsung-Dao Lee i Chen Ning Yang przewidziało teoretycznie, że w rozpadzie beta łamana jest parzystość (uczeni podejrzewali, że cząstki w jądrze atomowym mogą czasem faworyzować jeden lub drugi kierunek – krótko mówiąc, czasami mogą być „praworęczneˮ, a czasami „leworęczneˮ). Zasugerowali także eksperyment, który mógłby potwierdzić ich teorię. Wydawał się on jednak tak skomplikowany, że właściwie niewykonalny. W 1957 roku Wu wykonała w kooperacji z National Institute of Standards and Technology eksperyment pokazujący to zjawisko w rozpadzie beta. Jej eksperyment jest dziś uważany za jeden z najdonioślejszych w dziejach współczesnej fizyki. Dziesięć miesięcy po ogłoszeniu wyników spektakularnego eksperymentu, świat dowiedział się, że Nagrodę Nobla z fizyki za wnikliwe badanie tak zwanych praw parzystości, które doprowadziły do ważnych odkryć dotyczących cząstek elementarnych, jako pierwsi Chińczycy otrzymali Tsung-Dao Lee i Chen Ning Franklin Yang. Chien-Shiung Wu została pominięta! Według opinii wielu badaczy historii nauki nieprzyznanie jej Nagrody Nobla było nie tylko niesprawiedliwe, ale zakrawało o skandal. Otrzymała wiele różnych innych nagród i wyróżnień, w tym słynną Nagrodę Wolfa z fizyki w 1978 roku.

Jej zainteresowania naukowe wiązały się także z badaniami nowych, krótkożyciowych rodzajów egzotycznych atomów oraz anemii sierpowatej.

W jednym z wywiadów powiedziała – Szczerze wątpię, by jakakolwiek osoba o otwartym umyśle naprawdę wierzyła w błędne wyobrażenie, że kobiety nie mają intelektualnej zdolności do nauki i technologii. Nie uważam też, że czynniki społeczne i ekonomiczne są faktycznymi przeszkodami, które uniemożliwiają uczestnictwo kobiet w nauce i technice.

Uczona zmarła na udar mózgu 16 lutego 1997 roku w drodze do szpitala. Zgodnie z jej wolą prochy zostały rozsypane na dziedzińcu szkoły Ming De School, którą założył jej ojciec i w której rozpoczęła się jej życiowa przygoda – miłość do nauki.

 

Zapraszamy do pobrania planszy z wystawy „Pasja & geniusz”.

 

Cecilia Payne-Gaposchkin i tajemnica gwiazd

/   Tomasz Pospieszny   /

 

Nocne niebo fascynowało ludzkość od zarania dziejów. Ludzie wpatrywali się w magiczne świecące punkty na niebie tłumacząc ich obecność na różne znane sobie sposoby. Przez wiele wieków nikt nie przypuszczał, że gwiazdy zawierają olbrzymie ilości wodoru. Jako pierwsza hipotezę tę wysunęła w swojej rozprawie doktorskiej Cecilia Payne-Gaposchkin. Należy jednak pamiętać, że U mężczyzn doktorat postrzegany jest jako inwestycja. U kobiet jako fanaberia… Niestety jej sugestie odrzucono, dopiero w 1929 roku genialna myśl uczonej została powszechnie uznana.

Cecilia Payne w wieku 6 lat, 1906, [za:] https://www.harvardsquarelibrary.org/biographies/cecilia-payne-gaposchkin-3/
Cecilia Helena Payne-Gaposchkin przyszła na świat 10 maja 1900 roku w Wendover w Anglii. Jej matka Emma Leonora Helena (z domu Pertz) pochodziła z Prus z bardzo szanowanej rodziny, zaś ojciec Edward John Payne był londyńskim adwokatem, historykiem i muzykiem. Cecilia miała młodszego brata Humfry’ego (1902–1936), który został archeologiem oraz siostrę Leonorę Florence Mary (1904–1996), która została uznaną pianistką. Gdy Cecilia miała cztery lata Edward Payne zginął tragicznie. Jego ciało znaleziono w kanale w Wendover, a okoliczności śmierci pozostają niejasne. Emma Payne z dnia na dzień została głową rodziny i została zmuszona do samodzielnego wychowywania rodziny.

Cecilia w wieku sześciu lat została posłana do miejscowej szkoły, która została otwarta po drugiej stronie ulicy, na której mieszkała. Szkołę prowadziła panna Elizabeth Edwards. Zapewniała ona uczniom dobre wykształcenie. Payne-Gaposchkin po latach napisała:

            W ciągu sześciu lat spędzonych w jej szkole panna Edwards zapewniła mi dobre wykształcenie. Czasami myślę, że nauczyła mnie wszystkiego, co musiałam wiedzieć. W wieku 12 lat mówiłam po francusku i niemiecku, znałam podstawy łaciny i miałam pełną znajomość arytmetyki. Geometria i algebra były częścią naszej nauki i szczególnie podobało mi się rozwiązanie równań kwadratowych.

Cecilia była bardzo muzykalna i wykazywała duże zdolności w grze na pianinie, jednak muzyka nie odegrała żadnej roli w jej szkolnej edukacji. Payne była leworęczna i musiała pisać prawą ręką (był czas, kiedy uczniów leworęcznych zmuszano do pisania prawą ręką!). Ponadto, zaczynała odczuwać pewne pierwsze oznaki szowinizmu.

Kiedy skończyła dwanaście lat rodzina przeprowadziła się do Londynu, gdzie jej brat mógł podjąć naukę w lepszej szkole. Payne uczęszczała do St. Mary’s College w Paddington. Niestety nie była w stanie studiować matematyki ani przedmiotów ścisłych, gdyż była to szkoła kościelna, w której przykładano dużą wagę do nauki religii. Zajęło mi wiele dziesięcioleci zanim mogłam przezwyciężyć urazy i wątpliwości, które powstały z dobrych intencji, ale w bigoteryjnej atmosferze – pisała po latach uczona.

 

Od najmłodszych lat Payne marzyła, aby zostać naukowcem. Szczególnie interesowała się botaniką. Niestety bez odpowiednich książek i pomocy dobrych nauczycieli jej marzenia zaczynały z wolna gasnąć. Starała się jednak na tyle na ile mogła czytać książki, które ją interesowały. Pożyczała je najczęściej od krewnych i znajomych matki. Kiedy przeczytała Principia Newtona zakochała się w matematyce. W drugim roku nauki poznała Dorothy Dalglish – nauczycielkę nauk przyrodniczych, która zauważyła niezwykłe zdolności i zainteresowania uczennicy. Zaczęła jej pożyczać książki z fizyki i zabierać na wycieczki do muzeów. Niestety sytuacja rodziny Payne’ów zmieniła się diametralnie, kiedy wybuchła pierwsza wojna światowa. Ponieważ matka Cecili urodziła się w Niemczech rodzina z dnia na dzień stała się politycznie podejrzana. Ponadto Dalglish poważnie zachorowała i musiała zrezygnować z nauczania. Przyszła uczona w Autobiografii napisała:

Kolejne lata były czasem zagubionym i nieszczęśliwym. Upierałam się, że muszę uczyć się zaawansowanej matematyki i niemieckiego (bo to byłoby konieczne dla naukowca), a żadna inna dziewczyna w szkole nie miała takich potrzeb ani wymagań. […] W końcu jeden z uprzejmych nauczyciel uczył mnie niemieckiego. Podjęłam się studiów rachunku różniczkowego i geometrii, a matematyka nabrała [dla mnie] pewnego rodzaju mistycznego znaczenia.

St. Paul Girls School w Londynie, b.d., Domena publiczna

Gustav Holst, b.d., [za:] https://www.gramophone.co.uk/features/article/gustav-holst-beyond-the-planets
Niestety w ostateczności została zmuszona do opuszczenia szkoły. Pod koniec pobytu w szkle usłyszała od wyjątkowo złośliwego nauczyciela matematyki, że nigdy nie zostanie naukowcem. W 1918 roku wstąpiła do St. Paul’s Girls’ School, gdzie bardzo zachęcono ją do poznawania świata nauki. Bez większego nacisku zachęcano ją także do rozwijania talentów muzycznych. Nauczyciel muzyki Gustav Holst – słynny kompozytor – zachęcał Cecilię do zostania muzykiem. Było to niezwykle kuszące, ale ostatecznie miłość Payne do nauki zwyciężyła. Uwielbiała fizykę. Oczarowały ją całkowicie mechanika, dynamika, elektryczność i magnetyzm, optyka, termodynamika i… podstawy astronomii. W 1919 roku otrzymała stypendium Mary Eward for Sciences i we wrześniu rozpoczęła studia uniwersyteckie w Newnham College w Cambridge. Z równą pasją studiowała fizykę i matematykę, co chemię i botanikę. Jednak z czasem stwierdziła, że botanika jest rozczarowująca. Po roku nauki oddała się całkowicie studiowaniu fizyki. Kiedy wysłuchała wykładu Nielsa Bohra pochłonęły ją studia nad budową atomu. Jednakże prawdziwy zwrot miał dopiero nastąpić. Jego „sprawcą” został sir Arthur Eddington.

Spotkanie fizyków w Lejdzie w Holandii w 1923 roku;  1. rząd [siedzą] Artur Eddington i Henrik Lorentz, 2. rząd [stoją] Albert Einstein, Paul Ehrenfest i Willem de Sitter; Domena publiczna
Dzień po wysłuchaniu jego wykładu całkowicie skoncentrowała się na fizyce. To, co tam usłyszałam, całkowicie zmieniło mój obraz świata. Kiedy wróciłam do domu, byłam w stanie odtworzyć z pamięci każde słowo, które usłyszałam – wspominała. Zainteresowałam się astronomią po wykładzie Eddingtona na temat wyników obserwacji potwierdzających ogólną teorię względności. W tym okresie przygotowywałam się do egzaminu kwalifikacyjnego z nauk przyrodniczych. Postanowiłam zdawać egzamin z matematyki, żeby móc studiować pod kierunkiem Eddingtona… Mogę […] nawet powiedzieć, że w rzeczywistości zakochałam się w nim – dodawała.

Harlow Shapeley, b.d., Domena publiczna

Zaczęła uczęszczać na wszystkie wykłady i kursy z astronomii, studiować książki i artykuły naukowe. Rozpoczęła prowadzić obserwacje astronomiczne w Obserwatorium Newnham College. W 1923 roku zdobyła licencjat z nauk przyrodniczych, bowiem oficjalnie nie była studentką astronomii. W tym samym roku wysłuchała wykładu Harlowa Shapleya – dyrektora Harvard College Observatory. Po wykładzie poprosiła go o krótką rozmowę, która stała się zwrotna w jej życiu. Shapley zachęcił ją do spędzenia roku w Obserwatorium Harvarda. Rekomendację (po rozmowie z kandydatką) wystawił sam Eddington – Zdobyła szeroką wiedzę z zakresu fizyki, w tym astronomii i posiada cenne cechy, jest pełna energii i entuzjazmu dla swojej pracy. […] Wierzę, że jest typem osoby, która, mając taką możliwość, poświęci całe swoje życie astronomii i nie będzie chciała po kilku latach pracy uciekać, aby wziąć ślub. W 1924 roku Cecila Payne wyjechała z Anglii, aby zmienić oblicze astronomii.

Shapley bardzo szybko poznał talent i pasję swojej studentki. Przekonał ją do napisania rozprawy doktorskiej. Później uczona wspominała:

[Shapley] bardzo zachęcał [do pracy], był bardzo miły i pomocny, zawsze był zainteresowany tym, co wszyscy robili i myśleli. […] To, co naprawdę mnie zainspirowało, to ogłoszenie, które przeczytałam, zanim opuściłam Cambridge w Anglii, na temat Nagrody Adamsa na następny rok – przedmiotem było badanie materii w wysokich temperaturach. […] Pomyślałam sobie: „Napiszę artykuł na temat badań i obserwacji materii w wysokich temperaturach” […]. Nie spodziewałam się zdobyć Nagrody Adamsa; Wątpiłam, czy kobieta się kwalifikuje. Ale powiedziałam sobie: „Przynajmniej mam zamiar przyczynić się do tego przedmiotu tak dobrze i wartościowo, jak praca teoretyczna, którą ktoś zamierza napisać i odebrać nagrodę.” Więc byłam dość ambitna, teraz wydaje się to zabawne.

 

Trzy pokolenia kobiet z obserwatorium astronomicznego Harvardu; 1. rząd [siedzą]: Agnes M. Hoovens, Mary B. Howe, Harvia H. Wilson, Margaret Walton, Antonia C. Maury, Florence Cushman; 2. rząd: Lillian L. Hodgdon, Annie J. Cannon, Evelyn F. Leland, Ida E. Woods, Mabel A. Gill; 3. rząd: Margaret Harwood, Cecilia Payne, Arville D. Walker, Edith F. Gill, 1925, Harvard College Observatory History in Images, Harvard University Archives
Cecilia Payne, Harvard, 1926, Domena publiczna

W latach osiemdziesiątych XIX wieku astronomowie z Harvard College opracowali klasyfikację gwiazd według ich widm, która opierała się na siedmiu typach oznaczanych: O, B, A, F, G, K i M (zawdzięczamy to przede wszystkim pracy Annie Jump Cannon). Uważano, że sekwencja ta odpowiada temperaturze powierzchni gwiazd. Za O uchodziły gwiazdy najgorętsze, zaś M odpowiadała najmniejsza temperatura. W swojej rozprawie doktorskiej Cecilia Payne wykorzystała linie widmowe wielu różnych pierwiastków chemicznych oraz pracę indyjskiego astrofizyka Meghnada Saha. Wyprowadził on równanie odnoszące się do stanów jonizacji pierwiastków w gwieździe w zależności od temperatury. Ponadto Payne ustaliła, że gwiazdy składają się głównie z wodoru, który według jej badań był najczęściej występującym we wszechświecie pierwiastkiem, oraz z helu. W 1925 roku Cecilia Payne została pierwszą kobietą, która uzyskała stopień doktora astronomii Radcliffe College.

Henry Norris Russel, ok. 1921, Domena publiczna

Szkic jej pracy zawierający te wyniki, został wysłany do wiodącego astronoma tamtych czasów Henry’ego Norrisa Russella. Uczony po zapoznaniu się z pracą Payne stwierdził, że to wyraźnie niemożliwe. Russell uważał, że gwiazdy powinny mieć podobny skład chemiczny jak Ziemia. Payne bojąc się gniewu i astronomów i wyszydzenia w środowisku naukowym w wnioskach rozprawy napisała:

            Ogromne ilości pochodzące od tych pierwiastków w gwiezdnej atmosferze prawie na pewno nie są rzeczywiste. Prawdopodobnie wynik można wziąć pod uwagę, dla wodoru jako kolejny aspekt jego anormalnego zachowania… a hel… prawdopodobnie odbiega z podobnych przyczyn.

Cecilia Payne i jej bliska przyjaciółka Frances Woodworth Wright, lata 30. XX wieku, Sara Schechner & Ken Launie Collections, [za:] https://wolba.ch/gazette/cecilia-and-sergei-american-astronomers/

Kiedy we wrześniu 1925 roku przyjechała do Cambridge Eddington powiedział – No, tak może być na powierzchni gwiazd, ale nie wie pani, czy tak jest wewnątrz. Okazało się, że to Cecilia Payne miała rację. Astronomowie Otto Struve i Velta Zebergs określili później jej rozprawę jako bez wątpienia najbardziej błyskotliwą rozprawą doktorską, jaka kiedykolwiek została napisana w dziedzinie astronomii. Należy jednak oddać sprawiedliwość Russellowi i Eddingtonowi, którzy ostatecznie przyznali rację Payne. Russell pisząc o atmosferze Słońca twierdził, że zawiera ona 60 części wodoru (w objętości), 2 części helu, 2 tlenu, 1 część metali i 0,8 części wolnych elektronów, z których niemal wszystkie pochodzą z jonizacji metali. Późniejsze badania zmieniły podane przez niego liczby, ale nie podważyły tezy, że najbardziej rozpowszechnionym pierwiastkiem chemicznym w gwiazdach jest wodór, a po nim hel.

 

Cecilia i Siergiej, lata 30. XX wieku, Sara Schechner & Ken Launie Collections, [za:] https://wolba.ch/gazette/cecilia-and-sergei-american-astronomers/
W 1931 roku Payne została obywatelką USA. Latem 1932 roku jej najbliższa przyjaciółka z obserwatorium Adelaide Ames utonęła w wypadku kajakowym. W maju 1933 roku zginął w wypadku jej bliski przyjaciel Bill Waterford i zmarła Betty Leaf – przyjaciółka z Anglii. Payne rzuciła się w wir pracy. W 1933 roku wyjechała do Europy, by spotkać się z rosyjskim astronomem Borisem Gerasimowiczem pracującym wcześniej w Obserwatorium Harvarda, a z którym planowała napisać książkę o gwiazdach zmiennych. Odwiedziła też Berlin i Getyngę, gdzie miało się odbyć spotkanie Astronomische Gesellschaft. Na zjeździe poznała Siergieja Gaposchkina, który próbował opuścić Europę ze względu na narastającą falę faszyzmu. Po powrocie do Stanów Zjednoczonych Payne załatwiła dla Gaposchkina wizę. Przyjechał do Stanów Zjednoczonych w listopadzie 1933 roku. Fascynacja i pasja szybko przerodziła się w miłość. Uczeni pobrali się w marcu 1934 roku. Mieli troje dzieci, Edwarda (ur. 1935), Katherine (ur. 1937) i Petera (ur. 1940). Od 1935 roku Payne-Gaposchkin zaczęła publikować wyniki badań wspólnie z mężem. W 1938 roku napisali razem książkę Gwiazdy zmienne. Wspólnie opublikowali też około 350 prac. W 1938 roku otrzymała tytuł Astronoma, została pierwszą kobietą profesorem astronomii na Uniwersytecie Harvarda. W 1965 roku przeszła na emeryturę. Nie przestała jednak pracować – od 1967 roku aż do swojej śmierci zajmowała stanowisko w Smithsonian Astrophysical Observatory.

 

Cecilia Payne-Gaposchkin otrzymała wiele wyróżnień i nagród m. in.: Nagrodę Annie Jump Cannon American Astronomical Society (1934), wybrano ją na członkinię American Philosophical Society (1936), członkinię American Academy of Arts and Sciences (1943). Przyznano jej również doktoraty honorowe: Wilson College (1942), Smith College (1943), Western College (1951), Colby College (1958), Women’s Medical College of Philadelphia (1961). W 1976 roku Amerykańskie Towarzystwo Astronomiczne przyznało jej Nagrodę Henry’ego Norrisa Russella.

Cecilia i Siergiej na spotkaniu Amerykańskiego Towarzystwa Astronomicznego w Mexico City; skan z American Institute of Physics, Emilio Segre Visual Archives, [za:] https://wolba.ch/gazette/cecilia-and-sergei-american-astronomers/
W sierpniu 1979 roku zdiagnozowano u uczonej nowotwór płuc. Cztery miesiące później, 7 grudnia Cecilia Payne-Gaposchkin zmarła spokojnie w swoim domu.

            Młodzi ludzie, w szczególności młode kobiety, często proszą mnie o radę. Oto ona – nie rozpoczynaj kariery naukowej dla pieniędzy czy sławy. Są łatwiejsze sposoby by je zdobyć. Podejmij się jej tylko jeśli wiesz, że nic innego nie da ci satysfakcji. Nic innego nie będziesz z tego miała… – mówiła. Cecilia Payne-Gaposchkin miała nie tylko satysfakcję, ale też ogromne sukcesy, które dały jej nieśmiertelność na niezapisanych kartach nauki.

 

Literatura zalecana:

[1] C. Payne-Gaposchkin, K. Haramundanis, Cecilia Payne-Gaposchkin: An Autobiography and Other Recollections, Cambridge University Press, 1984.

[2] V. Rubin, Cecilia Payne-Gaposchkin. [w]: N. Byers, G. Williams, (eds.). Out of the Shadows: Contributions of 20th Century Women to Physics, Cambridge University Press, 2006.

[3] A. I. Miller, Imperium gwiazd, Albatros Wydawnictwo A. Kuryłowicz, Warszawa, 2006.

[4] P. Frances (red.), Encyklopedia Wszechświata, Wydawnictwo Naukowe PWN, Warszawa 2006, s. 203–231.

[5] M. Hoskin (red.), Historia astronomii, Wydawnictwo Uniwersytetu Warszawskiego, Warszawa 2015, str. 206–261.

[6] D. Moore, What Stars Are Made Of: The Life of Cecilia Payne-Gaposchkin, Harvard University Press, 2020.

Marietta Blau i cząstki elementarne

 

29 kwietnia 1894 roku w Wiedniu przyszła na świat jedna z najwybitniejszych fizyczek XX wieku – Marietta Blau. Uczona położyła podwaliny pod współczesną fizykę cząstek elementarnych. Do jej największych osiągnięć naukowych należy opracowanie niezwykle przydatnej metody wykorzystującej klisze fotograficzne do detekcji cząstek. Dzięki jej badaniom i pomysłowości po raz pierwszy zastosowano fotograficzne emulsje jądrowe, które były użyteczne do obrazowania i dokładnego pomiaru własności cząstek takich jak cząstki alfa czy protony, a także badania zdarzeń jądrowych o wysokiej energii. Jako pierwsza Blau użyła emulsji jądrowych do wykrywania neutronów. Dodatkowo stworzyło to metodę dokładnego badania reakcji wywołanych przez zjawiska promieniowania kosmicznego. Jej prace znacznie przyspieszyły rozwój fizyki cząstek. Warto zaznaczyć, że na przykład z kształtu toru pozostawionego przez cząstkę można wyznaczyć jej pęd – te cząstki, które mają duży pęd poruszają się po liniach prostych, natomiast cząstki o małym pędzie po zwartych spiralnych. Znajomość pędu i pewnego rodzaju promieniowania emitowanego przez naładowane cząstki można wyznaczyć ich masę. Właśnie pod takie badania podwaliny położyła swoim geniuszem Marietta Blau. Niestety nigdy nie otrzymała Nagrody Nobla, chociaż była nominowana cztery razy do nagrody z fizyki i raz z chemii. Za użycie światłoczułej emulsji oraz wytworzenie emulsji jądrowej, dzięki której można badać procesy jądrowe otrzymał w 1950 roku Nagrodę Nobla z fizyki Cecil Powell. Profesor Ruth Lewin Sime podkreśla, że gdyby Blau otrzymała Nagrodę Nobla z Powellem w 1950 roku (Wambacher zmarła w kwietniu tego roku), zapewniłoby jej to miejsce w historii nauki. Ponieważ jednak nie dzieliła z nim nagrody, ona i jej praca zostały całkowicie zapomniane.

Trudno się nie zgodzić z opinią, że uczona jest najbardziej tragiczną postacią w historii wokół promieni kosmicznych. Jej życie i twórczość charakteryzowały przeciwności losu, ale jej osiągnięcia i wyniki pracy przewyższają osiągnięcia wielu innych osób, którym przyznano Nagrodę Nobla w kontekście promieni kosmicznych.

Niestety życie nie szczędziło i innych upokorzeń uczonej – dyskryminowano ją jako kobietę, a także jako Żydówkę. Utrudniano rozwój kariery naukowej, często pracowała bez żadnego wynagrodzenia. Jej najbliższa uczennica i współpracownica Hertha Wambacher jako zatwardziała nazistka zdradziła ją i ukradła jej wyniki badań. Marietta Blau spędziła wiele lat na emigracji w Meksyku i Stanach Zjednoczonych, żyjąc samotnie i oddając się nauce. Pod koniec życia miała znaczne kłopoty ze wzrokiem.

Marietta Blau zmarła w południe, 27 stycznia 1970 roku na chorobę nowotworową. Zgodnie z ze swoim życzeniem została skremowana, a urnę złożono w grobie ojca na centralnym cmentarzu Wiednia. Jej życie było poświęcone nauce, a [ona] była pełna dobroci i miłosierdzia – powiedział brat uczonej.

 

Jedna z plansz naszej wystawy poświęcona jest Marietcie Blau. Kliknięcie w poniższy obrazek pozwala na pobranie planszy w formacie pdf.

Harriet Brooks i radon

Współpracownik wielkiego Ernesta Rutherforda, a prywatnie szwagier Harriet Brooks, Arthur Stewart Eve napisał – Miss Brooks opublikowała kilka artykułów na temat różnych zjawisk radioaktywnych. Była ona jednym z najbardziej popularnych i pracowitych pracowników w początkowym okresie badania zjawiska [radioaktywności].

Harriet Brooks należy bez wątpienia do grona najwybitniejszych fizyczek jądrowych badającą przemiany jądrowe i radioaktywność. Współpracowała i uczyła się od najwybitniejszych uczonych epoki – Josepha Johna Thomsona, Ernesta Rutherforda i Maria Skłodowskiej-Curie. Rutherford bardzo wysoko cenił jej zdolności i talent. Uważał, że Brooks dorównuje zdolnościami i geniuszem Marii Curie. To właśnie dzięki niemu Brooks uważana jest za pierwszą kanadyjską uczoną zajmującą się fizyką jądrową. Uczona przeprowadziła serię eksperymentów mających na celu określenie charakteru radioaktywnych emisji z toru. Należy do pierwszych osób, które odkryły gaz szlachetny radon i próbowały określić jego masę atomową. Rutherford w 1901 roku opublikował wyniki wspólnej pracy z Brooks w „Natureˮ. W pracy napisał: W tych eksperymentach pomogła mi Miss H.T. Brooks, a wyniki wskazują, że emanacja z radu jest w rzeczywistości gazem radioaktywnym. Według wielu historyków nauki było to niezwykle ważne odkrycie. Odkrycie to miało kluczowe znaczenie dla postępu badań radioaktywnych. W tym czasie uważano, że pierwiastki promieniotwórcze zachowują swoją tożsamość podczas uwalniania promieniowania. Rozpoznanie gazu o niższej masie cząsteczkowej wskazywało, że nie może on być po prostu gazową formą toru. Ten właśnie wynik skłonił Rutherforda, wraz z Frederickiem Soddym, do późniejszego zrozumienia, że nastąpiła transmutacja jednego pierwiastka w drugi. Jednak istotny pionierski krok Brooks w odkryciu tego procesu był długo pomijany.

Uczona w laboratorium Rutherforda zaobserwowała tak zwane zjawisko odrzutu. Kiedy atomy radioaktywne wyrzucają z siebie promienie alfa, doznają odrzutu, tak jak działo armatnie po wystrzeleniu pocisku. Odrzucone atomy pozostają w preparacie i dalej ulegają przemianie alfa. Obserwacja Brooks została przeoczona, a efekt został odkryty na nowo cztery lata później przez Ottona Hahna i Lise Meitner.

W 1907 roku uczona wycofała się z życia naukowego i poświęciła się rodzinie. Harriet Brooks zmarła w otoczeniu najbliższych, w wieku pięćdziesięciu sześciu lat 17 kwietnia 1933 roku. Ernest Rutherford w „Natureˮ, napisał o niej: […] była kobietą o wielkim wdzięku i zdolnościach, była mile widzianą ozdobą każdego laboratorium badawczego i pozostawiła w nim wszystko, co wiązało się z jej żywym wrażeniem wspaniałej osobowości i charakteru.

 

Harriet Brooks jest jedną z bohaterek naszej wystawy  „Pasja & Geniusz”. Serdecznie zapraszamy do pobrania planszy poświęconej Harriet w formacie pdf. Wystarczy kliknąć w poniższy obrazek.

 

Anna Wessels Williams — pogromczyni błonicy

 

             Kiedy mówimy o bakteriologii natychmiast przychodzą nam na myśl Ludwik Pasteur i Robert Koch. Pierwszy z nich jako pogromca wścieklizny, a drugi gruźlicy. Kiedy jednak zaczniemy się zastanawiać nad rolą kobiet, które odegrały istotną rolę w tworzeniu tej nauki trudno wymienić chociaż jedną. A warto pamiętać, że mocno rozpowszechnioną, osiągającą niemalże epidemiczne poziomy chorobę – błonicę ludzkość zwalczyła dzięki pracy Anny Wessels Williams. Uczona mówiła, że pragnie przeniknąć tajemnice życia, zrozumienia: co, dlaczego, kiedy, gdzie i jak. Ta cecha nasilała się z biegiem lat, aż w końcu stała się prawdziwą pasją. Ta pasja nie opuściła jej nigdy.

Luis Paseteur [fot. E. Pirou, Wellcome Collection] i Robert Koch, domena publiczna, CC BY 4.0

Anna Wessels Williams przyszła na świat 17 marca 1863 roku w Hackensack w New Jersey. Jej rodzicami byli Jane Van Saun i William Williams. Ojciec był nauczycielem w szkole prywatnej i to najprawdopodobniej on był wprowadził w świat nauki Annę. Dziewczynka była niezwykle ciekawa wszystkiego co ją otaczało. Fascynowała ją przyroda, w szczególności rośliny. Mając dwanaście lat po raz pierwszy w życiu zobaczyła mikroświat dokonując obserwacji pod mikroskopem szkolnym. Po ukończeniu publicznego liceum zapisała się do New Jersey State Normal School i wybrała studia związane z kierunkiem pedagogicznym. Po ukończeniu studiów w 1883 roku przez pewien czas pracowała w szkole.

New Jersey State Normal School w Montclair, 1910, domena publiczna

Jej życie uległo gwałtownej zmianie w 1887 roku. Williams była świadkiem wydarzenia, na które nie miała wpływu, ponieważ nie posiadała wystarczającej wiedzy i doświadczenia. Młodsza siostra uczonej Millie urodziła martwe dziecko sama ledwo unikając śmierci. Anna uważała, że gdyby asystująca przy porodzie akuszerka posiadała większą wiedzę i umiejętności praktyczne można by uniknąć tragedii. Postanowiła zrezygnować z zawodu nauczycielki i podjąć studia medyczne. Zapisała się do Żeńskiego College’u Medycznego przy Nowojorskim Szpitalu dla Kobiet i Dzieci, gdzie wykładały między innymi lekarka i feministka, walcząca o prawa kobiet oraz zniesienie niewolnictwa – Elizabeth Blackwell i uważana za najwybitniejszą lekarkę swoich czasów, pierwsza kobieta, która otrzymała członkostwo amerykańskiej Akademii Medycyny – Mary Putnam Jacobi. Jacobi były niezwykle energiczna, błyskotliwa i bardzo wymagająca względem studentów. Jednocześnie potrafiła okazać zrozumienie i dawać Annie wsparcie i porady. Pomogła jej też w podjęciu kilku kluczowych decyzji. Williams wspominała, że jej mentorka często ujawniała naszą niewiedzę, ale w taki sposób, że nie byliśmy przygnębieni, ale zachęcani do jej zmniejszenia.

Elizabeth Blackwell, ok. 1877 [Encyclopedia Britannica] i Mary Puttnam Jacobi, ok. 1897, domena publiczna
Anna ukończyła studia w 1891 roku i rozpoczęła karierę naukową. Otrzymała etat wykładowczyni patologii i higieny. W latach 1892–1893 doskonaliła swoje umiejętności na stażach zagranicznych, między innymi na uniwersytetach medycznych w Wiedniu, Heidelbergu, Lipsku i Dreźnie. Po latach wspominając początki swojej kariery napisała:

            Zaczynałam karierę w sposób, który wcześniej praktycznie nie był obierany przez żadną kobietę. W owym czasie miałam ogromną wiarę w siłę każdej ludzkiej indywidualności, dla której wystarczająca była wola i umiejętności niezależnie od płci, rasy, religii czy jakiegokolwiek innego czynnika. Dlatego uważałam, że kobiety powinny mieć równe szanse z mężczyznami, aby bez żadnych przeszkód doskonalić własne zdolności.

 

Emil Behring, 1897, domena publiczna

W 1894 roku, po powrocie do Nowego Jorku, zgłosiła się na ochotnika do niedawno otwartego laboratorium diagnostycznego New York City Department of Health, gdzie pracowała przez kolejne trzydzieści dziewięć lat! Błonica osiągnęła wówczas poziom epidemiczny pośród dzieci pochodzących z biednych rodzin. Choroba ta przenosiła się drogą kropelkową. Jej pierwszymi objawami była podwyższona temperatura i dreszcze, ale szybko dochodziło do porażenia mięśni, zaburzeń pracy serca i układu nerwowego. W 1890 roku niemiecki bakteriolog Emil von Behring wraz z japońskim asystentem Shibasaburo Kitasato (który po latach określił czynnik zakaźny dżumy) opracował antytoksynę (potocznie „surowicę”, czyli substancję zawierającą przeciwciała) przeciwko błonicy i tężcowi. Został pierwszym laureatem Nagrody Nobla z medycyny. Komitet Noblowski w uzasadnieniu napisał, że dzięki [jego pracom] otwarta została nowa droga dla medycyny, a lekarze otrzymali ważną broń w walce przeciw chorobie i śmierci. Nic dziwnego, że zainteresowanie zwalczaniem chorób wywoływanych przez bakterie było głównym wyzwaniem i motywacją dla badaczy.

 

 

William H. Park, 1928, [za:] The Lillian and Clarence de La Chapelle Medical Archives, NYU Health Sciences Library
Williams rozpoczęła współpracę z dyrektorem Williamem Halockiem Parkiem. Zainteresowanie skierowała na szczep bakterii, który dawałby odpowiednio silną toksynę, co z kolei zapewniłoby efektywniejsze aktywowanie antytoksyny. Odpowiednia antytoksyna mogłaby być produkowana na skalę masową. Kiedy Park wyjechał na wakacje Anna wyizolowała i zidentyfikowała nowy szczep bakterii z łagodnego przypadku błonicy migdałków. Generował on toksynę pięćset razy silniejszą od stosowanej wcześniej. Szczep ten nazwano później Park-Williams nr 8. Odkrycie to okazało się kluczowe dla rozwoju skutecznej antytoksyny o wysokiej wydajności. W ciągu zaledwie roku antytoksyna znalazła się w masowej produkcji, a wydziały zdrowia publicznego rozdawały ją bezpłatnie lekarzom w Stanach Zjednoczonych i Wielkiej Brytanii. Wkrótce odkrycie uczonej przypisano Parkowi, a nazwę szczepu skrócono do Park nr 8. Williams nie oburzała się. Uważała, że odkrycia rzadko są dokonywane przez jedną osobę. Miała powiedzieć – To moje szczęście i honor być w tak szczególny sposób powiązaną z doktorem Parkiem. Zresztą należy podkreślić, że Park były skromnym i uczciwym kolegą. W 1939 roku zauważył – W pojedynkę niczego nie dokonałem.

 

Badania naukowe były dla Williams najważniejsze, zaś praca z pacjentami często ją rozczarowywała. Praca była często ekscytująca, ale przede wszystkim rozczarowująca i przygnębiająca. Spotkałam taką masę brudnych, lekkomyślnych i nieodpowiedzialnych ludzi, że doszłam do wniosku, że nie byli gotowi na to, co mogliśmy im dać – napisała we wspomnieniach.

 

Mary B. Kirkbridei Meyer Harris szczepią pożywkę pałeczkami błonnicy, 1901/1902 [za:] New York State Department of Health Wadsworth Center
W 1895 roku Williams została zatrudniona jako pracownik laboratorium, a rok później wyjechała do Paryża do Instytutu Pasteura, gdzie chciała prowadzić badania nad szkarlatyną. Zaskoczył ją jednak sposób pracy w Paryżu. Pracownicy instytutu pracowali w samotności, nie dzielili się swoim doświadczeniem ani spostrzeżeniami, nie prowadzono dyskusji nad zawiłymi problemami badawczymi. Mało tego nie użyczano sobie preparatów i sprzętu laboratoryjnego. Uczonej nie udało się powtórzyć sukcesu jaki przyniosły jej badania nad błonicą. Udało się jej z kolei zaangażować w badania nad wścieklizną. Po powrocie do Nowego Jorku prowadziła prace mające na celu poprawienie diagnostyki i zapobieganie tej chorobie. W 1898 roku wyniki jej badań umożliwiły wprowadzenie skutecznej szczepionki. Mimo to wielu pacjentów nadal umierało w męczarniach z powodu długiego (około dziesięciodniowego) okresu diagnostycznego. Anna zorientowała się, że wirus niszcząc układ nerwowy i mózg pozostawia właśnie w tych tkankach swój ślad. Rozpoczęła bardzo żmudne badania, wielokrotnie powtarzając eksperymenty, obserwacje i weryfikując wyniki.

 

Adelchi Negri, ok. 1910, The National Library of Medicine

Podobne badania prowadził na uniwersytecie w Pawii mikrobiolog i patolog Adelchi Negri, który niezależnie od Anny ogłosił wyniki swych prac. W 1904 roku opisał on powstawanie specyficznych komórek mózgowych powstających w wyniku wścieklizny. Dziś komórki te nazywa się ciałkami Negriego… Co ciekawe uczony uważał, że czynnikiem etiologicznym wścieklizny były pierwotniaki. Williams nie poddała się jednak i kontynuowała badania nad wściekłością. W 1905 roku opracowała test diagnostyczny, który dawał wyniki w ciągu kilku minut, a nie dni. Był on używany przez kolejne trzydzieści lat, kiedy to został ulepszony.

 

W 1905 roku uczona została mianowana na stanowisko pierwszego asystenta dyrektora laboratorium. Rozpoczęła i koordynowała prace badawcze nad chorobami wenerycznymi, ospą, zapaleniem opon mózgowych, zapaleniem płuc czy grypą. Badając infekcje oczu, w szczelności jaglicę, opracowała niezwykle dokładny test diagnostyczny, dzięki któremu uratowano wzrok wielu ludziom.

 

Podczas pierwszej wojny światowej Williams była jedną z niewielu kobiet pracujących nad identyfikacją patogenu odpowiedzialnego za pandemię grypy. Nie ograniczała się jednak do analizy próbek wysyłanych z frontu. We wrześniu 1918 roku wraz z Parkiem została wezwana do obozu wojskowego na Long Island w celu zbadania choroby na pierwszej linii frontu. We wspomnieniach pisała:

Nigdy nie zapomnę moich uczuć, kiedy uczestniczyłam w pierwszej sekcji zwłok. W większości przypadkach śmierć nastąpiła tak szybko, że nie pozostawiła śladów choroby na ciałach.

Polowy szpital zakaźny w Camp Funston w Kansas w USA, 1918, National Museum of Health and Medicine

Wspólnie z Parkiem napisała dwie książki – w 1905 roku bardzo popularną „Mikroorganizmy chorobotwórcze, w tym bakterie i pierwotniaki: praktyczny podręcznik dla studentów, lekarzy i pracowników służby zdrowiaˮ oraz w 1929 roku „Kto jest kim wśród mikrobówˮ.

 

Anna Wessels Williams i okładka książki, którą napisała wspólnie z Williamem Parkiem, US National Library of Medicine

 

Poza nauką Williams uwielbiała latać samolotami wyczynowymi oraz prowadzić bardzo szybko samochody – o czym może świadczyć ogromna liczba zachowanych mandatów. Uczona lubiła ryzyko i szybowanie w przestworzach.

Nigdy nie wyszła za mąż, chociaż w młodości sporo o tym myślała. W dzienniku napisała: Małżeństwo! Oczywiście, że chcę związać się z tym jedynym –ale kto to jest? To jest pytanie. Jak mogę być pewna? W 1908 roku napisała, że prawdopodobnie jest to w dużej mierze moja wina [życie w samotności], ale nie wiem, czy całkowicie tego żałuję, biorąc pod uwagę życie, które muszę prowadzić. Kiedyś dodała, że wolała być raczej samotna niż szczęśliwa z powodu braku wiedzy.

W 1934 roku pomimo olbrzymich zasług dla bakteriologii światowej burmistrz Nowego Jorku zmusił ją do przejścia na emeryturę. Kolejne dwadzieścia lat Williams mieszkała ze swoją siostrą w Westwood, New Jersey, gdzie zmarła w 1954 roku w wieku dziewięćdziesięciu lat. Jej współpracownik William Hallock Park zmarł piętnaście lat wcześniej, w 1939 roku w Nowym Jorku.

Anna Wessels Williams pomimo ogromnych zasług pozostaje zapomniana i nieznana. Nieliczni tylko specjaliści pamiętają o jej wielkim naukowym dziele. Sądzę, że jest jednym z najważniejszych bakteriologów na świecie, o którym warto pamiętać.

 

Literatura zalecana:

[1] John Barry, Anna Wessels Williams, MD: Infectious Disease Pioneer and Public Health Advocate, American Association of Immunologists (AAI). Retrieved 28 July 2018.

[2] Anna Wessels Williams, Autobiography, Chapter 22, str. 27–34, 1935. quod.lib.umich.edu. Retrieved 2019-10-24. Courtesy of: 79-M182-81-M157, Carton 2, Harvard University, The Radcliffe Institute for Advanced Study, Schlesinger Library, Cambridge.

[3] Regina Morantz-Sanchez, Sympathy and science: women physicians in American medicine, The University of North Carolina Press, Chapel Hill & London 2000.

[4] Rachel Swaby, Upór i przekora. 52 kobiety, które zmieniły naukę i świat, Wydawnictwo Agora, Warszawa 2017.

[5] Martha J. Bailey, Bibliographical sketches of significant contributions of women in science from historical accounts through 1900, American Women In Science: A Biographical Dictionary, Santa Barbara, California, ABC-CLIO, 1994.

[6] Marilyn Bailey Ogilvie, Women in Science: Antiquity Through the Nineteenth Century: A Biographical Dictionary with Annotated Bibliography, Cambridge, MA, MIT Press, 1986.

[7] Hans Zinsser, William Hallock Park, 1863-1939, Journal of Bacteriology, 1939, 38 (1): str.1–3.