W cieniu matematyczki. Historia Julii Lermontowej

 

Julia Lermontowa, b.d., domena publiczna

 Julia Lermontowa była pierwszą kobietą na świecie, która uzyskała dyplom z chemii, pierwszą Rosjanką z doktoratem z chemii i trzecią kobietą w Europie posiadającą ten stopień naukowy. Była uważana za jedną z najważniejszych postaci w chemii. Mimo wielu naukowych zasług pozostawała zawsze w cieniu innych. Podobnie jak Maria Skłodowska-Curie, Lermontowa nie umiała być sławną. Przez całe życie Lermontowa stała w cieniu swojej przyjaciółki Zofii Kowalewskiej, matematyczki, która została pierwszą kobietą profesorem w Europie.

 

Uczona urodziła się w arystokratycznej rodzinie 21 grudnia 1846 roku (według kalendarza juliańskiego) lub 2 stycznia 1847 r. (według kalendarza gregoriańskiego) w Petersburgu. Jej matką była Elisawjeta Andrejewna Kossikowska, zaś ojcem generał Wsiewołoda Lermontow. Warto odnotować, że stryjkiem przyszłej uczonej był Michaił Lermontow, jeden z najważniejszych twórców romantyzmu.

Julia Lermontowa, b.d., domena publiczna

Julia była wychowywana zarówno w tradycji grecko-prawosławnej, jak i rzymskokatolickiej. Rodzice Julii zaliczani byli do moskiewskiej inteligencji, mieli też szeroki światopogląd. Uważali, że kobiety powinny mieć zapewnioną edukację na wysokim poziomie. Ich córka miała opiekę zagranicznych guwernantek, co sprzyjało nauce języków obcych. Dbano także, aby uczyli ją wysokiej klasy nauczyciele prywatni. Dziewczynce pozwalano czytać i w żaden sposób nie ograniczano jej intelektualnych potrzeb. Kiedy rodzice zorientowali się, że interesują ją nauki ścisłe zadbali by miała dostęp do literatury specjalistycznej, a co ważniejsze zezwolili jej na wykonywanie eksperymentów w domu. Lermontowa początkowo myślała o studiach medycznych, jednak przeraziły ją prace w prosektorium. Postanowiła więc podjąć studia na Państwowym Uniwersytecie Rolniczym w Moskwie. Niestety pomimo poparcia wielu profesorów jej kandydatura została odrzucona. Julia nie poddała się jednak i postanowiła wyjechać na studia za granicę. Z dzisiejszej perspektywy to nic nadzwyczajnego, ale jeśli uświadomimy sobie, że żyła ona w XIX wieku, pochodziła z Rosji to jej decyzja wymagała dużej odwagi, wytrwałości i silnej osobowości. Warto podkreślić, że Julia nie była odosobniona w swoim postanowieniu.

 

Sofja Kowalewska, domena publiczna

Dzięki kuzynce Annie Jewreinowej (pierwszej kobiecie doktor prawa), poznała Zofię Kowalewską [patrz: Tomasz Pospieszny, Sofja (Zofia) Kowalewska, PSN, 2 stycznia 2019]. To właśnie ona przekonała rodziców Julii, że w towarzystwie zamężnej kobiety będzie mogła czuć się bezpiecznie, a co ważniejsze będzie miała przyzwoitkę.

Jesienią 1869 roku Julia pojechała do Heidelbergu, gdzie rozpoczęła studia na tamtejszym uniwersytecie. Zamieszkała z Kowalewskimi. Dzięki wstawiennictwu Zofii, Julia została przyjęta do laboratorium kierowanym przez Roberta Bunsena. Bunsen słynął z wielkiego oddania dla chemii. Był świetnym naukowcem i wykładowcą. Wykłady uzupełniał ciekawymi doświadczeniami. Niestety słynął też z niechęci do kobiet. Pomimo tego uległ czarowi Zofii i zgodził się na uczestniczenie w jego zajęciach Julii. Karl Weierstrass – mentor Kowalewskiej – w jednym z listów do niej pisał:

 

On [Bunsen] planował nie przyjmować do swojego laboratorium siebie żadnych kobiet, zwłaszcza Rosjanek. Nie chciał, żeby panna Lermontowa pracowała u niego lub słuchała jego wykładów. Wówczas Ty [Kowalewska] poszłaś do niego i błagałaś go tak żarliwie, że nie mógł się oprzeć i sprzeniewierzył się swoim zasadom.

Robert Wilhelm Bunsen, domena publiczna

W laboratorium Bunsena Julia zaczęła badania związków platyny polegające na rozdzielaniu jej stopów i precyzyjnym wyznaczeniu ciężaru atomowego. Prawdopodobnie na polecenie Mendelejewa podjęła też prace związane z udoskonaleniem procesów separacji innych metali z grupy platynowców. Był to wstępny, ale niezwykle ważny warunek dla kolejnego etapu ich uporządkowania w układzie okresowym, nad którym pracował Mendelejew.

 

August Wilhelm von Hofmann, 1902, Wellcome Library, domena publiczna, CC BY 4.0

W 1871 roku Lermontowa wraz z Kowalewską przeniosła się do Berlina. Tutaj rozpoczęła badania w laboratorium Augusta Wilhelma Hofmanna, jednego z najwybitniejszych chemików organików epoki. Została jego studentką, a ich współpraca zaowocowała opublikowaniem prze Julię pracy dotyczącej struktury i syntezy 4,4′-diaminoazobenzenu. 24 października 1874 roku w Getyndze Julia Lermontowa przedstawiła tezy swojej rozprawy doktorskiej związane z analizą związków metylowych. Egzaminy nie należały do najłatwiejszych, jednakże profesorowie orzekli, że zdała je magna cum laude. Warto podkreślić, że jednym z egzaminatorów był Friedrich Wöhler, który jako pierwszy uczony przeprowadził syntezę mocznika – związku organicznego z substratów nieorganicznych.

Po obronie doktoratu Julia postanowiła powrócić do Rosji. W rodzinnym kraju podczas uroczystości związanych z jej sukcesem naukowym poznała osobiście Dmitrija Mendelejewa oraz innych uczonych należących do Rosyjskiego Towarzystwa Chemicznego m. in. Aleksandra Butlerowa zwolennika wyższego wykształcenia dla kobiet. Chemik zasugerował jej by dołączyła do jego grupy badawczej. Julia przyjęła zaproszenie znanego uczonego ochoczo i została jego asystentką. Do jej zadań należały między innymi badania związane z syntezą kwasu 2-metylo-2-butenowego.

Od 1876 roku rozpoczęła współpracę z prestiżowym naukowym czasopismem „Bulletin de la Société Chimique de Paris”. W tym samym roku Julia zaraziła się durem brzusznym, którego następstwem było ciężkie zapalenie mózgu. Na szczęście wyszła z choroby i mogła w pełni sił intelektualnych powrócić do pracy. W 1877 roku zmarł ojciec uczonej Aby pomóc rodzinie Julia przeniosła się do Moskwy, gdzie w laboratorium Władimira Markownikowa rozpoczęła badania ropą naftową. Opracowała zestaw laboratoryjny do ciągłej destylacji ropy naftowej, który były wysoko ceniony przez jej współczesnych. Prowadziła też badania nad węglowodorami alifatycznymi, czego efektem była m.in. synteza 1,3-dibromopropanu.

W 1878 r. na konferencji Rosyjskiego Towarzystwa Chemicznego A. P. Eltekow omówił nową metodę syntezy rozgałęzionych węglowodorów nienasyconych. Wiele eksperymentów przeprowadziła Julia. Dziś reakcja jest znana jako reakcja Butlerowa–Eltekowa–Lermontovej (Rysunek 1).

Rysunek 1. Reakcja Butlerowa-Eltekoawa-Lermontowej (R – część alkilowa; X – halogen np. jod, brom; MetO – tlenek metalu; Δ – temperatura).

 

Sofja Kowalewska z córką Fufą, b.d., [za:] E. Høyrup, Verdens føorste kvindelige, professionelle matematiker, Matilde: Nyhedsbrev for Dansk Matematisk Forening, 2004.
W uznaniu jej zasług w 1881 r. przyjęto Julię do Rosyjskiego Stowarzyszenia Technicznego. Została tym samym pierwszą kobietą należącą do towarzystwa.

Julia odziedziczyła rodzinną posiadłość Semenkowo, gdzie spędzała coraz więcej czasu. W końcu osiadła tam na stałe. Zainteresowała się rolnictwem, a jej praca nad udoskonaleniem produkcji sera sprawiła, że stał się on przysmakiem sprzedanym w całej Rosji i na Ukrainie. Wiosną 1889 r. poważnie zachorowała na obustronne zapalenie płuc. Jesienią tego samego roku pojechała do Sztokholmu, by odwiedzić Kowalewską. Nagła śmierć przyjaciółki w 1891 r. głęboko ją poruszyła. Julia przysposobiła córkę Zofii Fufę. W grudniu 1919 r. Julia Lermontowa doznała wylewu do mózgu, w wyniku którego zmarła. Nigdy nie wyszła za mąż. Jej pasierbica Fufa Kowalewska uznawała ją za matkę. Odziedziczyła jej cały majątek.

 

Literatura zalecana:

  1. M. Offereins, Julia Lermontova (1846-1919), [w] J. Apotheker, L.S. Sarkadi, European Women in Chemistry, Wiley-VCH Verlag GmbH & Co. KGaA, 2011, s. 27–30.
  2. M. Creese, Early Women Chemists in Russia: Anna Volkova, Iuliia Lermontova, and Nadezhda Ziber-Shumova, Bull. Hist. Chem., 1998, 21, s. 19–24.
  3. E. Roussanova, Julia Lermontowa – die erste promovierte Chemikerin, Nachrichten aus der Chemie, 2003, 51 (12), s. 1296–1297.
  4. A. H. Koblitz, Science, Women, and the Russian Intelligentsia: The Generation of the 1860s, Isis, 1988, 79 (2), s. 208–226.

Wizyta profesora Pierre’a Joliot w Polsce

24 października 2019 roku wnuk Marii Skłodowskiej-Curie i Piotra Curie, syn Ireny i Fryderyka Joliot-Curie, prof. Pierre Joliot odebrał doktorat honoris causa Uniwersytetu im. Marii Curie-Skłodowskiej w Lublinie.

Profesor Pierre Joliot w Muzeum Marii Skłodowskiej-Curie w Warszawie

 

Dzień później wraz z żoną prof. Anne Joliot oraz dyrektorem paryskiego Muzeum Curie Renaud’em Huynh był gościem Muzeum Marii Skłodowskiej-Curie w Warszawie. 26 października w Muzeum babki profesora Joliot odbyło się spotkanie z gościem, podczas którego odpowiadał on na pytania prowadzących spotkanie dyrektora Muzeum Marii Skłodowskiej-Curie w Warszawie Sławomira Paszkieta i prof. Tomasza Pospiesznego. Warto odnotować, że w spotkaniu uczestniczyli także inni członkowie rodziny patronki Muzeum – prawnuczka Heleny Skłodowskiej-Szalay (siostry Marii) Hanna Karczewska z mężem Mateuszem, wnuczka Józefa Skłodowskiego (brata Marii) Jagoda Szuprowicz oraz jego prawnuk Piotr Chrząstowski.

Pan Sławomir Paszkiet – Dyrektor Muzeum MSC, profesor Pierre Joliot i profesor Tomasz Pospieszny w trakcie spotkania

 

Profesor Pierre Joliot i profesor Tomasz Pospieszny

 

Anne i Pierre Joliot oraz Tomasz Pospieszny

 

Ewelina Wajs w rozmowie z profesorem Pierre’em Joliot

 

Pan Piotr Chrząstowski – prawnuk Józefa Skłodowskiego w rozmowie z Tomaszem Pospiesznym

 

Mieliśmy zaszczyt oprowadzić po naszej wystawie Pasja&geniusz prawnuków Heleny i Józefa Skłodowskich. Od lewej: Mateusz i Hanna Karczewscy oraz Piotr Chrząstowski

 

Piotr Chrząstowski, Hanna Karczewska, Tomasz Pospieszny i Mateusz Karczewski, fot. PSN

 

Rodzinne wspomnienia w Muzeum MSC w Warszawie, fot. PSN

Spotkanie z prof. Pierre’m Joliot było wyjątkowe pod każdym względem – pełne wspomnień, niezwykłych historii, ale także scjentycznego spojrzenia na otaczającą nas rzeczywistość i współczesne tworzenie nauki.

Dziękujemy panu Sławomirowi Paszkietowi za zaproszenie do udziału w tym szczególnym i niepowtarzalnym wydarzeniu.

Autorem zdjęć (jeśli nie podano inaczej) jest Maciek Domański.

Okolicznościowe wydawnictwo Uniwersytetu Marii Curie-Skłodowskiej w Lublinie, fot. PSN

122. rocznica urodzin Ireny Joliot-Curie

Z okazji urodzin drugiej w historii nauki laureatki Nagrody Nobla z chemii zapraszamy do przeczytania fragmentu książki „Pasja i geniusz. Kobiety, które zasłużyły na Nagrodę Nobla”.

 

Irenka w Saint-Rèmy-lès-Chevreuse, gdzie rodzina spędzała lato, 1904, [za:] Marie Curie. Une femme dans son siècle, Paris 2017, s. 99.
Irène Joliot-Curie przyszła na świat 12 września 1897 roku w Paryżu. Nieco ponad rok później jej rodzice, Maria Skłodowska-Curie i Pierre Curie, ogłosili odkrycie dwóch nowych cudownych pierwiastków radioaktywnych – polonu i radu. Sądzę, że można śmiało wysunąć wniosek, iż Irène urodziła się w przededniu naukowej rewolucji. Z listu Marii do siostry Heleny wiadomo, że poród nastąpił „przynajmniej o 15 dni za wcześnie; przyspieszyło go zmęczenie przy porządkowaniu mieszkania i rzeczy zimowych, dreptałam za wiele przez ostatnie dni1. Poród odebrał teść Marii – Eugènie Curie. Kilka dni później, 27 września, na raka piersi zmarła matka Pierre’a Sophie-Claire. Eugène zamieszkał z rodziną syna i wydaje się, że od tego momentu był „najlepszym przyjacielem dziewczynki, najtkliwszym jej wychowawcą2. Irène, wspominając dziadka, pisała, że był człowiekiem:

[…] o postępowych poglądach, wolnomyślicielem i antyklerykałem3. […] Jestem przekonana, że w niektórych kwestiach politycznych dziadek miałby te same poglądy co ja, ponieważ mój sąd opiera się na prostych zasadach, które on mi wszczepił. Moje nastawienie w stosunku do spraw politycznych i religijnych zawdzięczam w znacznie większym stopniu jemu niż matce4.

Jej siostra Ève Curie wspominała z kolei, że:

[…] jemu to niewątpliwie zawdzięcza późniejsza Irena Joliot-Curie równowagę psychiczną,

on ją nauczył stronić od wszelkiego smutku i bezgranicznie kochać rzeczywistość, on jej przekazał swój antyklerykalizm, a nawet swoje sympatie polityczne5.

Sama uczona zaś dodawała:

W początkach mego wykształcenia ważną rolę odegrał dziadek, dawał mi dużo książek i kazał się uczyć wierszy, które nie bardzo jeszcze rozumiałam, ale których piękno już odgadywałam. Z tych czasów pozostało mi zamiłowanie do uczenia się poezji6.

Irena z dziadkiem Eugeniuszem Curie, [za:] https://www.pourlascience.fr/sd/histoire-sciences/deux-jeunes-gens-complementaires-4516.php, dostęp 12 września 2019
Nie powinno to dziwić, gdyż doktor Curie miał więcej czasu niż synowa, a jednocześnie był bardziej antyklerykalny niż ona. Irène przejęła nieprzejednany stosunek dziadka do religii. Dopóki żyła, nigdy nie weszła do kościoła, nawet żeby podziwiać dzieła sztuki sakralnej7. We wspomnieniach poświęconych matce napisała:

Matka, która nigdy nie była wierząca, mówiła nam niekiedy: „Wychowuję was bez religii. Później, kiedy będziecie dorosłe, będziecie mogły, o ile zechcecie, przyjąć religię, która by wam odpowiadała”. Dziadek, stary wolnomyśliciel, nie ochrzcił swoich synów, co było rzeczą rzadką w tamtym czasie. Na pewno nie mógłby zrozumieć ani uznać, że synowie jego mogliby się nawrócić na jakąś religię. Ja zajmuję to samo stanowisko i chociaż szanuję szczerze wiarę, nie mogłabym współżyć blisko ze swoim dzieckiem, którego pojęcia tak bardzo odbiegałyby od moich8.

Bronisława Dłuska w liście do Ludwika Wertensteina pisała, że Irène:

[…] namiętnie kochała matkę i uważała ją za swoją wyłączną własność. Nikt inny nie miał

na nią wpływu z wyjątkiem dziadka, dr. Eugeniusza Curie, który po śmierci żony zamieszkał

z rodzicami Ireny. Był to człowiek niezwykle wykształcony i niezmiernej dobroci. […] Mając

dużo wolnego czasu, dziadek opiekował się troskliwie i mądrze małą Ireną. Uczył ją czytać

i pisać, chodził z nią na spacery i rozmawiał całymi godzinami. Wpływ matki i dziadka odbił

się wcześnie na dziecku, urabiając w nim poważny stosunek do życia i do lekceważenia błahszych jego stron9.

Maria była oddaną, kochającą i troskliwą matką. W listopadzie 1897 roku w jednym z listów do Władysława Skłodowskiego pisała:

Nadal karmię moją małą królewnę, ale niedawno obawialiśmy się, że będę musiała przestać. W ciągu ostatnich trzech tygodni Irena nagle spadła na wadze, wyglądała niezdrowo, była bez ochoty do życia i smutna. Teraz idzie jednak ku lepszemu. Jeśli Irena będzie normalnie przybierała na wadze, będę nadal karmić ją sama. Jeśli nie, wezmę mamkę, mimo przykrości, jaką mi to sprawi, i mimo kosztów: za nic na świecie nie chciałabym zaszkodzić rozwojowi mojego dziecka10.

Maria z Ireną, ok. 1904, Musee Curie (coll. ACJC)

Natomiast w grudniu 1898 roku do Bronisławy Dłuskiej donosiła, że z Irène „robi się coraz większy łobuz, co do żywienia jest bardzo wybredna i, oprócz tapioki na mleku, nic prawie regularnie jeść nie chce, nawet jajek”11. W notatniku notowała etapy rozwoju córki:

Styczeń 1898 roku: Chowa się dobrze i zaczyna przekręcać się w łóżeczku na bok.

Luty: Zaczyna bać się obcych ludzi i rzeczy, podniesionych głosów itp.12

20 lipca: […] robi „pa” rączką – zupełnie już dobrze chodzi na czworakach i mówi „gogli – gogli – go”. Przez cały dzień przebywa w ogrodzie w Sceaux, na dywanie. Tacza się po nim, wstaje, siada…

15 sierpnia: […] wyrznął się siódmy ząbek, na dole z lewej strony. Może się utrzymać, stojąc pół minuty bez niczyjej pomocy. Od trzech dni kąpiemy ją w rzece. Krzyczy przy tym, ale dzisiaj (czwarta kąpiel) przestała krzyczeć i zaczęła się bawić, uderzając rączkami o wodę. Bawi się z kotem i goni go z bojowymi okrzykami. Nie boi się już obcych. Dużo śpiewa.

Z krzesła potrafi sama wdrapać się na stół.

17 października: […] chodzi bardzo dobrze, zupełnie już nie biega na czworakach.

5 stycznia 1899 roku: […] ma piętnaście zębów13.

Maria i Piotr Curie z córką Ireną oraz Jean i Henrietta Perrinowie z córką Aliną, ok. 1900, [za:] http://www.bg.agh.edu.pl/MSC/msc.php?page=04C_PiotrCurie, dostęp 12 września 2019
Należy pamiętać, że w czasie gdy Irène stawiała dzielnie pierwsze kroki i poznawała świat na swój własny dziecięcy sposób, jej rodzice poznawali mistyczny świat atomów. Wnuczka Marii Hélene Langevin-Joliot podkreśliła:

Moja matka […] mówiła, że były dwie Marie, jedna ta z laboratorium i druga w domu. W domu pełniła rolę matki, która troszczy się o dzieci. Piotr dużo mniej zajmował się córkami,

więc w ich domu panował tradycyjny w owych czasach podział ról. Oczywiście mieli w domu pomoc, kogoś, kto gotował, pilnował dzieci. Ojciec Piotra mieszkał z nimi i w dużej mierze przejął opiekę nad dziećmi, szczególnie moją matką, co było ogromnie ważne, zwłaszcza po śmierci Piotra14.

Irène podobnie jak jej ojciec niewiele mówiła, była uparta, nieśmiała i skryta, myślała wolno, ale dogłębnie, cechowała ją wielka inteligencja. Uczennica Marii Eugénie Cotton podaje, że kiedy Irène w gabinecie przyrodniczym w Sevres zobaczyła gipsowy odlew ciosu mamuta, zapytała ją, czy kiedykolwiek widziała mamuta. Gdy Cotton wyjaśniła, że mamuty żyły bardzo dawno, zaintrygowana Irene powiedziała: „No to spytam się dziadzi, jest stary. Musiał przecież kiedyś je widzieć15. Dziadek nauczył ją też wrażliwości. Kiedyś zobaczyła obraz Rembrandta przedstawiający starą biedną kobietę i wykrzyknęła, zanosząc się płaczem: „Och, moja biedna staruszko!16. Wykazywała dziecinną nieśmiałość i zuchwałość. Kiedy Maria zapraszała nielicznych przyjaciół do domu, Irène ukrywała się za jej spódnicą i od czasu do czasu upominała się „Musisz zwrócić na mnie uwagę17. Zagadywana na plaży przez znajomą matki powiedziała ostrożnie: „Nie bardzo cię znam18. Nie bez powodu Maria nazywała ją małą królewną lub małym dzikusem19.

Irena i Ewa Curie, 1908, Muzeum Marii Skłodowskiej-Curie w Warszawie

Od wczesnych lat wykazywała znaczne zainteresowanie i zdolności do nauki. Splendor, który spadł na rodzinę Curie w 1903 roku w związku z przyznaniem Marii i Pierre’owi Nagrody Nobla z fizyki, dotknął także bezpośrednio sześcioletnią Irène. Dziennikarze podchodzili pod ogród państwa Curie i ukradkiem próbowali rozmawiać z ich córką. Zapytana przez jednego z nich: „Gdzie są twoi rodzice?”, odpowiedziała poważnie: „W laboratorium20. Hélene Langevin-Joliot wspominała:

Mama opowiadała mi, że uwielbiała spędzać czas z rodzicami, ale nie zawsze było to możliwe. Lubiła też bawić się z dziećmi, a Nagroda Nobla była jedną z jej ulubionych zabawek21.

Eugénie Cotton pisała z kolei, że Irène:

[…] do ósmego roku życia wzrastała w szczęśliwym domu rodzinnym. Rodziców swoich, rzecz prosta, widywała za dnia bardzo rzadko, ale wieczorami, w niedzielę, podczas wakacji otoczona była ich czułą miłością i pozostały jej piękne wspomnienia wspólnych spacerów w lesie, nad morzem. Często obijały się o jej uszy wyrazy takie jak laboratorium, rad, polon, emanacja. […] [Irene] bawiła się pięknym złotym medalem Davy’ego, który otrzymali jej rodzice, widziała, jak rad świeci w ciemności […]22.

 

Bibliografia

1 K. Kabzińska, M.H. Malewicz, J. Piskurewicz, J. Róziewicz, Korespondencja polska Marii Skłodowskiej-Curie. 1881−1934, Instytut Historii Nauki PAN, Polskie Towarzystwo Chemiczne, Warszawa 1994, s. 27.

2 E. Curie, Maria Curie, Wydawnictwo Naukowe PWN, Warszawa 1997, s. 160.

3 I. Joliot-Curie, Wspomnienia o Marii Skłodowskiej-Curie, „Postępy Fizyki” 6, 1955, s. 40–65.

4 Tamże, s. 57.

5 S. Quinn, Życie Marii Curie, Prószyński i S-ka, Warszawa 1997, s. 358.

6 I. Joliot-Curie, Wspomnienia, dz. cyt., s. 44.

7 S. Bertsch McGrayne, Nobel Prize Women in Science. Their Lives, Struggles, and Momentous Discoveries, wyd. 2, Joseph Henry Press, Washington 2006, s. 121.

8 I. Joliot-Curie, Wspomnienia, dz. cyt., s. 57.

9 E. Wajs-Baryła, List Bronisławy Dłuskiej do Ludwika Wertensteina z charakterystyką Ireny Joliot-Curie – po otrzymaniu Nagrody Nobla, „Nauka Polska. Jej Potrzeby, Organizacja i Rozwój” 27 (52), 2018, s. 13–24.

10 S. Quinn, Życie Marii Curie, dz. cyt., s. 189.

11 E. Curie, Maria Curie, dz. cyt., s. 173.

12 S. Quinn, Życie Marii Curie, dz. cyt., s. 189.

13 E. Curie, Maria Curie, dz. cyt., s. 173–174.

14 A. Albrecht, Maria Skłodowska-Curie. Listy, Drzewo Babel, Warszawa 2012, s. 47.

15 S. Bertsch McGrayne, Nobel Prize Women in Science, dz. cyt., s. 122.

16 Tamże, s. 122.

17 Tamże.

18 Tamże.

19 W. Conkling, Radioactive! How Irene Curie and Lise Meitner Revolutionized Science and Changed the World, Algonquin Young Readers, Chapel Hill 2016, s. 20.

20 S. Bertsch McGrayne, Nobel Prize Women in Science, dz. cyt., s. 122.

21 Cytat z filmu: Wyjście z cienia – historia Ireny i Fryderyka Joliot-Curie, reż. R. Reed, USA 2009.

22 E. Cotton, Rodzina Curie i promieniotwórczość, Wiedza Powszechna, Warszawa 1965, s. 97.

Jadwiga Szmidt — poliglotka zakochana w nauce

Jadwiga Schmidt, b.d., [za:] N. Pigeard-Micault, Les femmes du laboratoire de Marie Curie, Paris 2013, s. 269

Jadwiga Szmidt jest kobietą, która jak inne opisane w felietonach na łamach Piękniejszej Strony Nauki, poświęciły swoje życie dla nauki. Jak wiele z nich musiała opuścić dom rodzinny, aby móc poznawać tajniki najpiękniejszej tajemnicy Matki Przyrody – tajemnice fizyki i chemii. Szmidt miała możliwość uczyć się od najlepszych. Pracowała zarówno z Marią Skłodowską-Curie jak i Ernestem Rutherfordem.

Jadwiga Szmidt przyszła na świat 8 września 1889 roku w Łodzi w polskiej rodzinie. Wiadomo, że jej ojciec miał na imię Ryszard. Co dość istotne była wychowana w wierze ewangelickiej. Jej ścieżka edukacyjna była dość typowa dla czasów, w których przyszło jej żyć. Początkowe nauki pobierała w Warszawie, a następnie w 1905 roku rozpoczęła studia nauczycielskie w Żeńskim Instytucie Pedagogicznym w Petersburgu. Nauczanie było wtedy jedną z niewielu opcji dostępnych dla kobiet zainteresowanych nauką.

Paul Ehrenfest (1880–1933), ok. 1911 roku, domena publiczna

Po ukończeniu studiów w 1909 roku (inne źródła podają 1911 rok) Szmidt przyjęła etat w Żeńskim Gimnazjum Tagantsewa w Sankt Petersburgu, gdzie przez dwa lata uczyła fizyki. To właśnie tutaj Jadwiga poznała i zaprzyjaźniła się między innymi z Paulem Ehrenfestem i jego żoną Tatianą Afanasjewą [felieton Tomasza Pospiesznego o Tatianie], Abramem Joffem czy Dmitrijem Roschdestwenskim. Warto odnotować, że poza zwykłymi zajęciami prowadziła także zajęcie laboratoryjne. W 1911 roku wyjechała do Paryża na półroczne szkolenie nauczycieli na Sorbonie. Dzięki wstawiennictwu Jana Danysza, Szmidt, pomimo braku licencjatu, otrzymała zgodę na odbycie stażu w semestrze wiosennym w laboratorium Marii Skłodowskiej-Curie. Jak się później okazało był to dość wyjątkowy czas dla laboratorium Curie, gdyż w tym samym czasie co ona pracowały tam również May Sybil Leslie (angielska chemiczka; zajmowała się chemią toru i aktynu), Ellen Gleditsch (norweska radiochemiczka; ustaliła okres półtrwania radu i pomogła udowodnić istnienie izotopów) i Eva Ramstedt (szwedka chemiczka; specjalistka z zakresu radiologii). Szmidt zaprzyjaźniła się szczególnie z Leslie i Gleditsch, a ich znajomość przetrwała przez długie lata.

Po powrocie do Petersburga Jadwiga ponownie zaczęła nauczać fizyki, ale jak sie wydaje jej pobyt w laboratorium Marii Curie obudził w niej chęć do pracy naukowej. Po rozmowie z profesorem Aleksandrem Lwowiczem Grishunem, który uczył ją Żeńskim Instytucie Pedagogicznym w Petersburgu, i jego aprobacie, zaczęła badania związane z optotechniką w kierowanym przez niego laboratorium.

Fizycy z Petersburga; pierwszy rząd: D. S. Roschdestwenski; drugi rząd od lewej: P. Ehrenfest, G. Weihardt, G. P. Perlitz, T. Afanasjewa-Ehrenfest; trzeci rząd: W. Bursian, A. Ioffe, J. Krutkov, W. Chulanowski, L. Isakow, A. Dobiasz, J. Schmidt, C. Baumgart, 1912, domena publiczna

 

Członkowie kręgu fizyków w Petersburgu; siedzą od lewej: P. Ehrenfest, A. Ioffe, D. Rozchdeswenski, T. Afanasjewa-Ehrenfest; stoją: W. Chulanowski, G. Weihardt, L. Isakow, G. Perlitz, W. Bursian i J. Schmidt, 1912, domena publiczna

May Sybil Leslie (1887–1937), b.d., [za:] N. Pigeard-Micault, Les femmes du laboratoire de Marie Curie, Paris 2013, s. 159
W 1913 roku Szmidt odbyła podróż do laboratorium Ernesta Rutherforda w University of Manchester. Rok pobytu w Wielkiej Brytanii był dla niej niezwykle produktywny, zwłaszcza że nie posiadała formalnego dyplomu z fizyki i chemii. Prawdopodobnie wynikało to w dużej mierze ze sposobu w jaki Rutherford prowadził laboratorium. Wiadomo, że pomimo ukrytych bezwzględnych założeń kulturowych tamtych czasów, szczery i entuzjastyczny Rutherford wspierał kobiety zajmujące się nauką. Wiele kobiet prowadziło badania w jego laboratoriach w McGill i Manchesterze. [Rutherford] Przebywając jeszcze w Cambridge, zawsze wspomagał sprawę kobiet na uniwersytecie. Zaraz po tym, jak objął tam profesurę, sytuacja kobiet uległa radykalnej zmianie. Upierał się, aby były pełnoprawnymi członkiniami uniwersytetu. W przeciwieństwie do Thomsona, który był konserwatystą i obstawał przy pewnych ograniczeniach, Rutherford uważał, że kobiety mogą pracować na równi z mężczyznami. Fotografie grupowe badaczy z Laboratorium Cavendisha z lat 1921 i 1923 pokazują po jednej kobiecie na 29 i 25 osób, w 1932 roku – 2 na 39 osób. Jak widać, była to trudna walka. Szmidt rozpoczęła badania związane z porównaniem promieniowania gamma emitowanego przez różne pierwiastki promieniotwórcze, a następnie jego absorpcji przez różne gazy. Ta z pozoru prosta praca okazała się niemal ostatnią dla uczonej. Okoliczności wypadku, który omal nie uśmiercił badaczki podaje jeden z pracowników laboratorium Rutherforda: […] wypadek miał miejsce, gdy [Szmidt] sama w laboratorium próbowała otworzyć zamkniętą butelkę toksycznego gazu – dwutlenku siarki. Ulatniający sie gaz prawie ją udusił i miała wiele szczęście, że przeżyła.

Ellen Gleditsch (1879–1968), ok. 1935, Oslo Museum, sygn. OB.F05906c

Poza pracą, której Szmidt oddawała się bez reszty w Manchesterze miała okazję spotkać się ze swoją przyjaciółką Ellen Gleditsch. Uczona w drodze powrotnej ze Stanów Zjednoczonych do Norwegii chciała się zatrzymać w Anglii. Wzmiankę o tym znajdujemy w jednym z listów Ritherforda do Boltwooda, który pisał: Dowiedziałem się od panny Schmidt, że panna Gleditsch przyjedzie z tutaj w przyszłym tygodniu. Jadwiga z wielką radością oczekiwała przyjaciółki. Wyznała jej, że pomimo sukcesów naukowych i wspaniałej pracy nie mogłaby zdecydować się na życie w Manchesterze. Ellen w liście Boltwooda pisała: Wydaje się, że pannie Szmidt niełatwo było się przystosować do angielskiego trybu życia. Często kusiło mnie, by śmiać się z jej historii. Moja obecność [w laboratorium] dodała jej odwagi, aby pójść na popołudniową herbatę, co robiła bardzo rzadko. Jak się jednak wydaje z późniejszej korespondencji uczonej, była ona bardzo zadowolona z pobytu w Anglii i wykazywała wyraźną chęć powrotu do laboratorium Rutherforda. Przez kilka następnych lat korespondowała z Rutherfordem. W jednym z listów pisała: Właśnie widziałam sierpniowy [numer] Phil.[osophical] Mag.[azine], gdzie został opublikowany mój artykuł. […] Ten artykuł nie był tego warty, ale bardzo dziękuję… Mam wielką nadzieję, że kiedyś wrócę do badań. Pod koniec jej pobytu w Manchesterze odwiedziła ją Leslie, która pracowała w tym czasie w fabryce w Liverpoolu. Natomiast w drodze powrotnej do Petersburga Szmidt przez pewien czas przebywała u Gleditsch w Oslo.

Ernest Rutherford (1891–1934), b.d., domena publiczna

Podczas pierwszej wojny światowej także wymieniała listy z Rutherfordem. W jednym z nich dziękowała mu za artykułu dotyczący śmierci genialnego fizyka Henryʼego Moseleya, który zginął w bitwie pod Gallipoli. Pisała także, że jej zdrowie poprawiło się i że jej praca z uchodźcami wojennymi zajmowała jej cały czas i uniemożliwiła wznowienie badań. Co interesujące Szmidt w ramach opieki nad uchodźcami organizowała polskie szkoły. Można wnioskować, że Rutherford został jej wielkim mistrzem i naukowym wzorem. Zresztą uczony miał bardzo dobre podejście do współpracy z kobietami. Traktowała je na równi z mężczyznami, a czasami uważał, że w niektórych pracach laboratoryjnych są zdecydowanie lepsze. Przejmował się swoimi podopiecznymi, nawet jeśli już opuścili jego laboratorium. W liście do Ellen Gleditsch pisał: Od czasu do czasu czytam [w listach] od panny Szmidt zdawkowe informacje dotyczące jej zdrowie. Czuję się trochę zaniepokojony tymi uwagami. Myślę, że nie ma pojęcia, jak dbać o siebie. Pomimo odległości Szmidt nadal interesowała się radioaktywnością. W grudniu 1915 roku pisała do Rutherforda: Panna Gleditsch poinformowała mnie, że okres półtrwania radu jest bliski 1660 lat. W innym liście informowała, ze zdała z powodzeniem egzaminy końcowe i będzie mogła starać się o dyplom jeśli przedstawi oryginalny problem badawczy z zakresu matematyki, fizyki lub astronomii. W 1916 roku Jadwiga powróciła do badań naukowych w Instytucie Politechnicznym w Sankt Petersburgu pod kierunkiem Abrama Ioffego. Uczony w liście do żony chwalił nową pracownicę pisząc: Jestem bardzo zadowolony z Jadwigi […]. Ma szeroką wiedzę, dobre rozumowanie w rozwiązywaniu problemów, wykazuje także szczególne umiejętności laboratoryjne.

Seminarium Abrama Joffego w Instytucie Politechnicznym w Petersburgu: czwarty z lewej Joffe, obok niego prawdopodobnie Jadwiga Schmidt, 1915, domena publiczna

W 1923 roku Szmidt poślubiła Aleksandra Czernyszewa, wybitnego rosyjskiego elektrofizyka. Małżeństwo dawało jej wiele radości nie tylko na gruncie życia codziennego, ale także (a może przede wszystkim) pracy naukowej. Jak podają niektórzy historycy nauki Szmidt-Czernyszew była jedną z niewielu kobiet w dziedzinie fizyki atomowej, która wyszła za mąż i kontynuowała badania [naukowe]. W tym czasie kontynuowanie pracy na ogół oznaczało pozostanie samotnym lub poślubienie wspierającego naukowca; normalnym oczekiwaniem było to, że kobieta porzuci naukę po ślubie. Wspólnie zostali prekursorami technologii telewizyjnej i uzyskali patent na oscyloskop. W 1923 roku małżonkowie chcieli wyjechać do Paryża na Zjazd Elektrotechników. Jadwiga potrzebowała rekomendacji znanej osobistości, napisała więc list do Marii Skłodowskiej-Curie, w którym czytamy między innymi: Dla osiągnięcia wizy francuskiej należy się powołać na osoby we Francji, które mogłyby poręczyć za mnie. Czy Szan. Pani pozwoli powołać się na Nią? Byłabym Jej niewypowiedziane wdzięczną, nie mam bowiem znajomych we Francji, a zaś powołanie się na imię tak chlubnie znane w nauce wszechświatowej bezwarunkowo przyśpieszy formalności. Jednocześnie proszę o pozwolenie wręczenia Szan. Pani w Paryżu mych skromnych prac, z których dwie wykonane u prof. Rutherforda. Od kilku lat pracuję z mężem, pomagając mu w pracach w dziedzinie prądów elektronowych. Maria doskonale pamiętała Jadwigę i wspomniane pozwolenie wydała.

Od 1924 roku Szmidt została dyrektorem laboratorium elektropróżniowego. Jej kariera kwitła. W 1929 roku małżonkowie odbyli owocną podróż do Stanów Zjednoczonych, gdzie dali serię wykładów. Oprócz działalności naukowej Jadwiga Szmidt miała olbrzymie zdolności językowe. Biegle posługiwała się językami polskim, niemieckim, angielskim, francuskim, rosyjskim i włoskim. Tłumaczyła wiele prac na rosyjski, w tym książkę Michaela Faradaya „Eksperymentalne badania elektrycznościˮ. Niestety nie doczekała jej rosyjskiego wydania.

M. Faraday, Eksperymentalne badania elektryczności, tłum. A. Czernyszew i J. Szmidt-Czernyszew, Moskwa 1947; strona tytułowa tomu pierwszego, [za:] Rosyjska Biblioteka Narodowa
Pod koniec 1930 roku życie uczonej uległo pogorszeniu. Terror wprowadzany przez Stalina zmuszał uczonych, aby przeprowadzili badania pod dyktando programu partii komunistycznej i zerwali kontakty z zachodnimi badaczami. Jadwiga znalazła się na liście podejrzanych, gdyż współpracowała i korespondowała z uczonymi z zachodu. Niestety z późnych lat trzydziestych nie zachowały się żadne informacje dotyczące życia uczonej. Prawdopodobnie cierpiała podczas czystek stalinowskich i być może dzięki protekcji Ioffego ocaliła życie. W 1938 roku Aleksander przeniósł się do Moskwy, a Jadwiga pozostała w Leningradzie. Małżeństwo zostało zmuszone do kontaktów korespondencyjnych. W jednym z listów do męża pisała: Dlaczego wcześniej nie skontaktowałem się z mądrym lekarzem […]; mój stan pogorszył się również dlatego, że do mnie nie napisałeś. Czego nie przypuszczałam! Można zatem wnioskować, że zaczęła poważnie chorować. Niestety nie wiemy co spowodowało chorobę.

Dokładna data i przyczyna śmierci uczonej nie jest znana. Jadwiga Szmidt-Czernyszew zmarła w kwietniu 1940 roku w Leningradzie. Jej mąż Aleksander umarł 18 kwietnia tego samego roku w Moskwie. Wielu historyków nauki uważa, że śmierć obu małżonków w tym samym miesiącu, to coś więcej niż przypadek i mało prawdopodobne, by nastąpiła z przyczyn naturalnych. Przyczyna śmieci małżonków do dziś pozostaje owiana tajemnicą.

Literatura:

[1] M. Cieślak-Golonka, J. Róziewicz, J. Starosta, K. G. Tokhadze, Jadwiga Szmidt (1889–1940), a pioneer woman in nuclear and electrotechnicalsciences, American Journal of Physics, 62 (10) 1994, s. 947–948.

[2] M. F. Rayner-Canham, G. W. Rayner-Canham, Jadwiga Szmidt:A Passion for Science, [w]: A Devotion to Their Science: Pioneer Women of Radioactivity, red.: M. F. Rayner-Canham, G. W. Rayner-Canham, McGill-Queen’s University Press, Québec, 1997.

[3] K. Kabzińska, M.H. Malewicz, J. Piskurewicz, J. Róziewicz, Korespondencja polska Marii Skłodowskiej-Curie. 1881–1934, Instytut Historii Nauki PAN, Polskie Towarzystwo Chemiczne, Warszawa 1994, s. 217–219.

[4] M. F. Rayner-Canham, G. W. Rayner-Canham, Pioneer Women in Nuclear Science, American Journal of Physics, 58 (11) 1990, s. 1036–1043.

 

 

Mileva Marič-Einstein — w 71. rocznicę śmierci

Mileva Marič, 1896, domena publiczna

4 sierpnia mija siedemdziesiąta pierwsza rocznica śmierci Milevy Marič. Odeszła w zapomnieniu i taką też pozostała przez wiele lat. Pochowano ją w obrządku prawosławnym w jej ukochanym Zurychu na cmentarzu Nordheim. Nagrobek Milevy Marič został usunięty w latach siedemdziesiątych ubiegłego stulecia przez władze cmentarza, gdyż przez wiele lat po jej śmierci nie była uiszczana opłata za grób. Z inicjatywy dra Ljubo Vujevicia z The Tesla Memorial Society w Nowym Yorku odnaleziono grób Milevy w 2004 roku. Zainicjowano także ponowne wzniesienie nagrobka kobiety, która była towarzyszką życia Alberta Einsteina.

Z okazji rocznicy jej śmierci proponujemy Państwu lekturę fragmentu najnowszej książki Tomasza Pospiesznego pt. Pasja i geniusz. Kobiety, które zasłużyły na Nagrodę Nobla opisujący życie Milevy Marič.

 

Pani Einstein-Marity

Niezwykle uporządkowana Mileva wprowadziła ład w życie Einsteina. W dzieciństwie nauczyła się szyć, a później także gotować. Nie tylko szyła swoje sukienki, ale także reperowała ubrania Alberta. Umiała trafić do jego serca przez swój intelekt, ale także przez jego żołądek. Roztargnienie, brak organizacji, bałaganiarstwo i zapominalstwo Einsteina była zdolna okiełznać jak nikt inny. Tak doskonale nam idzie wspólne zgłębianie naszych mrocznych dusz, picie kawy, jedzenie kiełbasek itd. – pisał Albert[1]. Jeden z biografów Einsteina Peter Michelmore napisał, że Mileva:

 

[…] potrafiła szybciej niż [Albert] wyrobić sobie zdanie na temat ludzi i była bardzo stała w swoich wyborach. W każdej sprawie zajmowała zdecydowany punkt widzenia. Z góry planowała zarówno przebieg swoich studiów, jak i rozkład każdego dnia. Próbowała również wprowadzić porządek w życie Alberta. I matematyka była tylko częścią tego wszystkiego. Namawiała go do regularnego spożywania posiłków i uczyła oszczędności. Często wściekała się na jego roztargnienie. Wtedy spoglądał na nią ze spokojem, jak tupie nóżką niczym mała dziewczynka, a w jego oczach pojawiały się łobuzerskie ogniki. Potem robił śmieszne miny lub opowiadał żarcik i jej złość powoli ustępowała[2].

Mileva,Albert i ich pierwszy syn Hans Albert, Berno, 1904, Instytut Leo Baecka, [za:] http://einstein-virtuell.mpiwg-berlin.mpg.de/VEA/SC-1668110491_MOD-736752543_SEQ1883770543_SL-110908586_en.html
Niestety nie wszyscy byli przychylni ich związkowi. Przyjaciele Milevy uważali, że Albert nie jest dla niej odpowiednim partnerem. Z kolei jego znajomi nie potrafili zrozumieć, co widzi w utykającej, humorzastej Milevie. Albert jednak podziwiał jej inteligencję. I był zakochany. Kiedy jeden z jego kolegów powiedział: Wiesz, nigdy nie odważyłbym się poślubić kobiety, która nie byłaby zupełnie zdrowa, Albert odpowiedział: Ale ona ma taki cudowny głos[3].

Tymczasem zbliżał się czas egzaminów: międzykursowego i końcowego. Einstein zdał egzamin międzykursowy w październiku 1898 roku, Mileva zaś musiała przygotowywać się do niego dłużej z racji pobytu na uniwersytecie w Heidelbergu. Przystąpiła do niego w październiku następnego roku, zdając z piątą lokatą. Latem 1899 roku, gdy Mileva przygotowywała się do egzaminów, Einstein przebywał na wakacjach wraz z matką i siostrą. Pokazał wówczas matce zdjęcie Milevy. W liście do ukochanej pisał, że wywarło ono na Paulinie Einstein wrażenie – moja stara matka pozdrawia Cię jak najserdeczniej[4]. Niestety kiedy Frau Einstein zorientowała się, że nie jest to kolejny romans syna, lecz związek poważny, jej zachowanie względem Milevy uległo radykalnej zmianie. Przeszkadzało jej, że jest Serbką, że nie jest Żydówką, że pochodzi z pospolitej rodziny, że jest starsza od Alberta, że jest ułomna fizycznie. Jednym słowem, była najgorszą z możliwych partii dla jej ukochanego syna. Pierwsze niepokojące wieści nadesłała Helena Kaufler, która na własne oczy widziała niechęć Pauliny do Milevy. Zrozpaczona Mileva pisała do niej:

 

Sądzisz, że ona w ogóle mnie lubi? Naprawdę się ze mnie tak strasznie naśmiewała? Wiesz, poczułam się głęboko nieszczęśliwa, ale potem się pocieszyłam, że w końcu ten najważniejszy dla mnie człowiek jest innego zdania, a kiedy on roztacza nade mną wspaniałą wizję naszej przyszłości, nie myślę już o moim nieszczęściu[5].

 

Niestety najgorsze miało dopiero nadejść. Latem 1900 roku przystąpili do egzaminów końcowych składających się z części pisemnej i ustnej. Einstein zdał, Mileva nie. Jako jedyna uzyskała średnią poniżej pięciu. Tym samym jako jedyna nie otrzymała dyplomu. Być może miał na to wpływ egzamin ustny, który Mitza zdawała przed profesorami mężczyznami, z góry przeświadczonymi o braku zdolności kobiet do nauk ścisłych. Możliwe też, że nie opanowała całego materiału, przecież w tym samym roku zdawała także egzamin międzykursowy. Załamana wróciła do rodziców z mocnym postanowieniem przystąpienia do egzaminów w roku następnym. Albert zaś udał się na wakacje z rodziną. Niestety sytuacja pomiędzy nim i matką była bardzo napięta. Kiedy Paulina dowiedziała się, że Mileva oblała egzaminy, zapytała: No, i kim teraz będzie ta twoja Laleczka?. Z pewnością i wyzwaniem w oczach Albert odpowiedział: Moją żoną. Ona jest takim samym molem książkowym jak ty, a tobie potrzebna jest żona. Gdy ty będziesz miał trzydziestkę, z niej będzie już stara krowa! – krzyczała Paulina[6]. Jej wściekłość zmieniła się w histerię i bezradność:

 

Mama rzuciła się na łóżko, ukryła głowę w poduszkach i rozpłakała jak dziecko. Gdy tylko się opanowała, natychmiast przystąpiła do gwałtownego ataku: „W ten sposób rujnujesz swoją przyszłość i grzebiesz swoje szanse! Żadna porządna rodzina by jej nie chciała. Jeśli zajdzie w ciążę, dopiero będziesz się miał z pyszna!” Przy tym ostatnim wybuchu, przed którym było jeszcze wiele innych, w końcu straciłem cierpliwość. Zaprzeczyłem ostro, abyśmy żyli w grzechu, po czym zrugałem ją, na czym świat stoi […][7].

Akademia Olimpijska: Albert Einstein z przyjaciółmi: Conradem Habichem i Maurice’m Solovine’em, ok. 1903, domena publiczna

Wydaje się, że młody Einstein był na tyle uparty, że dążył do celu za wszelką cenę. Dopiero teraz widzę jak szaleńczo Cię kocham – pisał do Milevy[8]. Żywiołowe wręcz wyznania uczuć mogą świadczyć o buncie Alberta przeciw rodzinie, chociaż na pewno kochał Milevę. Napisał do niej:

 

Co będzie, to będzie, ale i tak będziemy mieć najpiękniejsze życie pod słońcem. Przyjemna praca i bycie razem – czegóż można jeszcze chcieć? Jak uciułamy trochę pieniędzy, kupimy sobie rowery i będziemy co parę tygodni jeździć na wycieczki[9].

Państwo Einsteinowie w Kacu w Serbii, ok. 1912, domena publiczna

Czy ta romantyczna deklaracja nie nasuwa skojarzeń z francusko-polską parą uczonych pędzących na bicyklach?

Niestety sytuacja materialna Einsteina z dnia na dzień się pogorszyła: chcąc go ukarać, rodzina przestała przekazywać mu pieniądze. Udzielał korepetycji, ale był to skromny dochód, który nie pozwalał na finalizację planów Alberta i Milevy. A przecież mieli marzenia. Jakże cudnie będzie wyglądał świat, gdy będę już Twoją małą żoną – pisała Mileva[10]. Niestety rodzice Einsteina robili wszystko, co tylko mogli, by utrudnić im życie. Zwłaszcza Milevie. Do Heleny pisała:

 

Ta kobieta najwyraźniej obrała sobie za cel życia, by zatruć życie nie tylko moje. Ale i swojego syna […]. Posunęli się nawet do tego, by napisać list do moich rodziców, w którym oczerniają mnie w stopniu wręcz skandalicznym[11].

 

Brak stabilności finansowej nie ograniczył jednak pracy twórczej Alberta. Pierwszą pracą, której się poświęcił, było padanie efektu kapilarnego, czyli podnoszenie się słupa cieczy w bardzo cienkiej rurce. 3 października 1900 roku, na dwa miesiące przed wysłaniem artykułu do redakcji „Annalen der Physikˮ, w liście do Milevy pisał:

 

Wnioski na temat efektu kapilarnego, do jakich doszedłem niedawno w Zurychu, wydają mi się całkiem nowe, choć są takie proste. Kiedy oboje będziemy już w Zurychu, spróbujemy zdobyć jakieś dane empiryczne na ten temat […]. Jeśli ujawnia się tu jakieś prawo przyrody, poślemy rezultaty do „Annalenˮ[12].

 

Walter Isaacson, autor doskonałej biografii Einsteina, podaje, że był to początek sporów dotyczących udziału Milevy Marič w badaniach i teoriach Einsteina. W tym jednak przypadku wydaje się, że jej rola ograniczała się do słuchaczki i być może dyskutantki. W liście do Heleny Savić (od 15 listopada 1900 roku żony Milivojea Savića) pisała:

 

Albert napisał artykuł z fizyki, który prawdopodobnie wkrótce zostanie opublikowany w „Annalen der Physik”. Możesz sobie wyobrazić, jaka jestem dumna z mojego ukochanego. Nie jest to taki zwykły artykuł, tylko bardzo ważny – dotyczy teorii cieczy. Wysłaliśmy kopię do Boltzmanna, gdyż chcielibyśmy wiedzieć, co on o tym myśli. Mam nadzieję, że nam odpisze[13].

Boltzmann nie odpisał, a artykuł Einstein z czasem uznał za mało znaczący. Pomimo pierwszego osiągnięcia naukowego nadal pozostawał bez pracy. Zmuszony przez rodzinę pojechał do Mediolanu. Miało to służyć rozdzieleniu kochanków.

Z listów można wnioskować, że im dłużej Albert nie widział Mitzy, tym bardziej szalał z miłości:

 

Bez Ciebie brakuje mi pewności siebie, przyjemności z pracy, przyjemności z życia – krótko mówiąc, bez Ciebie moje życie straciło swój sens[14].

 

Jakże mogłem przedtem żyć. […] Bez myśli o Tobie wolałbym umrzeć. […] Spośród wszystkich ludzi, Ty kochasz mnie najmocniej i najlepiej rozumiesz. […] Wieczorami myślę o tym, że [Ty] myślisz o mnie i całujesz w łóżku poduszkę. Wiem, jak to jest! […]. Moim szczęściem jest Twoje szczęście. […] Moje życie zyskuje prawdziwy sens tylko dzięki myślom o Tobie. […] Jak cudownie było ostatnim razem, gdy mogłem Cię obejmować, tak jak natura stworzyła[15].

 

W innym liście dodawał: Na zawsze pozostaniemy studentami i gówno będzie nas obchodził cały świat[16]. Niestety nie dane było im pozostać wiecznymi studentami. Mileva rozpoczęła przygotowania do ponownego podejścia do egzaminów końcowych i miała nadzieję, że uzyskanie dyplomu umożliwi jej przygotowanie rozprawy doktorskiej. Promotorem miał być profesor Heinrich Martin Weber (1842–1913). W marcu 1900 roku w liście do Heleny pisała:

 

Profesor Weber przyjął moją propozycję pracy dyplomowej i był z niej całkiem zadowolony. Szukam tematów dalszych badań, które będę musiała wykonać. E. [Albert] wybrał dla siebie bardzo interesujący temat[17].

 

Albert z kolei pisał:

 

Ja również cieszę się bardzo, że będziemy nad tym razem pracowali. Nie wolno Ci teraz przerywać Twoich badań – jakiż będę dumny, gdy moje małe kochanie zostanie już panią doktor, a ja wciąż będę zupełnie zwykłym człowiekiem![18]

 

Niestety współpraca nie układała się idealnie. Weber był autorytatywny i z czasem coraz mniej lubił zuchwałego Einsteina. Milevie dostawało się także. Wiosną następnego roku pisała:

 

Miałam kilka kłótni z Weberem, ale jestem już do tego przyzwyczajona[19]. Dzięki obawom Webera nie udało mi się jeszcze zdobyć doktoratu [pomimo ukończenia kursu]. Znosiłam zbyt wiele i w żadnym wypadku nie wrócę do niego ponownie[20].

 

Można z dużą dozą prawdopodobieństwa przypuszczać, że Mileva nie uzyskała dyplomu, gdyż Albert nie potrafił ukrywać niechęci do profesora Webera. Tymczasem życie Milevy uległo radykalnej zmianie.

W maju 1900 roku spędziła z Albertem piękne, romantyczne i namiętne wakacje nad jeziorem Como. Niebawem okazało się, że jest w ciąży. 28 maja Einstein w liście do ukochanej pisał: Jak się czujesz, kochana? Jak tam chłopiec? […] Jak tam nasz mały synek?[21]. Pomimo dolegliwości ciążowych Mileva starała się przygotować do egzaminu, który miała zdawać w lipcu. Niestety i tym razem się nie udało. Abraham Pais podkreśla: teraz, gdy już wiemy, że w tym czasie była w odmiennym stanie, tym bardziej winniśmy podziwiać jej odwagę i upór, by zdawać raz jeszcze[22]. Bez dyplomu, w ciąży, bez ukochanego przy sobie wróciła do Nowego Sadu. Musiała zmierzyć się sama z trudami ciąży i porzuconymi marzeniami o karierze naukowej. Co jednak najgorsze, była przekonana, że na zachodzie zostanie uznana za ladacznicę, która zrujnowała Albertowi życie, na wschodzie zaś za idiotkę[23]. Jesienią 1901 roku Einstein został prywatnym nauczycielem w Szafuzie nad Renem. Jednocześnie wiązał nadzieje z otrzymaniem posady w urzędzie patentowym w Bernie. Mileva czuła się osamotniona. W liście do Alberta pisała:

 

Gdybyś tylko wiedział, jak bardzo samotna i opuszczona się czuję, na pewno byś przyjechał. […] Żebyś wiedział, jak bardzo chcę Cię znowu zobaczyć! Myślę o tobie całymi dniami, a jeszcze bardziej nocami[24].

 

W grudniu 1901 roku Albert pisał:

 

Wyczekuję naszej drogiej Lieserl [córeczki], ale po kryjomu (tak aby Doxerl się nie dowiedziała) wyobrażam sobie, że jest to Hanserl […]. Istnieje tylko kwestia, jak moglibyśmy przyjąć naszą Lieserl; nie chciałbym jej oddawać […][25].

 

Kiedy kilka dni później dowiedział się, że otrzymał pracę w Bernie, przyszło ukojenie i spokój. W listach do Mitzy pisał:

 

Zurych, 30 kwietnia 1901 roku

Mój kochany kotku,

[…] Sama się przekonasz, jaki pogodny i radosny się stałem. Dawno zapomniałem o wszystkich moich troskach. I tak bardzo Cię znowu kocham! To tylko z nerwów byłem tak niedobry dla Ciebie […] i tęsknię bardzo do chwili, kiedy znowu Cię ujrzę. […]

Całuję Cię z dna mojego serca.

Twoje kochanie[26]

 

Winterthur, 9 maja 1901 roku

Kochany kotku,

[…] Gdybym tylko mógł przekazać Ci chociaż cząstkę własnego szczęścia, abyś już na zawsze była wolna od smutku i melancholii. […]

Najlepsze życzenia i całusy dla Ciebie.

Albert[27]

 

W styczniu 1902 roku otrzymał wiadomość, że został ojcem. Poród był długi i ciężki. Córeczce Mileva nadała imię Lieserl. Einstein pisał do ukochanej:

 

Berno, 4 lutego 1902 roku

Moje najdroższe kochanie,

Biedne, najdroższe kochanie; co musiałaś wycierpieć, jeśli nie możesz nawet samodzielnie do mnie napisać! Szkoda, że nasza droga Lieserl musi zostać przedstawiona światu w ten sposób! Mam nadzieję, że do czasu nadejścia mojego listu będziesz zdrowsza i weselsza. […] Więc faktycznie jest dziewczynka. Czy jest zdrowa i płacze jak trzeba? Jakiego koloru ma oczka? Skąd bierzesz mleko? Czy dużo je? Musi być kompletnie łysa. Kocham ją bardzo, a przecież nawet nie wiem, jak wygląda. […] Chętnie sam zmajstrowałbym taką Lieserl, to musi być fascynujące! Z pewnością umie już płakać, lecz śmiać nauczy się dopiero później. Jest w tym pewna głęboka prawda. […]

Dla Ciebie tysiące pocałunków od Twojej miłości,

Johnnie[28]

Albert Einstein na rok przed otrzymaniem Nagrody Nobla, 1920, domena publiczna

Niestety nie ma żadnych listów świadczących o tym, że Einstein widział swoją córkę. Trudno domniemywać, czy o istnieniu dziecka wiedziała także rodzina i najbliżsi przyjaciele Einsteina. Wprawdzie jego matka 20 lutego 1902 roku pisała: tej Marič zawdzięczam najgorsze chwile mojego życia; gdyby to leżało w mojej mocy, zrobiłabym wszystko, aby zniknęła z naszego horyzontu[29], ale nie ma pewności, że odnosi się tym samym do narodzin wnuczki. Nie wiadomo też nic pewnego o losie dziecka. Michele Zackheim w swojej książce o Lieserl twierdzi, że była niepełnosprawna fizycznie i zamieszkała z rodziną Milevy. Według niej prawdopodobnie zmarła na szkarlatynę we wrześniu 1903 roku[30]. Z kolei wieloletni badacz życia Einsteina Robert Schulmann wysunął hipotezę, że Lieserl adoptowała Helena Savić. Nadano jej imię Zorka i miała żyć aż do lat dziewięćdziesiątych ubiegłego wieku. W rzeczywistości Saviciowie mieli niewidomą od wczesnego dzieciństwa córkę o takim imieniu, która zmarła w 1992 roku. Jednakże wnuk Heleny, a siostrzeniec Zorki doktor Milan Popović, odrzucił możliwość, że była to Lieserl, i twierdził, że to dziecko zmarło we wrześniu 1903 roku. W swojej książce napisał: wysunięta teoria, jakoby moja babcia adoptowała Lieserl, jest pozbawiona jakichkolwiek podstaw, gdyż zostało to dokładnie sprawdzone w historii mojej rodziny[31]. Znajduje to potwierdzenie w korespondencji Milevy i Alberta. W sierpniu 1903 roku Mileva pojechała do Nowego Sadu, gdyż została poinformowana, że Lieserl zachorowała na szkarlatynę. Z podróży wysłała kartę Albertowi: Podróż upływa szybko, ale jest ciężka. Nie czuję się dobrze. Co porabiasz, mój Jonzile? Napisz do mnie prędko. Twoja biedna Laleczka[32]. Złe samopoczucie Milevy wynikało z tego, że była ponownie w ciąży. Albert odpisał:

 

Bardzo mi przykro z powodu tego, co się stało z Lieserl. Szkarlatyna pozostawia często trwałe ślady. Jak Lieserl została zarejestrowana urzędowo? Musimy bardzo uważać, bo inaczej dziecko będzie miało problemy w przyszłości[33].

Mileva i Albert Einsteinowie, ok. 1905, domena publiczna

10 października 1902 roku zmarł ojciec Alberta. Krótko przed śmiercią wyraził zgodę na ślub syna z Milevą[34]. 6 stycznia 1903 roku Einstein dotrzymał słowa i ożenił się z Mitzą. Ślub cywilny odbył się w Bernie w towarzystwie najbliższych przyjaciół. Rok później, 14 maja 1904 roku, Mileva urodziła syna Hansa Alberta. W liście do Heleny pisała, żeby przyjechała do Berna, gdyż chciała jej pokazać moje małe kochanie, które też ma na imię Albert. Nie umiem wyrazić, ile daje mi radości, gdy śmieje się po przebudzeniu albo fika nóżkami w kąpieli[35]. Ojciec Milevy przyjechał zobaczyć wnuka i zaoferował zięciowi pokaźną sumę pieniędzy. Einstein jednak ich nie przyjął, argumentując:

 

Nie poślubiłem twojej córki dla pieniędzy, ale dlatego, że ją kocham, potrzebuję jej, ponieważ oboje jesteśmy jednością. Wszystko, co zrobiłem i osiągnąłem, zawdzięczam Milevie. Jest moim genialnym źródłem inspiracji, moim aniołem ochronnym przeciwko pokusom w życiu, a tym bardziej w nauce. Bez niej nie rozpocząłbym pracy, nie mówiąc już o jej zakończeniu[36].

_______

[1] R. Highfield, P. Carter, Prywatne życie Alberta Einsteina, op. cit., s. 67.

[2] P. Michelmore, Einstein: Profile of the Man, Dodd, Mead and Company, New York 1962, s. 36.

[3] W. Isaacson, Einstein, op. cit., s. 59.

[4] R. Highfield, P. Carter, Prywatne życie Alberta Einsteina, op. cit., s. 76.

[5] Ibidem, s. 77.

[6] Ibidem, s. 79.

[7] Ibidem, s. 80.

[8] W. Isaacson, Einstein, op. cit., s. 67.

[9] Ibidem, s. 69.

[10] A. Pais, Tu żył Albert Einstein, Prószyński i S-ka, Warszawa 2005, s. 24.

[11] Ibidem, s. 24.

[12] W. Isaacson, Einstein, op. cit., s. 71.

[13] M. Popović, In Albertʼs Shadow, op. cit., s. 70.

[14] J. Renn, R. Schulmann, Albert Einstein/Mileva Marić, op. cit., s. 26.

[15] A. Pais, Tu żył Albert Einstein, op. cit., s. 24.

[16] D. Overbye, Zakochany Einstein, op. cit., s. 72.

[17] M. Popović, In Albertʼs Shadow, op. cit., s. 60.

[18] J. Renn, R. Schulmann, Albert Einstein/Mileva Marić, op. cit., s. 32.

[19] M. Popović, In Albertʼs Shadow, op. cit., s. 76.

[20] Ibidem, s. 78.

[21] J. Renn, R. Schulmann, Albert Einstein/Mileva Marić, op. cit., s. 54.

[22] A. Pais, Tu żył Albert Einstein, op. cit., s. 25.

[23] D. Overbye, Zakochany Einstein, op. cit., s. 127.

[24] W. Isaacson, Einstein, op. cit., s. 86.

[25] A. Pais, Tu żył Albert Einstein, op. cit., s. 25.

[26] J. Renn, R. Schulmann, Albert Einstein/Mileva Marić, op. cit., s. 46.

[27] Ibidem, s. 51.

[28] J. Renn, R. Schulmann, Albert Einstein/Mileva Marić, op. cit., s. 73.

[29] A. Pais, Tu żył Albert Einstein, op. cit., s. 25.

[30] M. Zackheim, Einsteinʼs Daughter: The Search for Lieserl, Riverhead Hardcover, New York 1999.

[31] M. Popović, In Albertʼs Shadow, op. cit., s. 11.

[32] W. Isaacson, Einstein, op. cit., s. 98.

[33] Ibidem, s. 98.

[34] A. Pais, Pan Bóg jest wyrafinowany… Nauka i życie Alberta Einsteina, Prószyński i S-ka, Warszawa 2001, s. 61.

[35] W. Isaacson, Einstein, op. cit., s. 100.

[36] D. Trbuhović-Gjurić, Im Schatten Albert Einsteins, op. cit., s. 76.

Róża — w 85. rocznicę śmierci Marii Skłodowskiej-Curie

Rok 1934 był ostatnim w życiu Marii Skłodowskiej-Curie. Kilka lat wcześniej – być może kierowana dziwnym przeczuciem nadchodzącego kresu – uczona napisała:

Kiedy mi mówią o »moich wspaniałych pracach«, wydaje mi się, jakbym już umarła, jak gdybym siebie samą widziała na marach i wydaje mi się, iż usługi, które im mogę jeszcze oddać, nic ich nie obchodzą. Że byłoby im znaczne wygodniej mnie chwalić, gdybym nie żyła.

Jedno z ostatnich zdjęć Marii Skłodowskiej-Curie, 1934, Muzeum Marii Skłodowskiej-Curie w Warszawie

Jednak jak zawsze starała się żyć intensywnie. Intensywnie na ile mogła. Wstawała przed ósmą rano, zjadała w śniadanie, zakładała kapelusz, płaszcz, brała swoją starą teczkę wychodziła przed kamienicę i czekała na samochód. Nadal pracowała eksperymentalnie, chociaż z coraz większą trudnością, prowadziła wykłady z fizyki i kierowała katedrą fizyki na Sorbonie. Przygotowywała materiały do książki i publikacji. Stan zdrowia zaczynał jednak się pogarszać. Doskwierało jej permanentne zmęczenie, reumatyzm nękający ramię, bezustanne szumy w uszach, kłopoty ze wzrokiem. Już w 1920 roku w liście do siostry Bronisławy Dłuskiej pisała:

Osobiste moje kłopoty przedstawiają się tak przede wszystkim, że źle jest z moimi oczami. Oczy są bardzo osłabione i radziłam się co do nich lekarza, prawdopodobnie nie wiele można im dopomóc. Co do uszu, to dokucza mi szum prawie nieustanny, a przynajmniej bardzo częsty – nieraz bardzo silny. Bardzo mnie niepokoją te objawy, bo mi to może prace utrudnić, a może i uniemożliwić. Może być, że jest jaki związek z radem, ale niepodobna mieć o tym opinię. Tylko proszę Cię, nie mów o tym nikomu.

Prawdopodobnie przez kłopoty ze wzrokiem poślizgnęła się i upadła w laboratorium w wyniku czego złamała nadgarstek. W grudniu 1933 roku zaczęła narzekać na bóle brzucha. Szczegółowe badania wykazały, że ma duży kamień w woreczku żółciowym. Maria nie zgodziła się jednak na operację lecz zastosowała drakońską dietę. Wkrótce jednak poczuła się na tyle dobrze, że pojechała do Ireny i Fryderyka Joliot-Curie przebywających w Sabaudii. Po latach Irena wspominała:

W 1934 r. kilka miesięcy przed śmiercią matka pojechała z nami na sporty zimowe do Notre Dame de Bellecombe. Mój mąż, nasza siedmioletnia wówczas córeczka i ja jeździliśmy na nartach. Matka ślizgała się ze mną i z moją córeczką i chodziła na rakietach śnieżnych. Pamiętam, że pewnego wieczoru z niepokojem oczekiwałam jej powrotu. Wróciła już po zmroku z dalekiego spaceru do miejsca, z którego widać było Mont Blanc w zachodzącym słońcu.

Maria Skłodowska-Curie w towarzystwie Ireny, Fryderyka, Piotra Augera Georges’a Gricouroff’a i jego siostry, Notre-Dame de Bellecombe, 1934, Muzeum Marii Skłodowskiej-Curie w Warszawie

19 lutego 1934 roku w liście do Ewy Maria pisała, że miała piękną pogodę w Notre-Dame de Bellecombe, ale nie mogła jeździć na nartach z powodu nieustannie bolącego nadgarstka. Na Wielkanoc przyjechała do Paryża Bronisława. Siostry razem spędziły wspólne pięć tygodni. Pojechały do Montpellier, aby odwiedzić Jakuba Curie. Kiedy się żegnały na dworcu nie sądziły, że widzą się po raz ostatni. 26 marca 1934 roku w liście do Ireny, Maria pisała o swojej ostatniej woli:

Sporządziłam tymczasowe oświadczenie na piśmie, mające ważność testamentu, co do grama radu, zapakowałam to razem z dokumentami z Ameryki i czerwonym atramentem napisałam na wierzchu pakiecika, co zawiera. Wszystko razem znajduje się w szafce w pokoju bawialnym, pod szufladkami zamykanymi na klucz, tam gdzie jest teczka z ważnymi listami, którą wręczył mi Fred.

Cztery dni później, Irena odpisała matce w nieco żartobliwym tonie:

Mimo dokumentu sporządzonego w odniesieniu do radu mam nadzieję, że nie będziesz się czuła zwolniona z obowiązku zachowania ostrożności i jeździła samochodem po drogach wijących się zbyt dużymi zygzakami, pod pretekstem, że przejeżdżasz przez Masyw Centralny, Pireneje lub Alpy Nadmorskie.

Rękopis „Testamentu Radowego” Marii Skłodowskiej-Curie, [za:] „Marie Curie. Une femme dans son siecle”, Paris 2017, s. 228
Maria nie zwalniała tempa pracy. Miała plany zawodowe i osobiste. 8 maja napisała do Broni, że odczuwa potrzebę posiadania domu z ogrodem i gorąco pragnę, aby ten projekt doszedł do skutku. Kosztorys udało się obniżyć, odpowiednio do moich środków materialnych, wkrótce więc będzie można kłaść fundamenty. Nie doczekała jednak budowy nowego domu.

W maju 1934 roku Maria była ostatni raz w laboratorium. Mam gorączkę, wrócę do domu powiedziała. Przechodząc przez ogród, który sama zaprojektowała i o który od lat dbała zobaczyła chorą różę. Jerzy ten krzak jest wyraźnie chory, trzeba się nim teraz zająć! […] Jerzy, proszę zaopiekować się tą różą… – poprosiła ogrodnika.

Niestety sama Maria również była już poważnie chora. Temperatura ciała była podwyższona i wciąż się utrzymywała. Miała nieustanne dreszcze. Lekarze zdiagnozowali grypę, później bronchit. Zaproponowali, aby wyjechała do sanatorium. Wraz z Ewą Maria odbyła długą, ostatnią podróż do Sancellemoz. Podczas podróży snuła plany związane z Instytutem Radowym w Paryżu i w Warszawie. Mówiła, że ostatnie odkrycie Ireny i Freda zapewne przyniesie im Nagrodę Nobla. W Sancellemoz została jeszcze raz gruntownie przebadana. Zalecono nowe terapie, zaaplikowano leki. Z nikłym uśmiechem mówiła – Może być, że się trudzimy całkiem niepotrzebnie… W końcu lekarze znaleźli prawdziwą przyczynę osłabienia Madame Curie – anemia złośliwa o przebiegu piorunującym. Ewa nigdy nie okazała słabości przy matce i nie dała poznać po sobie, że wie iż to koniec. Płakała na korytarzu. W listach do rodziny w Polsce regularnie opisywała stan zdrowia matki. 6 czerwca informowała Józefa Skłodowskiego, że jest źle, że matka cierpi na jakąś chorobę z gorączką, dreszczami i bólem głowy. Brat chciał przyjechać do siostry w kolejnym tygodniu i rozpoczął starania o paszport i bilety. Jednakże w liście z 11 czerwca Ewa prosiła, aby jednak nie przyjeżdżał. Obawiała się, że obecność rodzeństwa uzmysłowi Marii, że odchodzi. Dziesięć dni później, 21 czerwca, prosiła Józefa i Bronkę, żeby przyjechali do Marii. Dłuska wyjechała 3 lipca, Skłodowski chciał wyjechać między 10 a 15 lipca. W ostatniej niemal chwili 2 lipca do sanatorium przyjechała Irena i Fred. Zawsze opanowana i spokojna starsza córka uczonej nie miała siły by patrzeć jak odchodzi jej ukochana matka.

Ewa wspominała, że Maria Skłodowska-Curie sama sprawdzała termometr i nie było możliwości, aby ją oszukać. 3 lipca 1934 roku temperatura nagle spadła. To nie lekarstwa mi pomogły, ale te góry – ta przestrzeń – powietrze – powiedziała do Ewy. Czasami szeptała: Paragrafy… tytuły rozdziałów… Wszystkie jednakowymi czcionkami… Myślałam nad tą książką. Kilka godzin przed śmiercią próbowała resztkami sił zamieszać herbatę i patrząc na łyżeczkę i pytała – Czy to jest z radu, czy z mezotoru? Później zdoła jeszcze zaprotestować przed zrobieniem zastrzyku – Nie chcę. Chcę, żeby zostawiono mnie w spokoju. Szeptem powiedziała kilka niezrozumiałych słów. W końcu o świcie, kiedy słońce wzeszło i rozświetliło pokój, znalazło cichutką postać na łóżku i rzuciło jasne błyski na jej głowę i twarz. Po raz ostatni słońce oświetliło twarz Wielkiej Uczonej. Maria Skłodowska-Curie odeszła o godzinie czwartej rano 4 lipca 1934 roku.

Ewa napisała:

Biało ubrana, z białymi włosami, z twarzą zastygłą w wyrazie powagi i męstwa, jak twarz bojownika z odkrytym wyniosłym czołem – jest w tej chwili najwyższym symbolem piękna i szlachetności.

Jej szorstkie, stwardniałe ręce, głęboko poparzone przez rad, straciły wreszcie zwykły tick nerwowy. Leżą, sztywno wyciągnięte na prześcieradle, w straszliwym bezruchu. Ręce, które tak pracowały.

Nazajutrz, 5 lipca świat dowiedział się o śmierci Madame Curie. Oficjalny komunikat głosił: Maria Curie zmarła w Sancellemoz dnia 4 lipca r. 1934, na skutek anemii złośliwej aplastycznej o przebiegu gwałtownym, gorączkowym. Szpik kostny nie zareagował prawdopodobnie dlatego, że zaszły w nim zmiany, spowodowane długoletnim wpływem promieni.

Hołd Jej pamięci składali naukowcy, pisarze, politycy, studenci.

Zjazd fizyków w Rzymie, od lewej: Robert Millikan, Maria Skłodowska-Curie, Arthur Compton, Guglielmo Marconi, Jean Perrin i Niels Bohr, 1931, [za:] https://www.insidescience.org/file/mariecurieotherscientistsjpg
Niels Bohr w liście do Ireny napisał:

Musi dla Pani być wielkim ukojeniem myśl o radości, jaką sprawiły Pani Curie wspaniałe odkrycia, których dokonaliście Państwo w ostatnich latach. Były one ukoronowaniem wielkiego dzieła jej życia.

Maria Skłodowska-Curie i Albert Einstein nad Jeziorem Genewskim, lipiec 1924, Muzeum Marii Skłodowskiej-Curie w Warszawie

Albert Einstein powiedział:

Miałem to szczęście, że przez dwadzieścia lat łączyły mnie z panią Curie więzy wzniosłej i niczym niezmąconej przyjaźni. Podziwiałem coraz bardziej jej wielkość jako człowieka. Jej siła, czystość charakteru, surowość wymagań wobec siebie samej, obiektywizm, nieskazitelne poglądy, wszystkie te cechy były tak wysokiego gatunku, że rzadko spotyka się je razem, połączone u jednej osoby. Stale uważała, że jest w służbie społeczeństwa, a jej wyjątkowa skromność nie dopuszczała pochlebstw.

 

Prezydent RP Ignacy Mościcki sadzi pamiątkowe drzewo w ogrodzie Instytutu Radowego w Warszawie, 29 maja 1932, Narodowe Archiwum Cyfrowe sygn. 1–N–818–5

Prezydent RP Ignacy Mościcki w kondolencjach wysłanych Irenie Joliot-Curie napisał:

Polska traci w ś.p. Pani Curie-Skłodowskiej nie tylko uczoną, która imię swej ojczyzny wsławiła w całym świecie, ale i wielką obywatelkę, zawsze przez całe życie czujnie stojącą na straży interesów swojego narodu.

André Broca – jeden z studentów Marii – napisał: Myśl o tym, że wejdę do jej gabinetu i nie znajdę jej za stertą starannie poukładanych papierów, sprawiła, że płakałem jak dziecko. Inny student dodał: Jak wyobrazić sobie Instytut bez niej? I tę słynną klatkę schodową, gdzie tak rozmawiała z nami oparta o poręcz, z nieco pochylonym szerokim czołem i rękoma w ustawicznym ruchu. To w tym Instytucie […] pani Curie pierwszy raz odezwała się do mnie, z takim ciepłem i zrozumieniem […] Wydaje mi się, że nadal ją widzę w piwnicy, kiedy rozważa zalety kalorymetru; […] albo w czasie ostatniej Wigilii w laboratorium […], kiedy tak dużo rozmawialiśmy o przyszłości fizyki teoretycznej we Francji. Im więcej wspomnień ożywa w mej pamięci […], tym trudniej jest mi wyobrazić sobie bez niej ten budynek, w którym nadwerężała swe siły i zdrowie. I wydaje mi się, że kamienie i cegły się rozpadną.

Grób rodziny Curie na cmentarzu w Sceaux pod Paryżem, b.d., Muzeum Marii Skłodowskiej-Curie w Warszawie

W piątek, 6 lipca 1934 roku, w gronie najbliższej rodziny i przyjaciół trumnę z ciałem Marii Skłodowskiej-Curie złożono w grobie na cmentarzu w Sceaux. Spoczęła obok Piotra Curie. Podczas ceremonii pogrzebowej nie przemawiano. Pochowano Ją tak jak żyła – cicho i skromnie. Bronia i Józef nie uzgadniając tego z sobą przywieźli z Polski garść ziemi, którą rzucili na trumnę siostry.

Maria Skłodowska-Curie na tarasie Instytutu Radowego w Paryżu, 1923, Muzeum Marii Skłodowskiej-Curie w Warszawie

Róża posadzona przez Marię Skłodowską-Curie po dziś dzień rośnie przy Instytucie Radowym w Paryżu pod balkonem Laboratorium Curie…

Tomasz Pospieszny

Maria Skłodowska-Curie i sukcesorki jej odkryć

17 maja 2019 dr hab. Tomasz Pospieszny miał przyjemność wygłosić wykład przeznaczony dla słuchaczy Uniwersytetu Trzeciego Wieku w Złotowie. Tematem wykładu było życie i dzieło Marii Skłodowskiej-Curie. Chciałbym serdecznie podziękować za zaproszenie pani Annie Marciniak oraz za możliwość wygłoszenia wykładu przed Wspaniałymi Studentami!

 

 

Z kolei 18 maja 2019 roku w Nadnoteckim Instytucie UAM w Pile odbyła się Ogólnopolska Interdyscyplinarna Konferencja Edukacyjna XI Galaktyka Edukacji pt. Interdyscyplinarność w edukacji przyszłości – inspiracje postacią Marii Skłodowskiej-Curie organizowana przez Centrum Doskonalenia Nauczycieli w Pile oraz Nadnotecki Instytut UAM w Pile.

Patronat honorowy objęli Marszałek Województwa Wielkopolskiego – Marek Woźniak, Prezydent Piły – dr inż. Piotr Głowski oraz Wielkopolski Kurator Oświaty – Elżbieta Leszczyńska.

Patronat naukowy JM Rektor Uniwersytetu im. Adama Mickiewicza w Poznaniu – Prof. UAM dr hab. Andrzej Lesicki.

Patronat medialny Portal Superbelfrzy oraz „Sygnał – Magazyn Wychowawcy”.

Dr hab. Tomasz Pospieszny miał zaszczyt i przyjemność wygłosić wykład pt. Maria Skłodowska-Curie i sukcesorki jej odkryć oraz poprowadzić warsztaty pt. Blaski i cienie promieniotwórczości.

Serdecznie zapraszamy do obejrzenia nagrania z wykładu na naszym kanale

Chciałbym w tym miejscu złożyć podziękowania Organizatorom za wspaniałe przyjęcie, okazaną serdeczność i gościnność. Cieszę się niezmiernie, że Maria Skłodowska-Curie stała się inspiracją dla wielu osób, które uczestniczyły w konferencji.

Szczególnie chciałbym podziękować Pani dr Danucie Kitowskiej, Pani Katarzynie Kwaśnik, Pani Joannie Blajchert oraz Panu dr Pawłowi M. Owsiannemu. Pobyt w Pile na długo pozostanie w mojej pamięci.

Tomasz Pospieszny

Rosalind Franklin — Pierwsza dama DNA

Jaka jest korzyść z wykonywania tej całej pracy, jeśli nie czerpiemy z niej radości?

(Rosalind Franklin)

Rosalind Franklin, 1946, National Portrait Gallery, sygn. NPGx 76928
Rosalind Franklin, 1946, National Portrait Gallery, sygn. NPGx 76928

Historia odkrycia struktury kwasu deoksyrybonukleinowego (DNA) wiąże się nierozerwalnie z nazwiskami Jamesa D. Watsona (ur. 1928) i Francisca Cricka (1916–2004). Mało kto wie, że ich praca nie byłaby możliwa bez wyników eksperymentalnych, które otrzymała jedna z najwybitniejszych krystalografów angielskich Rosalind Elsie Franklin. To właśnie dzięki jej przenikliwości umysłu i precyzyjnym badaniom poznaliśmy nie tylko tajemnicę życia związaną z DNA, ale także strukturę kwasu rybonukleinowego (RNA) czy wirusów.

***

Rosalind w wieku 3 lat, ok. 1923, fotografia z Kolekcji Jennifer Glynn, [za:] U.S. Library of Medicine
Przyszła uczona urodziła się 25 lipca 1920 roku w Londynie w zamożnej i wpływowej rodzinie żydowskiej. Ojciec Rosalind, Ellis Arthur Franklin (1894–1964), wykładał w miejskim College’u dla chłopców elektryczność, magnetyzm, a także historię Wielkiej Wojny. Matka, Muriel Frances Waley (1894–1976), była raczej skupiona na prowadzeniu domu oraz wychowywaniu dzieci: najstarszego Davida oraz młodszych od Rosalind Colina, Rolanda i Jenifer. Ponieważ jej siostra była młodsza od Ros (uczona lubiła, aby tak ją nazywać, nie cierpiała zdrobnienia Rosy, którego używali jej koledzy z uniwersytetu) dziewięć lat wychowywała się ona głównie wśród braci. Przejęła od nich wiele cech między innymi zamiłowanie do rywalizacji, sportu czy fotografii. Warto zauważyć, że członkowie rodziny Franklinów byli zaangażowani politycznie, np. jej wuj Herbert Samuel był ministrem spraw wewnętrznych w 1916 roku i pierwszym praktykującym Żydem, który był członkiem w brytyjskim gabinecie. Franklinowie angażowali się społecznie i byli wrażliwi na ludzkie nieszczęście. Podczas drugiej wojny światowej pomagali znaleźć mieszkanie oraz pracę dla żydowskich uchodźców z kontynentu, którzy uciekli przed nazistami. Sami zaopiekowali się dwójką żydowskich dzieci i zapewnili im schronienie we własnym domu.

 

12-letnia Rosalind z rodzeństwem, ok. 1923, fotografia z Kolekcji Jennifer Glynn, [za:] U.S. Library of Medicine
Od wczesnego dzieciństwa Franklin wykazywała wyjątkowe zdolności do nauki. Fascynował ją świat i zjawiska przyrodnicze. Będąc na spacerze z rodzicami ciągle zadawała pytania. Kiedy rodzice zaprowadzili ją do biblioteki odkryła świat nauki, który zafascynował ją bez reszty. Mając sześć lat rozpoczęła naukę w prywatnej szkole dziennej w zachodnim Londynie w Norland Place School. Jej ciotka Helen Bentwich w iście do męża pisała: Rosalind jest niezwykle mądra – cały czas dla własnej przyjemności rozwiązuje zadania z arytmetyki niezmiennie otrzymując prawidłowe wyniki. Od wczesnych lat wykazywała wątpliwości względem religii. Już jako mała dziewczynka pytała matkę: W każdym razie, skąd wiesz, że On [Bóg] nie jest Nią?

Nie skupiała jednak całej uwagi na nauce. Zafascynowała się sportem zwłaszcza krykietem i hokejem. W wieku dziewięciu lat przyjęto ją do szkoły z internatem Lindwood School for Young Ladies w Sussex. Było to spowodowane także częstymi kłopotami zdrowotnymi dziewczynki. Zmiana klimatu miała sprzyjać poprawie zdrowia. W gruncie rzeczy przyszła uczona nauczyła się ignorować ból i choroby. Dwa lata później przeniosła się do szkoły dla dziewcząt w St. Paul w zachodnim Londynie. Była to jedna z nielicznych szkół dla dziewcząt w Londynie, w której nauczano fizyki i chemii. Nie trudno odgadnąć, że była najlepsza z nauk ścisłych, ale przodowała także w studiowaniu łaciny, niemieckiego, francuskiego oraz w sporcie. Ros była frankofilką i przez całe życie rozwijała swoje pasje związane z kulturą i językiem francuskim. Uważała francuski styl życia za znacznie lepszy od angielskiego. W liście do matki napisała: Jestem pewna, że zawsze będę mogła szczęśliwie wędrować po Francji, kocham [tych] ludzi, [ich] kraj i jedzenie.

Jej jedyną słabą stroną była muzyka. Nauczyciel tego przedmiotu uważał nawet, że może ona mieć jakieś kłopoty ze słuchem spowodowane infekcjami migdałków. W 1938 roku z wyróżnieniem zdała maturę i zdobyła stypendium uniwersyteckie. Na prośbę ojca przekazała je uzdolnionemu uczniowi uchodźcy. Jak się wydaje pieniądze w jej życiu nigdy nie odgrywały większej roli. Utrzymywała się ze skromnego stypendium, a później pensji i nigdy nie pozwalała ojcu, aby jej pomagał finansowo. Była świetnym organizatorem. Podróżując po Europie czy Stanach Zjednoczonych zawsze wybierała trzecią klasę komunikacji publicznej.

Rosalind w schronisku podczas wędrówki po Alpach, fot. Vittorio Luzzati, ok. 1949, fotografia z Kolekcji Jennifer Glynn, [za:] U.S. Library of Medicine
Po maturze Franklin rozpoczęła naukę w Newnham College w Cambridge, gdzie studiowała chemię w Natural Sciences Tripos. Tutaj poznała i zaprzyjaźniła się ze specjalistą z zakresu spektroskopii Billem Price’m (1909–1993). Jego prace okazały się później bezcenne w udowodnieniu tworzenia wiązań wodorowych pomiędzy parami zasad azotowych w DNA. Rosalind była niezwykle pilną studentką, osiągającą bardzo dobre wyniki w nauce. Miała spore szanse na uzyskanie stypendium. Niestety utrudniły to skomplikowane relacje z późniejszym laureatem Nagrody Nobla z chemii profesorem Ronaldem Norrishem (1897–1978). Norrish był uparty, apodyktyczny i niezwykle wrażliwy na krytykę, nie podzielał też entuzjazmu Franklin względem równouprawnienia kobiet w nauce i spowalniał realizację ambicji naukowych wyjątkowo zdolnej studentki. Sytuacja stawała się napięta i bardzo niemiła dla młodej uczonej. W 1941 roku Franklin z wyróżnieniem zdała egzaminy końcowe, które jednocześnie przyjęto jako licencjat (w Cambridge przyznawano kobietom licencjaty i magisterium od 1947 roku; wcześniejszym absolwentkom przyznano je z mocą wsteczną). Franklin zrezygnowała z dalszej pracy w laboratorium Norrisha i zatrudniła się jako asystentka w brytyjskim Stowarzyszeniu Badań nad Wykorzystywaniem Węgla (BCURA). Jej badania polegały głównie na określeniu mikrostruktury rożnych próbek węgla. Uczona badała porowatość węgla za pomocą helu, aby określić jego gęstość. Odkryła związek pomiędzy drobnymi przewężeniami w porach węgla i przepuszczalnością porowatej przestrzeni. Jej prace przyczyniły się między innymi w przemyśle paliwowym, a także w produkcji masek gazowych. Badania te stały się podstawą pracy doktorskiej Franklin pt. Chemia fizyczna stałych koloidów organicznych ze szczególnym uwzględnieniem węgla, którą obroniła w 1945 roku. Jeden z jej profesorów powiedział, że jej praca wprowadziła porządek w dziedzinie, która wcześniej była w chaosie. Wyniki uzyskanych prac zostały publikowane w pięciu artykułach, które wciąż są regularnie cytowane.

Franklin w trakcie wspinaczki w Norwegii, ok. 1940, fotografia z Kolekcji Jennifer Glynn, [za:] U.S. Library of Medicine. Rosalind uwielbiała podróże. Wakacje spędzała zazwyczaj zwiedzając Europę.
W czasie wojny Franklin poznała Adrienne Weill, byłą studentkę Marii Skłodowskiej-Curie. Weill wywarła ogromny wpływ na życie Rosalind pomagając jej między innymi w znajomości francuskiego. W tym czasie uczona wraz ze swoją kuzynką Irene zgłosiła się na ochotnika do patrolowania okolic narażonych na naloty.

Po drugiej wojnie światowej Franklin w liście do Weill pisała: Jeśli usłyszysz o kimkolwiek potrzebującym usług chemika fizycznego, który niewiele wie o chemii fizycznej, ale dość dużo o dziurach w węglu, powiadom mnie jak najszybciej. Dzięki pomocy przyjaciółki otrzymała posadę w Paryżu w Narodowym Centrum Naukowo-Technicznym (CNRS). To właśnie tutaj Rosalind Franklin nauczyła się praktycznych aspektów zastosowania krystalografii rentgenowskiej do badania substancji amorficznych. Technika ta stosowana była z dużym powodzeniem przy badaniu związków organicznych. Początkowo zastosowała tę metodę do badania grafitu (odmiany alotropowej węgla). Po czterech latach pracy w laboratorium w Paryżu otrzymała upragnione stypendium i zgodę odpowiednich władz, po czym przeniosła się do King’s College w Londynie. W styczniu 1951 roku wróciła do Londynu i na prośbę Sir Johna Randalla (1905–1984), dyrektora King’s College rozpoczęła badania nad DNA.

DNA jako cząsteczka fascynował uczonych od dawna. Pobudzał do intelektualnej przygody, każdego kto marzył o międzynarodowej sławie w świecie chemii czy biologii. DNA został wyizolowany przez szwajcarskiego lekarza Friedricha Mieschera (1844–1895) w 1869 roku. W 1878 Albrecht Kossel (1853–1927) wyizolował niebiałkowy składnik, a następnie wyizolował pięć podstawowych zasad azotowych (puryny – adeninę i guaninę oraz pirymidyny – cytozynę, tyminę i uracyl). W 1909 roku Phoebus Levene (1869–1940) zidentyfikował nukleotydową jednostkę składającą się z zasady azotowej, cukru (deoksyrybozy w DNA lub rybozy w RNA) i fosforanowej. Zasugerował on, że DNA składa się z szeregu czterech jednostek nukleotydowych połączonych ze sobą grupami fosforanowymi. W 1937 roku William Astbury (1898–1961) opracował pierwsze dyfraktogramy rentgenowskie, które wykazały, że DNA ma strukturę regularną. Nikt jednak nie wiedział jaką DNA ma konkretnie budowę. W latach 1951–1953 Erwin Chargaff (1905–2002) ogłosił tzw. reguły Chargaffa, w myśl których ilość zasad pirymidynowych jest równa ilości zasad purynowych. Ponadto ilość adeniny jest równa ilości tyminy, ilość guaniny jest równa ilości cytozyny.

Franklin w trakcie letniej podróży po Toskanii, fot. Vittorio Luzzati, ok. 1950, fotografia z Kolekcji Jennifer Glynn, [za:] U.S. Library of Medicine
Maurice Wilkins, b.d., The Nobel Foundation Archive, [za:] https://www.nobelprize.org/prizes/medicine/1962/summary/
Randall poprosił Franklin, aby zajęła się badaniem DNA, mimo iż wiedział, że problemem tym zajmuje się Maurice Wilkins (1916–2004). Historycy nauki wskazują, że antagonizmy pomiędzy Wilkinsem i Franklin wynikały z nieporozumienia i niedopatrzenia Randalla, który nie poinformował żadnej z zainteresowanych stron o pracach nad DNA. Uczona wraz ze swoim doktorantem Raymondem Goslingiem (1926–2015) użyła nowej lampy rentgenowskiej z precyzyjnym ogniskiem i mikrokamery zamówionej wcześniej przez Wilkinsa. Sama jednak niezwykle starannie dopracowała i dostosowała ją do swoich potrzeb. Kiedy Wilkins zapytał o technikę, Franklin miała mu odpowiedzieć zdawkowo i dość chłodno. Uczona była postrzegana jako silna, asertywna i niezależna kobieta. Wyrażała swoje poglądy stanowczo i konkretnie, przez co nie zawsze była lubiana. Jednak pod pozornym chłodem kryła się wrażliwa kobieta. Potrafiła także świetnie kierować grupą, czego dowodem są jej liczne zespołowe publikacje. Pomimo wszechobecnej dyskryminacji kobiet Franklin prowadziła badania w zakresie rentgenografii strukturalnej. W listopadzie 1951 roku uczona zanotowała:

Wyniki sugerują, że to struktura helikalna (która musi być bardzo ściśle upakowana) zawierająca 2, 3 lub 4 współosiowe łańcuchy kwasu nukleinowego na jednostkę helikalną i posiada w pobliżu grupy fosforanowe ulokowane na zewnątrz.

James Watson, b.d., The Nobel Foundation Archive, [za:] https://www.nobelprize.org/prizes/medicine/1962/summary/
Franklin wraz z Goslingiem szybko doszli do wniosku, że DNA istnieje w dwóch formach – przy dużej wilgotności włókna kwasu są długie i cienkie, zaś kiedy jest suchy włókna są krótkie i grube. Uczona nazwała je formami B i A. Konflikt pomiędzy stanowczą i dynamiczną Franklin oraz cichym i skromnym Wilkinsem narastał. James Watson wspominał:

Niemal od chwili pojawienia się jej w laboratorium obydwoje działali sobie na nerwy. Konflikt był tak poważny, że wymagał radykalnych rozwiązań – odejścia Rosy z laboratorium bądź przywołania jej do porządku.

W końcu Randall zdecydował, że Franklin skupi się na formie A-DNA, zaś Wilkins na formie B-DNA. Na sukcesy nie musiała długo czekać. Słynne dziś zdjęcie 51 wykonane prze Franklin uważane jest przez wielu za najpiękniejsze zdjęcie rentgenowskie jakie kiedykolwiek wykonano. W styczniu 1953 roku, po uprzednich wątpliwościach, Franklin doszła do wniosku, że obie formy DNA są strukturami helikalnymi. Wydaje się, że temat całkowicie pochłoną uczoną. Według opinii jej siostrzeńca Stephena zainteresowanie [uczonej] […] kwasami nukleinowymi zaczęło się wcześnie. Pod koniec 1939 roku, gdy Rosalind była dziewiętnastoletnią studentką w Newnham College w Cambridge, […] sporządziła w swoim skoroszycie szkic spekulacji o formie kwasu nukleinowego. Biografka Rosalind, Brenda Maddox […] odnotowała, że forma „przedstawia helikalną strukturę”, a uczona zanotowała: „Geometryczne podstawy dziedziczenia?”

Francis Crick, b.d., The Nobel Foundation Archive, [za:] https://www.nobelprize.org/prizes/medicine/1962/summary/
W styczniu 1953 roku Franklin zaczęła pisać serię artykułów. Wynika z tego jasno, że jej prace były gotowe wcześniej niż prace Jamesa D. Watsona i Francisca Cricka, którzy swój model budowali w oparciu o… fotografię wykonaną przez Franklin. Wilkins za pośrednictwem Maxa Perutz’a (1914–2002) i cichą zgodą się Williama Bragga (1890–1971) przekazał zdjęcie wykonane przez Franklin Watsonowi i Crickowi. Nie ma najmniejszej wątpliwości, że dzięki zdjęciu wykonanym przez Franklin Watson i Crick zbudowali swój słynny model DNA. Watson wspominał – Kiedy tylko zobaczyłem to zdjęcie, szczęka mi opadła, a puls raptownie przyspieszył. Sam Wilkins po latach przyznał – Być może powinienem był poprosić Rosalind o zgodę. Cóż…

Do 28 lutego 1953 roku Watson i Crick uznali, że rozwiązali problem na tyle, że Crick w pubie publicznie stwierdził iż wraz z Watsonem znaleźli sekret życia. Watson i Crick zakończyli budowę swojego modelu 7 marca 1953 roku. Wyniki pracy opublikowali w prestiżowym Nature 25 kwietnia 1953 roku. Stephen Franklin twierdzi, że gdyby [Franklin] pozostała w King’s, nie ma wątpliwości, że […] poprawnie ukończyłaby analizę struktury w pierwszej połowie 1953 roku bez żadnego wkładu Cricka lub Watsona, oni zaś nie zrobiliby tego na początku 1953 roku bez pracy Rosalind.

Konflikt z Wilkinsem, zła atmosfera w pracy i brak akceptacji względem uczonej, spowodował, że pod koniec swojej kariery naukowej przeniosła się do Birkbeck College. Jej siostrzeniec wspominał, że Rosalind była tak niezadowolona z [pracy w] King’s College, że wynegocjowała przeniesienie do Birkbeck [College], innej uczelni na Uniwersytecie Londyńskim. Tam w ciszy i spokoju, z dala od niezdrowej konkurencji oddała się pracy związanej z wirusologią. Szczególnie zainteresowała się wirusem mozaiki tytoniowej.

Laboratorium Rosalind Franklin w Birkbeck College (sfotografowane krótko po jej śmierci). Mieściło się na piątym piętrze zniszczonej przez bomby XVIII-wiecznej kamienicy przy Torrington Square – w dawnych kwaterach dla służby. Aparatura rentgenowska znajdowała się w piwnicy, fot. John Finch, ok. 1958, fotografia z Kolekcji Jennifer Glynn, [za:] U.S. Library of Medicine
Rosalind Franklin nigdy nie wyszła za mąż, zdaje się, że unikała bliższych kontaktów damsko-męskich. Była oddana pracy i nauce, chociaż podobno pod koniec życia się zakochała. James Watson w swojej książce pisał:

Zdecydowanie nie starała się podkreślać swej kobiecości. Choć miała dość ostre rysy, nie była zupełnie nieatrakcyjna, mogłaby się nawet podobać, gdyby wykazała choć niewielkie zainteresowanie kwestią swego wyglądu zewnętrznego. Nie poświęcała temu jednak najmniejszej uwagi. Nigdy nie używała kredki do ust, która mogłaby podkreślić czerń jej prostych włosów, a w 31. roku życia nosiła stroje odzwierciedlające całkowity brak fantazji właściwy młodej angielskiej intelektualistce.

Sądzę, że jej oddanie nauce wynikało jednak z przekonania, że nie można poświęcić się kilku sprawom jednocześnie. Kiedy jej koleżanka wróciła po porodzie do pracy Franklin powiedziała, że to nie w porządku w względem dziecka. Nie można robić źle dwóch rzeczy – powiedziała kiedyś.

Rosalind Franklin podczas pracy, ok. 1955, fotografia z Kolekcji Jennifer Glynn, [za:] U.S. Library of Medicine
W połowie 1956 roku, podczas podróży służbowej do Stanów Zjednoczonych uczona zaczęła odczuwać pewne fizyczne dolegliwości. W Nowym Jorku nabrzmiał jej brzuch tak bardzo, że miała trudność w zapięciu spódnicy. Po powrocie do Londynu poddała się badaniom. Okazało się, że ma dwa duże guzy w jamie brzusznej. Po operacji spędzała czas z przyjaciółmi, którzy wspierali ją w trudnej rekonwalescencji. Dużo czasu spędzała także z rodzicami. W trakcie leczenia nowotworu Franklin kontynuował pracę. W 1956 roku opublikowała siedem artykułów, a rok później kolejnych sześć. W sumie w ciągu czterech lat pracy w Birkbeck College Franklin była współautorką siedemnastu prac naukowych poświęconych wirusom. Trzy z nich ukazały się już po jej śmierci.

Choroba powróciła pod koniec 1957 roku. W styczniu 1958 roku wróciła do pracy. Niestety 30 marca poczuła się bardzo źle. Jej przyjaciółka Anne Sayre wspominała:

Walczyła ze śmiercią uparcie i z odwagą, planowała życie, kiedy plany były już kpiną. Umarła tak, jak żyła, z pasją do życia, z którego nigdy nie zrezygnowała. 16 kwietnia 1958 roku, w wieku trzydziestu siedmiu lat, Rosalind Franklin przegrała bitwę.

Przyczyną śmierci był zaawansowany rak jajnika z przerzutami. Została pochowana w 17 kwietnia 1958 roku.

***

Rok po jej śmierci Watson, Crick i Wilkins otrzymali Nagrodę Collinsa Warrena. Dwa lata po jej śmierci przyznano im Nagrodę Laskera. Cztery lata po jej śmierci otrzymali Nagrodę Nobla z medycyny. Podczas noblowskiego wykładu jedynie Wilkins wspomniał uczoną. Watson i Crick nie wspomnieli o Rosalind Franklin świadomie skazując ja na zapomnienie.

***

Wiara Rosalind Franklin w naukę i postęp były drogowskazem w jej życiu. W liście do ojca pisała: Nauka i życie codzienne nie mogą i nie powinny być rozdzielane. Nauka, dla mnie, daje częściowe wyjaśnienie życia… Nie akceptuję twojej definicji wiary, tj. wiary w życie po śmierci… Twoja wiara opiera się na przyszłości Twojej i innych jednostek, moja na przyszłości i losie naszych następców. Wydaje mi się, że Twoja jest bardziej samolubna… […] Nie widzę powodu, aby wierzyć, że twórca protoplazmy lub materii pierwotnej, jeśli taki istnieje, ma powody, by interesować się naszą nieistotną rasą w maleńkim zakątku wszechświata.

 

Zalecana literatura:

  1. B. Maddox, Rosalind Franklin: The Dark Lady of DNA, Harper Perennial, 2002.
  2. B. Maddox, The double helix and the ‘wronged heroine’, Nature, vol. 421, 2003, str. 407–408.
  3. J. Glynn, My Sister Rosalind Franklin, Oxford University Press, 2012.
  4. A. Sayre, Rosalind Franklin and DNA, W. W. Norton & Company 2000.
  5. S. Franklin, My aunt, the DNA pioneer, http://news.bbc.co.uk/2/hi/science/nature/2895681.stm
  6. J. Watson, Podwójna helisa. Historia odkrycia struktury DNA, Prószyński i S-ka, 1996.
  7. F. Crick, Szalona pogoń. W poszukiwaniu tajemnicy życia, Marabut, 1996.

Stefania Horovitz i tajemnica izotopów

Portret Stefanii Horowitz, prawdopodobnie namalowany przez ojca, b.d., [za:] https://www.geni.com/people/Stefania-Horowitz/6000000009579527822, dostęp z 17 lutego 2018
Odkrycie polonu i radu w 1898 roku przez Marię Skłodowską-Curie spowodowało prawdziwą lawinę odkryć kolejnych nowych pierwiastków. Profesor Józef Hurwic przedstawił to chyba najtrafniej:

Na początku drugiego dziesięciolecia naszego wieku znano około trzydziestu różnych substancji promieniotwórczych, które uważano za odrębne pierwiastki chemiczne, w układzie okresowym zaś między ołowiem i uranem było tylko kilka miejsc nie obsadzonych. Wydawało się więc, że prawo okresowości nie stosuje się do substancji promieniotwórczych. Ich zespół stanowił istną dżunglę.

Tajemnica Natury została wyjaśniona przez Fredericka Soddy’ego w 1913 roku. Uczony zauważył, że jeden pierwiastek chemiczny może mieć kilka odmian różniących się masą atomową. W prestiżowym czasopiśmie „Nature” napisał – Są one [pierwiastki] identyczne pod względem chemicznym, a także fizycznym, z wyjątkiem kilku właściwości zależących wprost od masy atomowej. Ponieważ właściwości chemiczne izotopów są takie same, można je jedynie rozdzielić metodami fizycznymi. Dzięki koncepcji Soddy’ego liczba odkrytych pierwiastków promieniotwórczych nagle zmalała i w układzie okresowym pozostały tylko polon (84Po), radon (86Rn), rad (88Ra), aktyn (89Ac), tor (90Th) i uran (92U). Osiem innych „różnych pierwiastków” (izotopów) tak naprawdę było odmianami umiejscowionych już w układzie okresowym czterech pierwiastków. W tej niezwykłej łamigłówce istotną rolę odegrała uczona urodzona w Warszawie – Stefania Horovitz. Była ona trzecią kobietą z Polski, która po Marii Skłodowskiej-Curie i Alicji Dorabialskiej odegrała istotną rolę w nauce o promieniotwórczości.

Leopold Horovitz, Autoportret, 1915, Domena Publiczna

Stefania Renata Horovitz urodziła się 17 kwietnia 1887 roku w Warszawie. Jej ojciec, Leopold Horovitz (1838–1917), był znanym i cenionym artystą skupionym wokół dworu cesarza Józefa I. Leopold słynął ze zdolności do malowania portretów. W 1873 roku w Wiedniu na międzynarodowej wystawie zdobył złoty metal za jeden ze swoich obrazów. Apogeum jego sławy przypadło na 1896 rok, kiedy został poproszony o namalowanie portretu cesarza Franciszka Józefa I. Dzięki tak szybko rozwijającej się karierze jego rodzina nie narzekała na niedostatki. Mniej więcej w tym samym czasie Leopold wraz z żoną Rozą z Londonów (1853–1920) oraz dziećmi Jerzym (1875–1948), Zofią (1877–1941), Arminem (1880–1965), Janiną (1882–1941) i najmłodszą Stefanią przenieśli się do Wiednia. Stefania pobierała nauki w domu. Nauka była jednak na najwyższym możliwym poziomie. W 1907 roku zainteresowała się chemią i zapisała na Wydział Filozoficzny Uniwersytetu Wiedeńskiego. Sukcesy przychodziły stosunkowo łatwo i już w 1914 roku ukończyła studia doktoranckie specjalizując się w chemii organicznej. Promotorem dysertacji był znany chemik organik profesor Guido Goldschmiedt (1850–1915). Do jego największych osiągnięć naukowych należało między innymi określenie struktury kilku związków pochodzenia naturalnego, w tym papaweryny i kwasu elagowego. Praca Horowitz dotyczyła przegrupowania chinonu pod wpływem kwasu siarkowego. Dysertacja została oceniona bardzo dobrze, a jej wynik opublikowano w dwóch pracach naukowych. Po obronie pracy doktorskiej Stefania zwróciła uwagę na chemię jądrową.

Otto Hönigschmid, przed 1921, [za:] https://badw.de/en/community-of-scholars/deceased.html?tx_badwdb_badwperson%5Bper_id%5D=1374&_badwdb_badwperson%5BpartialType%5D=BADWPersonDetailsPartial&tx_badwdb_badwperson%5BmemberType%5D=&tx_badwdb_badwperson%5Baction%5D=show&tx_badwdb_badwperson%5Bcontroller%5D=BADWPerson, dostęp z 17 lutego 2018
Pod koniec 1913 lub na początku 1914 roku rozpoczęła pracę w Instytucie Radowym w Wiedniu pod kierunkiem Ottona Hönigschmida (1878–1945). W latach 1904–1906 uczony pracował w laboratorium odkrywcy fluoru Henriego Moissana w Paryżu, a później u Theodore’a Richardsa na Uniwersytecie Harvarda. Uczony specjalizował się w badaniach węglików, krzemianów i pomiarach masy atomowej. Według opinii Kazimierza Fajansa był on mistrzem w oznaczaniu mas atomowych. Horovitz została jego protegowaną prawdopodobnie na prośbę Goldschmiedta, który był nauczycielem Hönigschmida. Co niezwykle istotne Hönigschmid miał pozytywne nastawienie do kobiet studiujących i zajmujących się nauką.

Historia rozpoczęcia ich współpracy jest niezwykła. Hönigschmid poszukując współpracownika zwrócił się z prośbą do przebywającej w Berlinie Lise Meitner, czy nie zna kogoś w Wiedniu kto kwalifikowałby się do pomocy w jego projekcie związanym z określaniem masy atomowej pierwiastków. Dzięki jej rekomendacji poznał Stefanię. Meitner i Horovitz najprawdopodobniej spotkały się w 1907 roku. Kilka miesięcy później napisał do Meitner: Przesyłam Ci pozdrowienia od panny Horovitz, która nie wierzy, że ją pamiętasz. Właśnie się z nią o to spieram. Od czerwca 1914 roku Horovitz i Hönigschmid rozpoczęli ścisłą współpracę. Otto Hönigschmid napisał do Lise Meitner – Z panną Horovitz pracujemy jak dobrzy koledzy. W tę piękną niedzielę nadal siedzimy w laboratorium od godziny szóstej. Uczeni zajęli się izolowaniem i oczyszczaniem ołowiu ze 100 kilogramów z siarczanu ołowiu pozyskanego z materiałów z Jachimowa. Praca ta była niezwykle czasochłonna i skrupulatna. Wszystkie ważone substancje musiały być izolowane w stanie czystym, a eksperymentator powinien być w stanie określić nawet najmniejszą ilość substancji, która może zostać utracona podczas eksperymentu ilościowego. Wkrótce stwierdzili, że masa atomowa ołowiu powstającego w szeregu uranowo-radowym wynosiła 206,73. Wykazali tym samym, że ołów z rozpadu jest lżejszy niż „zwykły” ołów (207,21). 23 maja 1914 roku Hönigschmid zaprezentował wyniki na kongresie Bunsena w Lipsku. Pracę wysłali także do „Monatshefte für Chemie”, a później także do „Comptes Rendus”. Uczeni wspólnie wykazali także, że odkryty przez Boltwooda i Hahna w 1906 roku pierwiastek jon to de facto izotop toru-230. Było to niezwykle ważne spostrzeżenie, bowiem wykazało, że jon i tor-230 mają takie same właściwości spektroskopowe i chemiczne, a jedyną różnicą jest ich masa atomowa. W jednym eksperymencie Horovitz podważyła istnienie pierwiastka i znalazła drugi dowód na istnienie izotopów.

Stefania Horowitz w Instytucie Radowym w Wiedniu, listopad 1915, [za:] M. Retenzi, Trafficking Materials and Gendered Experimental Practices. Radium Research in Early 20th Century Viena, http://www.gutenberg-e.org/rentetzi/index.html, dostęp z 17 lutego 2019
Ze współpracy Stefanii i Ottona wynika, że Horovitz była dojrzałym naukowcem i bliskim współpracownikiem swojego mentora. Potrafiła wyciągać słuszne wnioski z przeprowadzonych eksperymentów, często sama inicjowała prace nad nurtującym ją problemem. W 1914 roku Hönigschmid w liście do Meitner pisał: Teraz izolujemy ołów z czystej smółki z Jachimowa… Mamy nadzieję, że w ciągu najbliższych dwóch tygodni przed świętami przeanalizujemy te przygotowane [próbki] ołowiu… W 1922 roku w wykładzie noblowskim Frederick Soddy również podkreślił udział Stefanii Horovitz w pracach nad izotopami. Powiedział między innymi – Jednocześnie prace nad ołowiem z minerałów uranowych były prowadzone przez T. W. Richardsa i jego studentów na Harvardzie, a także przez Hönigschmida i Mlle. Horovitz, którzy podali prawidłowe wartości [masy atomowej ołowiu]. Historyk nauki Lawrence Badash podkreślił, że Hönigschmid i Horovitz przedstawili najbardziej przekonujące dowody potwierdzające istnienia izotopów, a ich prace eksperymentalne potwierdziły jednocześnie pracę wykonaną w trzech innych laboratoriach.

Niestety pod koniec pierwszej wojny światowej współpraca uczonych została przerwana. Hönigschmid przyjął etat na Uniwersytecie w Monachium i opuścił Wiedeń. Z niejasnych dziś powodów Horovitz opuściła Wiedeń i na krótki czas porzuciła karierę naukową. Według opinii członków rodziny chciała pocieszyć matkę po śmierci ojca i w 1917 roku wróciła do Warszawy. Siedem lat później, w 1924 roku wróciła do Wiednia i zafascynowała się psychologią adlerowską. Wspólnie z Alice Friedman zaczęła organizować dom zastępczy dla dzieci z trudnościami w nauce. W 1937 roku, prawdopodobnie z powodów politycznych, Horovitz opuściła Wiedeń i po raz kolejny przeprowadziła się do Warszawy. Wybitny polski radiochemik Kazimierz Fajans w liście do Elisabeth Rona (jedna z uczonych pracujących w Instytucie Radowym w Wiedniu) pisał:

Prawdopodobnie nie otrzymałaś z Wiednia żadnych informacji o losie dr Stefanii Horovitz. Dowiedziałem się o tym od wspólnego krewnego z Warszawy. Stefania przeprowadziła się tam [do Warszawy] po I wojnie światowej i po tym jak jej rodzice zmarli w Wiedniu, aby dołączyć do swojej zamężnej siostry [Zofii Natanson]. Nie była aktywna w chemii, a obie [siostry] zostały zlikwidowane przez nazistów w 1940 roku.

Kiedy Warszawa została okupowana przez nazistów, Horovitz i jej siostra miały szansę ucieczki z getta. Jednak w obawie przed prześladowaniem ukrywających się Żydów obie zdecydowała się udać na Umschlagplatz. Były wśród tysięcy Żydów, którzy zostali przetransportowani do obozu zagłady w Treblince. Obie zginęły. Ich losy są nieznane.

Pod koniec drugiej wojny światowej 14 października 1945 roku pod nazistowską administracją, z którą się nie zgadzali, Otto Hönigschmid wraz z żoną popełnili samobójstwo.

Reszta jest milczeniem…

 

Zalecana literatura:

  1. F. Rayner-Cnaham, G. W. Rayner-Canham, Stefanie Horovitz: A Crucial Role in the Discovery of Isotopes, [w]: A Devotion to Their Science: Pioneer Women of Radioactivity, red.: M. F. Rayner-Cnaham, G. W. Rayner-Canham, McGill-Queen’s University Press, Québec, 1997.
  2. M. Rentetzi, Stephanie Horovitz (1887–1942), [w]: European Women in Chemistry, red.: J. Apotheker, L. S. Sarkadi, Wiley, Verlag, 2011, str. 75–79.
  3. M. Rayner-Canham, G. Rayner-Canham, Stefanie Horovitz, Ellen Gleditsch, Ada Hitchins, and the Discovery of Isotopes, Bulletin for the History of Chemistry, 25(2), 2000, str. 103–108.
  4. B. Van Tiggelen, A. Lykknes, Celebrate the Women Behind the Periodic Table, Nature, 565, 2019, str. 559–561.

 

 

Do trzech razy sztuka – wyścig Ireny Joliot-Curie po Nagrodę Nobla

Irena Joliot-Curie, b.d., Muzeum Marii Skłodowskiej-Curie w Warszawie

Im dalej eksperyment jest od teorii, tym bliżej Nagrody Nobla.

Irena Joliot-Curie

 

Irena w Instytucie Radowym w Paryżu, 1942, reprodukcja pocztówki z Musée des artes et métiers

Odkrywca neutronu sir James Chadwick powiedział o niej:

Urodziła się w czasach tworzenia nauki o radioaktywności, gdy jej rodzice dokonywali wielkich odkryć, dorastała z radioaktywnością, a całe życie zawodowe poświęciła jej badaniu. Nosiła zaszczytne imię, do którego dodała blasku poprzez wielki wkład o dużej doniosłości w zakresie promieniotwórczości oraz rozwoju fizyki jądrowej… W ciągu tych lat kontynuowała i opublikowała prace nad różnymi aspektami promieniotwórczości, jednocześnie jej zapał do badań naukowych był taki, że ani obowiązki administracyjne, ani też pogarszający się stan zdrowia nie mógł powstrzymać jej z dala od laboratorium. Jej rodzice mieli zarówno silne osobowości jak i niezależne umysły i Madame Joliot-Curie odziedziczyła wiele cech z ich charakterów, jak również ich naukowy geniusz. Miała silną osobowość, była naturalna, bezpośrednia i samowystarczalna.

Irena Joliot-Curie dała się poznać jako genialna uczona, która potrafiła dumnie nosić nazwisko rodziców. Warto pamiętać, że jej prace doprowadziły do odkrycia neutronu, pozytonu (dodatniego elektronu), a także przeprowadziła reakcję rozszczepienia jądra atomowego. W 1935 roku, jako druga kobieta w historii, otrzymała Nagrodę Nobla z chemii za prace nad syntezą nowych pierwiastków promieniotwórczych. Sądzę, że mogła otrzymać kolejną Nagrodę Nobla, na którą z pewnością zasługiwała…

Lekcja pierwsza

Fryderk i Irena Joliot-Curie, 1936, NAC sygn. 1-E-3967

Historia wyścigu Ireny Joliot-Curie po Nagrodę Nobla rozpoczyna się w 1928 roku, kiedy Walther Bothe zapoczątkował bombardowanie pierwiastków lekkich cząstkami alfa. Uczony wraz ze swoim studentem Herbertem Beckerem zauważyli, że w wyniku bombardowania cząstkami alfa atomów boru, magnezu lub glinu, następuje emisja wysokoenergetycznego promieniowania gamma, co było zgodne z przewidywaniami. Niespodziewanie jednak zaobserwowali emisję promieniowania gamma emitowanego przez bombardowane atomy litu i berylu. Było to zaskakujące, bowiem atomy tych pierwiastków były zbyt małe, ażeby pod wpływem cząstek alfa mogły ulec rozbiciu. W komunikacie stwierdzili, że promieniowanie emitowane przez bombardowane cząstkami alfa atomy berylu ma większą energię niż cząstki alfa oraz że podczas reakcji nie następowała emisja protonów, a nadmiar energii promieniowania gamma pochodzi z rozpadu jądra. Badanie niemieckich uczonych zaintrygowały Irenę i jej męża Fryderyka Joliot-Curie. Uczona wspominała po latach – dysponowanie wielką ilością polonu pozwoliło Fryderykowi Joliot i mnie wykonać badania, które doprowadziły do odkrycia neutronu i sztucznej promieniotwórczości.

Irena w grudniu 1931 roku na posiedzeniu Francuskiej Akademii Nauk ogłosiła, że w wyniku przeprowadzonych eksperymentów może stwierdzić, iż energia badanego promieniowania jest aż trzykrotnie wyższa niż energia bombardujących cząstek alfa. Natomiast przepuszczając promieniowanie berylowe przez parafinę i celofan zauważyła, że wybija ono protony (atomy wodoru pozbawione elektronu). Było to niezwykle dziwne, bowiem promieniowanie berylowe zderzało się z jądrami atomowymi wodoru, tak jak dwie kule bilardowe! Mogło ono działać na maleńkie i lekkie elektrony, ale nie na protony. 18 stycznia 1932 roku małżonkowie Joliot-Curie opublikowali artykuł Emisja protonów o dużej prędkości z zawierającego wodór materiału napromieniowanego bardzo przenikliwym promieniowaniem gamma. W pracy zgodzili się z Niemcami, że promieniowanie berylowe pomimo ogromnej przenikliwości jest wysokoenergetycznym promieniowaniem gamma.

Irena i Fryderyk w swoim laboratorium w Paryżu, grudzień 1932, NAC sygn. 1-E-3968

Kiedy pracujący w Laboratorium Cavendisha na Uniwersytecie Cambridge James Chadwick przeczytał ich doniesienia, nie uwierzył w wyniki uzyskane w paryskim laboratorium. Chadwick zreferował prace Ireny Ernestowi Rutherfordowi. Po latach uczony pisał: Gdy opowiedziałem mu o obserwacjach Curie-Joliot i ich poglądach na ten temat, dostrzegłem jego rosnące zdziwienie, wreszcie wybuchnął: »Nie wierzę w to«. […] Oczywiście, Rutherford zgodził się, że należy wierzyć obserwacjom, ale wyjaśnienie to zupełnie inna sprawa. Kilka lat wcześniej Rutherford w słynnym Wykładzie Bakeriańskim przewidywał istnienie cząstki o masie zbliżonej do protonu, jednak pozbawionej ładunku. Irena i Fred nie zapoznali się z treścią wykładu. Siostrzeniec Lise Meitner, Otto Rober Frisch pisał:

Powiedziano mi, że Rutherford później spotkał Joliota i zapytał go: »Nie zdajesz sobie sprawy, że miałeś w ręce neutrony, które omawiałem w moim wykładzie Bakeriańskim w 1920 roku?« Joliot odpowiedział: »Nigdy nie czytałem tego wykładu; myślałem, że to będzie zwykły pokaz krasomówstwa, a nie nowych pomysłów«.

 

James Chadwick (1891–1974), [za:] https://www.nobelprize.org/prizes/physics/1935/chadwick/biographical/

James Chadwick rozpoczął eksperymenty 7 lutego 1932 roku. Zacząłem bez żadnych zbędnych założeń, choć oczywiście myślałem o neutronie. Byłem prawie pewien, że obserwacji Curie-Joliot nie da się wyjaśnić, odwołując się do czegoś w rodzaju zjawiska Comptona […] – wspominał. Uczony potwierdził wyniki francuskich kolegów, ale zmodyfikował ich eksperymenty. Zamiast parafiny i celofanu, promieniowanie berylowe kierował na płytki z litu, berylu, boru czy węgla. W każdym przypadku po zderzeniu promieniowania z folią, Chadwick obserwował emisję protonów. Wniosek nasuwał się sam: promieniowanie berylowe nie mogło mieć natury fali elektromagnetycznej lecz cząstki pozbawionej ładunku! 17 lutego 1932 roku James Chadwick przedstawił wyniki eksperymentów w „Nature” w artykule Możliwe istnienie neutronu. W kolejnym artykule zatytułowanym Istnienie neutronu już bez wątpliwości opisał nową cząstkę elementarną. To właśnie za to odkrycie James Chadwick otrzymał w 1935 roku Nagrodę Nobla z fizyki.

 

 

Lekcja druga

Teraz małżonkowie Joliot-Curie mając doskonały pocisk w ręku rozpoczęli prace z i nad neutronem. Bombardowali nim różne substancje, a wyniki zderzeń rejestrowali na fotografiach wykonywanych w komorze Wilsona. Na jednej z nich ujrzeli tor ruchu elektronu zakrzywiony w kierunku bieguna ujemnego pola magnetycznego zamiast do dodatniego. W kwietniu 1932 roku napisali, że kilka elektronów przechodzących przez komorę Wilsona, zostawiało ślady mające taki sam wygląd jak tory elektronów, tyle że wykazywały przeciwne krzywizny względem pozostałych. W miedzy czasie postanowili poradzić się Rutherforda i Bohra. Jednak jak się wydaje pierwszy z nich dyplomatycznie uchylił się od odpowiedzi, drugi zaś nie do końca umiał wyjaśnić dziwne zachowanie elektronów. Tymczasem młody fizyk z Kalifornijskiego Instytut Technologicznego Carl David Anderson badając za pomocą komory Wilsona umieszczonej w bardzo silnym polu magnetycznym promieniowanie kosmiczne spostrzegł nietypowy tor ruchu cząstek – ślad o długości pięciu centymetrów, przypominający włos, zakrzywiony w kierunku

Irena i Fryderyk, ok. 1937, NAC sygn. 1-E-3965

ujemnego bieguna magnesu. Co ciekawe wykonał 1300 fotografii, a jedynie na 15 zaobserwował dziwne krzywizny. Anderson w „Science” napisał, że konieczne wydaje się powołanie do życia dodatnio naładowanej cząstki o masie porównywalnej do

elektronu. Badacz odkrył pozyton czyli dodatni elektron. Córka Ireny i Fryderyka Helena Langevin-Joliot wspomina, że istnienie pozytonów wkrótce zostało potwierdzone nie tylko w promieniowaniu kosmicznym. Kilku fizyków, zwłaszcza Joliot-Curie, pamiętało dziwne trajektorie elektronów, przypisywane do elektronów […] odbijających się od ścian komory mglistej.

 

Irena i Fred po zapoznaniu się z praca Andersona wrócili do laboratorium, powtórzyli jego eksperymenty i na jednym ze zdjęć spostrzegli dwa tory: jeden odgięty w kierunku bieguna dodatniego i drugi do ujemnego. Odkryli tworzenie się pary pozyton–elektron. Powstawanie pary antycząstka–cząstka jest możliwe dzięki kwantom promieniowania gamma o wystarczająco dużej energii. Uczeni napisali: mamy tu po raz pierwszy do czynienia z przekształcaniem promieniowania elektromagnetycznego w materię. […] gdy foton gamma o wysokiej energii napotka ciężkie jądro, to w następstwie kolizji jest przekształcany w dwa elektrony o przeciwnych znakach. Maria Skłodowska-Curie zasugerował im, aby zjawisko nazwali materializacją elektronów. Niestety było to za mało na Nagrodę Nobla. Carl David Anderson za odkrycie pozytonu otrzymał Nagrodę Nobla z fizyki w 1936 roku. Wówczas Irena i Fryderyk Joliot-Curie od roku będą już laureatami tej prestiżowej nagrody.

Lekcja trzecia

Lise Meitner w laboratorium, ok. 1930, Archiv der Max-Planc-Gesellschaft, Berlin

W dniach 22–29 października 1933 roku w Brukseli odbyła się siódma konferencja Solvaya Struktura i właściwości jądra atomowego. Poza Marią Curie zaproszono także Lise Meitner i Irenę Joliot-Curie. Małżonkowie Joliot zreferowali wyniki eksperymentów polegających na bombardowaniu cząstkami alfa wysyłanymi z polonu różnych pierwiastków w tym aluminium, fluoru oraz sodu. Według uczonych powinny powstać odpowiednio izotopy: fosforu, sodu oraz glinu. Tymczasem w reakcji glinu z cząstkami alfa powstawał stabilny izotop krzemu, a w komorze Wilsona obok śladów neutronów pojawiły się ślady pozytonów. Podczas wystąpienia zatytułowanego Promieniowanie przenikliwe z atomów bombardowanych cząstkami alfa Fred opowiedział o badaniach nad neutronem, pozytonem oraz omówił eksperymenty i zdjęcia z komory Wilsona. Skomentował także najnowsze wyniki badań związane z bombardowaniem glinu i emisją neutronów oraz pozytonów. Eksperymenty małżonków skrytykowała m. in. Lise Meitner, która twierdziła, że w podobnych badaniach nie zaobserwowała obecności neutronów. Debiut na międzynarodowej scenie fizyki jądrowej był dla Joliotów dramatyczny. Fred wspominał:

Podana przez nas wiadomość wywołała żywą dyskusję. Panna Meitner oświadczyła, że robiła analogiczne doświadczenia, lecz nie uzyskała takich samych wyników. W końcu znaczna większość obecnych na zjeździe fizyków nabrała przekonania, że nasze doświadczenia nie były ścisłe. Wyszliśmy z posiedzenia z bardzo przykrym uczuciem. Wówczas przystąpił do nas profesor Bohr i biorąc moją żonę i mnie na bok, oświadczył, że uważa nasze wyniki za bardzo ważne. Wkrótce potem także Pauli zwrócił się do nas z kilku słowami otuchy.

VII Konferencja Slovayowska w Brukseli, październik 1933, Domena Publiczna

Po zakończeniu konferencji Lise Meitner w Berlinie oraz Joliot-Curie w Paryżu powtórzyli eksperymenty. Okazało się, że to Irena i Fred mieli rację! Lise należy oddać honor, gdyż napisała do Paryża i przyznała, że podczas obrad w Brukseli nie miała racji.

Irena i Fryderyk Joliot-Curie wykonali doświadczenia, w których postanowili wykazać, że neutrony i pozytony powstają w wyniku bombardowania atomów glinu cząstkami alfa o bardzo dużej energii emitowanymi przez polon. Kiedy odcięli źródło promieniowania (polon) ze zdziwieniem zauważyli, że aluminium nadal emitowało pozytony, które widzieli w komorze Wilsona i rejestrowali licznikiem Geigera. Aluminium stało się radioaktywne! Powtórzyli eksperyment, sprawdzili liczniki. Aluminium było radioaktywne! Po bombardowaniu tarczy cząstkami alfa i odłączeniu ich źródła materiał stawał się radioaktywny. Irena i Fryderyk Joliot-Curie odkryli sztuczną radioaktywność! Fred wspominał:

Nigdy nie zapomnę, jak wielka ogarnęła ją radość, gdy razem z Ireną pokazaliśmy jej w małej szklanej probówce pierwszy sztuczny pierwiastek promieniotwórczy. Ciągle mam przed oczami, jak ujmuje w swoje palce (które były spalone od radu) tę małą próbówkę zawierającą ów promieniotwórczy pierwiastek, którego aktywność wciąż jeszcze była bardzo mała. Aby zweryfikować to, co jej powiedzieliśmy, przysunęła probówkę w pobliże licznika Geigera-Műllera. Usłyszała jak wskaźnik licznika postukuje z dużą prędkością. Była to bez wątpienia jedna z najszczęśliwszych chwil w jej życiu. W kilka miesięcy później Maria Curie zmarła na białaczkę.

Po około dwóch i pół minutach natężenie promieniowania emitowanego przez pierwiastek umieszczony w probówce spadło o połowę. Podczas bombardowania aluminium cząstkami alfa powstał promieniotwórczy, nie występujący w przyrodzie izotop fosforu-30 i neutron. Fosfor-30 jako nietrwały izotop emitował z jądra pozyton (dodatni elektron) i przekształcał się w stabilny izotop krzemu-30. Cała trudność polegała na dowiedzeniu, że w trakcje reakcji jądrowej powstawał fosfor. Tego dowodu dostarczyła Irena.

Najpierw pokryła folię aluminiową niewielką ilością naturalnie występującego fosforu (naturalnie występujący izotop fosforu ma takie same właściwości chemiczne jak powstający radioaktywny izotop – nie można więc ich rozróżnić chemicznie, a jedynie metodami fizycznymi), a następnie bombardowała ją cząstkami alfa. Później uczona umieściła folię w szczelnie zamkniętym naczyniu wypełnionym kwasem solnym. Glin przereagował z kwasem, a powstający w czasie reakcji wodór reagował z fosforem tworząc lotną fosfinę, która przechodziła do cienkiej szklanej rurki. Gaz zbierał się w odwróconej do góry dnem próbówce wypychając z niej wodę. Kiedy Irena przyłożyła do probówki licznik Geigera, usłyszała charakterystyczny trzask. Fryderyk Joliot powiedział – Spóźniliśmy się z neutronem, spóźniliśmy się z pozytonem, ale tym razem zdążyliśmy. W ciągu kilku kolejnych dni Irena i Fryderyk powtórzyli doświadczenie bombardując cząstkami alfa folię z boru i magnezu otrzymując odpowiednio izotopy azotu-13 i krzemu-27. Azot-13 po czternastu minutach przekształcał się w izotop węgla-13, a krzem-27 po dwóch i pół minutach w izotop glinu-27.

Irena Joliot-Curie odbiera Nagrodę Nobla z rąk króla Szwecji Gustawa V, 11 grudnia 1935, NAC sygn. 1-E-3969

15 stycznia 1934 roku na posiedzeniu Académie des Sciences, Jean Perrin zaprezentował komunikat Ireny i Fryderyka Nowy typ radioaktywności. 29 stycznia ukazała się kolejna praca ich autorstwa Chemiczna separacja nowych pierwiastków emitujących pozytony. 10 lutego w numerze „Nature” Joliot-Curie opublikowali kolejną pracę Sztuczna produkcja nowego rodzaju radiopierwiastków. Irena wspominała:

Odkrycie sztucznej promieniotwórczości […] otworzyło przed nauką o promieniotwórczości nowe perspektywy. Obecnie znamy setki sztucznych radiopierwiastków, wytwarzanych przez przemiany atomów trwałych lub słabo promieniotwórczych, a badania większości z nich są zaledwie rozpoczęte. Środkami działania nowej dziedziny nauki były początkowo promieniowanie naturalnych pierwiastków promieniotwórczych oraz cząstki sztucznie przyspieszone w rurach wysokiego napięcia lub za pomocą cyklotronu.

W grudniu 1935 roku Irena i Fryderyk Joliot-Curie pojechali do Sztokholmu odebrać Nagrodę Nobla z chemii. Irena została drugą kobietą wyróżnioną tą nagrodą. Powtórzyła sukces swojej wybitnej matki. Za kilka lat miała okazję otrzymać kolejną nagrodę…

 

 

 

Bibliografia

[1] T. Pospieszny, Radowa księżniczka. Historia Ireny Joliot-Curie, Novae Res, Gdynia, 2017.

[2] R. McKown, She lived for science. Irène Joliot-Curie, Macmillan & Co Ltd., London, 1962.

[3] F. Joliot, I. Curie, Artificial Production of a New Kind of Radio-Element, „Nature”, 1934, nr 133, ss. 201–202.

[4] I. Joliot-Curie, Nobel Lecture: Artificial Production of Radioactive Elements. Nobelprize.org. Nobel Media AB 2014. Web.; http://www.nobelprize.org/nobel_prizes/chemistry/laureates/1935/joliot-curie-lecture.html.

[5] W. Conkling, Radioactive! How Irène Curie & Lise Meitner revolutionized science and changed the world, Algonquin Young Readers, USA, 2016.

[6] E. T. Crossfield, Irène Joliot-Curie: Following in Her Motherʼs Footsteps, [w]: A Devotion to Their Science: Pioneer Women of Radioactivity, red.: M. F. Rayner-Cnaham.

[7] P. Biquard, Frédéric Joliot-Curie – The Man and his Theories, Souvenir Press, London 1965.

[8] J. Chadwick, Possible Existence of a Neutron, „Nature”, 1932, nr 129, s. 312.

[9] J. Chadwick, The Existence of a Neutron, „Proceedings of the Royal Society of London”, 1932, A136, ss. 692–708.

[10] C. D. Anderson, The Apparent Existence of Easily Detectable Positives, „Science”, 1932, nr 76, ss. 238–239.

[11] C. D. Anderson, The Positive Electron, „Phisical Review”, 1933