Marguerite Perey i historia odkrycia fransu

/  Tomasz Pospieszny  /

 

Fotografia z Musée Curie (coll. ACJC), grafika © Ewelina Wajs

 

Koniec wieku dziewiętnastego był prawdziwym przełomem dla fizyki i chemii jądrowej. W 1898 roku Maria Skłodowska-Curie i jej mąż Pierre Curie odkryli polon i rad, rok później André-Louis Debierne doniósł o odkryciu aktynu. W 1900 roku Ernest Rutherford i Harriet Brooks badając emanację radu odkryli radon. Osiemnaście lat później Lise Meitner i Otto Hahn dopełnili tablice Mendelejewa kolejnym odkryciem pierwiastka radioaktywnego – protaktynu. W ten sposób obok uranu i toru nauka poznała kolejne pierwiastki radioaktywne. Pozostawała jednak pewna luka w pierwszej grupie głównej układu okresowego: pod cezem, a przed radem. Czekała ona na kobietę, która ostatecznie miała wydrzeć Matce Naturze ostatni naturalny pierwiastek radioaktywny. Marguerite Perey, podobnie jak jej mentorka Maria Sklodowska-Curie, odkryła pierwiastek chemiczny, który nazwała fransem.

Marguerite Catherine Perey urodziła się 19 października 1909 roku w Villemomble pod Paryżem w protestanckiej rodzinie należącej do klasy średniej. Była najmłodszą z pięciorga rodzeństwa. Jej rodzicami byli Emile Louis Perey, właściciel młyna oraz Anne Jeanne Ruissel. Niestety rodzina nie miała wiele szczęścia zarówno w finansach jak i życiu codziennym. Krach na giełdzie oraz śmierć ojca w marcu 1914 roku, spowodowały tak znaczne trudności finansowe rodziny, że uniemożliwiło to Marguerite i jej rodzeństwu zdobycie wyższego wykształcenia. Wprawdzie matka starała się jak mogła utrzymać rodzinę – dawała lekcje gry na pianinie – jednak nie była wstanie zapewnić tak wysokiego komfortu finansowego, który umożliwiłby dzieciom studiowanie. Dlatego właśnie Perey uczęszczała do państwowej szkoły technicznej dla dziewcząt (fr. École d’Enseignement Technique Féminine), kosztem wymarzonych studiów medycznych. Technikum chemiczne ukończyła w 1929 roku uzyskując Diplome d’Etat de Chimiste. W tym samym roku została zatrudniona w Instytucie Radowym w Paryżu. We wspomnieniach przytaczała pierwsze spotkanie z Madame Curie: Opuściłam ten ciemny dom, przekonana, że to był pierwszy i ostatni raz. Wszystko wydawało się tam melancholijne i posępne, i poczułam ulgę, myśląc, że bez wątpienia tam nie wrócę. Sądzę, że dla młodej dziewczyny bez wyższego wykształcenia i doświadczenia był to mimo wszystko niewątpliwy zaszczyt.

 

Pracownicy Instytutu Radowego w Paryżu w bibliotece, 1930. Siedzą, od lewej: Marguerite Perey, Leonie Razet, Marie-Isabelle Archinard i Sonia Cotelle. Stojący od lewej: Andre Régnier, Alexis Yakimach, Raymond Grégoire, Renée Galabert, Tcheng-Da-Tchang i Frederic Joliot-Curie, Musée Curie (coll. ACJC)

Perey myliła się jednak i kilka dni po rozmowie z Madame Curie otrzymała list z informacją, że została zatrudniona. Kolejne spotkanie z uczoną w laboratorium zrobiło na niej już inne wrażenie. Po latach wspominała: Ktoś wszedł bezdźwięcznie jak cień. To była kobieta ubrana na czarno. Miała siwe włosy, spięte w kok i nosiła grube okulary. Sprawiała wrażenie skrajnej kruchości i bladości. Marguerite szybko dała się poznać jako bardzo dobra pracownica. Cechowała ją pilność, inteligencja, olbrzymie umiejętności laboratoryjne i wreszcie wielki zapał do zdobywania wiedzy. Perey nie musiała długo czekać, aby zauważyła ją Maria Skłodowska-Curie. Nie musiała też długo czekać na pierwszy awans zawodowy. Wkrótce została osobistą asystentką (preparateur) i powierniczką Madame Curie, a pierwsze lata spędzone pod jej czujnym okiem z pewnością można uznać za krok w kierunku wielkiego odkrycia. Sama Perey wspominała: U boku Marii Curie nagle znalazłam się w gronie najwybitniejszych chemików francuskich. Ja, która miałam tylko jeden mizerny dyplom. Perey oddawała się pracy z pasją z jaką kiedyś pracowała młoda Maria Skłodowska. Zamieszkała w mieszkanku przy Instytucie Radowym. Była więc właściwie zawsze w pracy. Kiedy kończyła pracę w laboratorium z materiałami pod pachą wędrowała przez ogród instytutu do domu. Tam samodzielnie studiowała, śledziła najnowszą literaturę naukową. Pierwszym zadaniem jakie powierzono Marguerite było oczyszczenie aktynu (227-Ac), pierwiastka radioaktywnego odkrytego przez André Debierne w 1899 roku. Był to wówczas bardzo enigmatyczny pierwiastek – towarzyszył metalom ziem rzadkich (lantanowcom), od których bardzo trudno było go oddzielić. Jego czas połowicznego zaniku także był tajemnicą. Przez dekadę codzienne obowiązki Perey polegały głównie na swoistym rytuale: oddzielaniu czystego aktynu ze wszystkich innych składników rudy uranu. Rozpuszczała próbki w amoniaku, traktowała kwasami, podgrzewała. Na każdym etapie pracy niepożądane pierwiastki i zanieczyszczenia były spalane, ługowane, odparowywane lub wylewane, pozostawiając coraz bardziej czystą substancję aktywną. Perey wykonała setki krystalizacji frakcyjnych i z niezwykłą skrupulatnością za każdym razem mierzyła aktywność promieniotwórczą nowych preparatów. Jej sumienność, wytrwałość i entuzjazm były niezbędne dla tak wymagającego zadania. Po czterech latach pracy na lewym ramieniu uczonej pojawiła się rana, którą początkowo identyfikowała jako poparzenie kwasem. Jednak kiedy po jakimś czasie podobna rana pojawiła się na prawym ramieniu, Perey musiała zdawać sobie sprawę, że jest za to odpowiedzialny jej aktyn… W latach sześćdziesiątych ubiegłego stulecia mówiła – W tamtych czasach zachowywaliśmy tylko minimalne środki ostrożności. Właściwie nawet w dobrym tonie było lekceważenie wszelkiego rodzaju zagrożeń. Jej zaangażowanie wkrótce zaczęło przynosić pierwsze sukcesy.

André Debierne, b.d., domena publiczna

Po śmierci Marii Skłodowskiej-Curie Pery rozpoczęła współpracę zarówno z André Debiernem – nowym dyrektorem Instytutu Radowego – jak i córką Marii Irène Joliot-Curie. Joliot-Curie chciała ustalić dokładny okres półtrwania aktynu, natomiast Debierne był zaangażowany w poszukiwanie nowych radiopierwiastków, które jak się później okazało nie istniały. Jesienią 1938 roku Perey zaobserwowała, że świeżo oczyszczony ze wszystkich radioaktywnych próbek aktyn emitował nieznane dotąd promieniowanie β, które zwiększało intensywność w ciągu dwóch godzin, a następnie pozostawało stałe. W ciągu następnych godzin i dni aktywność promieniowania ponownie wzrosła. Zaczęły także z wolna powstawać długożyjące jądra potomne. Dokładność i szybkość Perey w przeprowadzaniu eksperymentów pozwoliły jej zaobserwować zjawisko, które pozostawało niewykryte przez czterdzieści lat, przez wcześniejszych i mniej zręcznych radiochemików.

Marguerite Perey i Sonia Cotelle w ogrodzie Instytutu Radowego, 1930, Musée Curie (coll. ACJC), [za:] https://uwaterloo.ca/chem13-news-magazine/april-2015/feature/engaging-story-marguerite-perey
W styczniu 1939 roku Perey doszła do wniosku, że aktyn 227 ulega specyficznemu rozpadowi, w wyniku czego powstaje nowy pierwiastek emitujący promieniowanie β. Wykazywał on właściwości długo poszukiwanego „eka-cezu” o liczbie atomowej 87. Wkrótce potem uczona ustaliła jednoznacznie, że aktyn 227 ulega podwójnemu rozpadowi – w 98,8% rozpadowi β w wyniku czego powstaje izotop toru 227 o czasie połowicznego zaniku 19 dni oraz w 1,2% rozpadowi α w wyniku czego powstaje nowy, nazwany przez nią, aktyn-K (Ac-K) o czasie połowicznego zaniku 22 minuty i masie 223. O odkryciu pierwiastka 87 w komunikacie zatytułowanym O pierwiastku 87, pochodnym aktynu doniósł 9 stycznia 1939 roku, podczas cotygodniowej sesji Francuskiej Akademii Nauki, laureat Nagrody Nobla w dziedzinie fizyki Jean Perrin.

Irène Joliot-Curie, b.d., domena publiczna

Marguerite w pierwszej kolejności o swoim odkryciu poinformowała współpracującą z nią Irène Joliot-Curie. Debierne poczuł się urażony i zignorowany, że nie on pierwszy dowiedział się o odkryciu. Spowodowało to wybuch gniewu, wzrost niechęci i oburzenia, które skupiły się głównie na Irène. Nie tylko nie wyraził zgody na proponowaną nazwę nowo odkrytego pierwiastka, ale także odmówił uznania Irène za współodkrywczynię pierwiastka. Po wielu zawziętych dyskusjach Irène i Debierne postanowili uznać Perey za jedyną odkrywczynię nowego pierwiastka, dla którego na ostateczną nazwę, dla uczczenia ojczyzny odkrywczyni, przyjęto frans. Chociaż szef pracowni długo poddawał w wątpliwość pierwszeństwo Perey.

Irène Joliot-Curie zachęcała Perey do podjęcia studiów uniwersyteckich. 21 marca 1946 roku uczona obroniła pracę doktorską pt. Pierwiastek 87: Aktyn-K. W ostatnim wersie pracy Perey napisała: Dla pierwiastka 87 zaproponowano nazwę Francium (symbol Fa). Początkowo Perey optowała za nazwą catium, jednak według Joliot-Curie była to nazwa zbyt podobna do nazwy dodatniego jonu – kationu. Sama Perey pisała:

Podczas obrony mojej pracy z marca 1946 r. zasugerowałam nazwę „catium” z symbolem Cm, ponieważ miejsce 87 w układzie okresowym jest zajmowane przez najbardziej elektrododatni kation. Skonsultowałam się z Panem Debiernem, który uznał, że ta nazwa ma tę zaletę, że polega na naukowej dedukcji. Nazwa wzbudziła jednak niewielki entuzjazm i została uznana za nieestetyczną. Z drugiej strony, ponieważ symbol jest taki sam jak dla curium, jestem skłonna nadać inną nazwę. Państwo Joliot preferowali drugą nazwę, którą zaproponowałam – „Francium” z symbolem Fa.

Później symbol pierwiastka zmieniono na Fr. Członkami komisji egzaminacyjnej byli Debierne i Irène Joliot-Curie. Perey najbardziej doceniała komentarz Irène, która po obronie dysertacji powiedziała: Dzisiaj moja matka byłaby szczęśliwa.

Trudność w odkryciu fransu polegała na tym, że jest najrzadszym i najbardziej niestabilnym ze wszystkich naturalnie występujących pierwiastków. Warto pamiętać, że był czwartym naturalnym pierwiastkiem radioaktywnym odkrytym we Francji po polonie, radzie i aktynie. Jest też ostatnim odkrytym pierwiastkiem wstępującym w naturze. Perey zawsze podchodziła do fransu bardzo emocjonalnie i osobiście. Kiedy po latach od wyizolowania pierwiastka otrzymała informację o istnieniu jego dziewięciu sztucznych izotopów napisała: Nie wiedziałem, że mój frans ma teraz dziewięć braci i sióstr. Cóż za wielka rodzina krótko życiowych członków, którzy wkrótce będą świętować swoje trzydzieste urodziny! Ale mój najstarszy [izotop fransu] wciąż pozostaje najdłużej żyjącym!

Po uzyskaniu doktoratu Perey wróciła do Instytutu Radowego na stanowisku naukowca seniora i pracowała tam do 1949 roku. Według jej przyjaciela i współpracownika Jean-Pierre’a Adloffa – Perey bardzo skorzystała z autorytetu Marii Curie. Wzbudzała [podobnie jak Curie] szacunek i podziw wśród studentów, współpracowników i kolegów. Jednak obie kobiety miały niewiele wspólnego. Początkowe zaplecze naukowe Perey było elementarne. Curie zaś uzyskała dyplom uniwersytecki z matematyki i fizyki, a jej wiedza obejmowała najnowsze teorie i odkrycia epoki. Odkrycia Curie dotyczące polonu i radu wynikają z uzasadnienia wcześniejszych obserwacji, podczas gdy odkrycie fransu jest doskonałym przykładem przypadku – przypadkowego odkrycia rzeczy, których nie poszukiwano. Obie uczone cierpiały na chorobę popromienną i zmarły prawie w tym samym wieku. Jednak Curie pracowała do ostatnich tygodni swojego życia, podczas gdy Perey przez 16 lat walczyła z chorobą.

Marguerite Perey w swoim biurze w Strasburgu, b.d., [za:] http://www.heurema.com/POFQ-MPerey.htm
W 1949 roku otrzymała propozycję objęcia Katedry Chemii Jądrowej w Strasburgu. Nominację przyjęła mówiąc – Spróbuję przekazać nowemu zespołowi chęć rygorystycznej i radosnej pracy i w ten sposób złożyć hołd Marii Curie, mojej ukochanej i czcigodnej Mistrzyni. Zwróciła zwoje naukowe zainteresowania na biologiczne zastosowaniami fransu, mając nadzieję, że będzie on przydatny w ustaleniu wczesnej diagnozy raka. Pomimo zachęcających rezultatów projekt został porzucony z powodu braku wystarczającej ilości aktynu i niewielkiego zainteresowania lekarzy. Była orędowniczką stosowania lepszych środków bezpieczeństwa dla naukowców pracujących z promieniowaniem. Z czasem jej praca naukowa musiała ustąpić pracy kierowniczej. W 1958 roku kierowane przez nią laboratorium zostało przekształcone w Laboratorium Chemii Jądrowej przy Centrum Badań Jądrowych, gdzie pełniła funkcję dyrektora. W latach 1950–1963 pełniła funkcję członka Komisji Masy Atomowej. Nigdy nie wyszła za mąż, a cały swój czas poświęcała na obowiązki naukowe i edukacyjne. Należała do różnych organizacji i komitetów między innymi do CNRS oraz IUPAC. Otrzymała wiele wysokich odznaczeń i nagród: Nagrodę Wilde’a Francuskiej Akademii Nauk (1950), Nagrodę Le Conte Francuskiej Akademii Nauk (1960), Główną Nagrodę Nauki miasta Paryża (1960), Order Honorowy Legii Narodowej (1960), Nagrodę Lavoisiera Akademii Nauk (1964), Srebrny Medal Francuskiego Towarzystwa Chemicznego (1964) Order Narodowy Zasługi (1974). W 1962 roku Perey została wybrana jako pierwsza kobieta do Francuskiej Akademii Nauk. Tym samym dostąpiła zaszczytu, którego odmówiono Marii Skłodowskiej-Curie i Irène Joliot-Curie. Nie powinno dziwić, że jeden z członków jej rodziny powiedział – Jesteś drugą tak sławną osobą w rodzinie. W XVI wieku jeden z naszych przodków również zdobył niemały rozgłos. Mówiono na niego Martin Rozrabiaka. Należy jednak pamiętać, że zaszczyty i sukces nie przyszły łatwo.

Marguerite Perey, 1940, Musée Curie, (coll. ACJC)

Po wielu latach uczona wspominała:

Mogę zapewnić, że w tym czasie, trzydzieści lat temu, musiałam zmagać się z poważnymi trudnościami. Byłam pewna, że istniała nowa substancja wytworzona przez aktyn i że powinna ona mieć właściwości chemiczne typowe dla metali alkalicznych. W takim przypadku powstawałaby w wyniku emisji cząstek alfa z aktynu. Można sobie wyobrazić środki, którymi dysponowałam i których używałam: elektrometru, a następnie liczników Geigera–Müllera, które ledwo potrafiły wykryć od 100 do 120 zliczeń na minutę! Musiałam wykonać całą pracę sama, bez przerwy od 9:00 do 23:00 lub do północy. Okazjonalna obecność niektórych osób była zachętą lub przeszkodą. Pod koniec wakacji świątecznych w 1938 r. wiele myślałam o swoim projekcie i opracowałem plan pracy. Kiedy spotkałam się z Debiernem, poprosiłam o trzytygodniowy urlop, podczas którego mogłam swobodnie pracować nad swoimi pomysłami. Obiecałem zrezygnować z projektu, jeśli pod koniec tego czasu nie będę w stanie udowodnić istnienia i pochodzenia domniemanego nowego pierwiastka. Najpierw szorstko odpowiedział, że się nie zgadza, ale później niechętnie zgodził się, twierdząc, że pomysł był głupi i zakończy się niepowodzeniem. Zaczęłam więc pracować z całą intensywnością i wytrwałością, jaką mogłem zastosować, a piętnaście dni później wyniki i dowody na istnienie [fransu] miałam już w ręce. Mój pierwszy artykuł na temat istnienia pierwiastka 87 został zaprezentowany na posiedzeniu Académie des Sciences w Paryżu w styczniu 1939 r. Ogłoszenie nowego pierwiastka zostało zasadniczo skrytykowane przez Jeana Perrina, który uważał tę substancję za izotop stabilnego pierwiastka moldavium [izotopu fransu nazwanego na cześć Mołdawii]*. Trudno sobie wyobrazić, jak wiele trudności napotkałam w trakcie tej pracy. To dość normalne, ale po zakończeniu projektu nadal pojawiało się wiele przeszkód. Co więcej, miałem zaledwie 29 lat i posiadałem jedynie odpowiednik licencjatu z chemii. W mojej sytuacji wszystko to było dla mnie dużym ciężarem. Nawet jeśli czas po identyfikacji fransu przyniósł pewne zaszczyty, przeszłam również chwile pełne łez i oszczerstw wywołanych podłymi cechami ludzkiego charakteru – przejawami podłości i perfidii… Mimo to uważam, że nawet w trakcie trudnego życie, Bóg łaskawie dał mi poczucie zrozumienia wszystkich nieprzewidzianych okoliczności i dał mi siłę, aby kontynuować [pracę], nawet w czasach wielkiej choroby.

 

W 1967 roku przyjechała jako gość honorowy do Warszawy, gdzie brała udział w obchodach setnej rocznicy urodzin Marii Curie. Było to jej ostatnie spotkanie ze społecznością naukowców z dziedzin bliskich jej sercu: radiochemii, fizyki i chemii jądrowej. Mam wielką nadzieję, że frans przyda się do wczesnego rozpoznania raka. Moim największym życzeniem jest, aby wykonać to zadanie w przyszłości – mawiała uczona. Niestety na jak ironię frans w rzeczywistości sam był rakotwórczy. Pojawiające się rany na jej ramionach, a później dłoniach były oznakami choroby. Poddała się wielu operacjom i zabiegom. Amputowano jej palce lewej dłoni. Uczona długo walczyła z nowotworem kości, który ostatecznie zwyciężył. Marguerite Perey zmarła w wieku sześćdziesięciu pięciu lat, 13 maja 1975 roku w Louveciennes.

 

*Nie powinno to dziwić, gdyż ten pierwiastek jako pierwsza opisała jego doktorantka Yvette Cauchois (1908–1999) specjalistka z zakresu spektroskopii rentgenowskiej i optyki rentgenowskiej oraz pionierskich badań nad synchrotronami.

Zalecana literatura:

[1] R. Swaby, Upór i przekora. 52 kobiety, które zmieniły naukę i świat, 2017.

[2] J.-P. Adloff, G. B. Kauffman: Marguerite Catherine Perey (1909-1975), [w]: Out of the shadows, contributions of twentieth-century women to physics, wyd. Nina Byers i Gary Williams, Cambridge University Press 2010.

[3] V. Greenwood (3 December 2014). My Great-Great-Aunt Discovered Francium. It Killed Her. New York Times Magazine.

[4] J.-P. Adloff; G. B. Kauffman, Triumph over Prejudice: The Election of Radiochemist Marguerite Perey (1909–1975) to the French Académie des Sciences. The Chemical Educator. 10, 2005, 395–399.

 

Maria Skłodowska-Curie — the first lady of nuclear physics

Zapraszamy do lektury artykułu prof. UAM dr. hab. Tomasza Pospiesznego Maria Skłodowska-Curie — the first lady of nuclear physics, opublikowanego w najnowszym numerze „Journal of Contemporary Brachytherapy”.

Kliknięcie w okładkę przenosi do artykułu.

Serdecznie dziękujemy Musée Curie w Paryżu za zgodę na zilustrowanie artykułu zdjęciami z kolekcji Association Curie Joliot-Curie.

Hypatia z Aleksandrii

/   Tomasz Pospieszny   /

 

Rachel Weisz w roli Hypatii z Aleksandrii w filmie „Agora” z 2009 roku, [za:] Cinema, Focus F. N. F. T. „Rachel Weisz as Hypatia of Alexandria.” Ancient History Encyclopedia. Last modified April 20, 2012. https://www.ancient.eu/image/609/.

Chciałbym, żeby zginęła tak jak w filmie „Agoraˮ w reżyserii Alejandro Amenábary. Żeby została uduszona. Bez bólu i cierpienia. Szybko. Może nagle. Chciałbym, żeby biorąc ostatni wdech do płuc widziała to, co ukochała najbardziej. Żeby widziała elipsę. Żeby umierała w przeświadczeniu piękna i prawdy. Piękna i prawdy Nauki.

Hypatia. Rycina pochodzi z książki E. Hubbarda: „From Little Journeys to the Homes of Great Teachers: Hypatia”, 1908. [za:] https://www.britannica.com/biography/Hypatia
Hypatia, czarno-biała fotografia obrazu olejnego Juliusa Kronberga z 1889 roku, domena publiczna

Niewiele o Niej wiemy. Raczej ją wyczuwamy. Szukając Jej życia odnajdujemy drobne kawałki, które zdradzają fragmenty. Tylko fragmenty. Urodziła się około 370 roku. I już tutaj jest kłopot, bowiem według badań prof. Marii Dzielskiej, biografki uczonej, miała się urodzić około 355 roku. Została zamordowana w 415 roku. Miała więc około sześćdziesięciu lat. Być może kształciła się w Atenach. Jednak prawdopodobnie nigdy nie opuściła rodzinnego miasta. Z pewnością Jej głównym mentorem był ojciec – Teon (około 335–405), matematyk i astronom. Wiemy, że jest Autorką komentarzy do „Arytmetykiˮ Diofantosa, „Stożkowychˮ Apoloniusza czy „Kanonu astronomicznegoˮ. Z pewnością krytycznie opisała także trzecią księgę „Almagestuˮ Ptolemeusza. Wspólnie z ojcem pracowała nad komentarzem do „Elementówˮ Euklidesa. Teon uważał, że córka przewyższała go w matematycznej wiedzy i wizji. Była podobno zafascynowana krzywymi stożkowymi (elipsą, hiperbolą i parabolą). Wprawdzie do nauki pojęcie wprowadził Menechamos, jednak szczegółowe studia oddał im wspomniany już Apoloniusz z Pergii, którego prace zostały częściowo skomentowane przez Hypatię. Niestety nie mamy już tej pewności w kwestii wynalezienia przez Nią astrolabium czy areometru. Wiadomo, że jego podstawy teoretyczne podłożył Ptolemeusz. Ulepszona wersja przyrządu trafiła do Teona. Jeden z uczniów Hypatii napisał, że pomagała w budowie i zrozumieniu funkcjonowania przyrządu. Miała wymyśleć higrometr umożliwiający określanie gęstości i ciężaru płynów. Niestety nie zachował się żaden z Jej rękopisów o tym świadczący. Hypatia nauczała matematyki i uwielbianej przez siebie astronomii w aleksandryjskim Muzejonie. Była także wykładowczynią filozofii w szkole neapolitańskiej. Często wykładała publicznie – albo w swoim domu, pod którym gromadziły się tłumy, albo w salach wykładowych. Uczniowie cenili Jej talent dydaktyczny, urodę i skromność. Była autorytetem moralnym. Podziwiano Jej wiedzę, logiczne wywody, ale także umiar, prostotę ubioru, wstrzemięźliwość seksualną, miłość do Aleksandrii, w której sprawy się angażowała. Niektórzy uważali, że była ceniona przez całe miasto. W księdze Suda czytamy – W słowach wymowna i logiczna, w czynach swych rozważna i szlachetna… Miasto przywitało Ją godnie i oddało Jej należyty szacunek. I to była Jej zguba.

 

Marie Spartali jako Hypatia. Fotografia pochodzi z albumu Colina Forda „Julia Margaret Cameron: 19th Century Photographer of Genius”, National Portrait Gallery Publications, Londyn 2003, domena publiczna

Władzę w Aleksandrii sprawował prefekt cesarza Teodozjusza Orestes. Był doskonale wykształconym chrześcijaninem o liberalnych poglądach. Dodajmy, że wiarę przyjął, aby uniknąć problemów natury politycznej. Tak się nie stało. Ponieważ wysoko cenił Hypatię często radził się Jej. To z kolei wzbudzało wściekłość biskupa Cyryla. Maluczkiego, zawistnego, bezwzględnego i żadnego władzy duchownego, który miłosierdzie rozumiał jako tyranię i przymus do jedynej słusznej wiary. Jego boską misją była nienawiść. Podburzał mnichów z klasztoru Nitrii, aby napadli na Orestesa. Nie trzeba było długo czekać. Wygodna broń chrześcijan – kamienie – zaczęły bombardować jego powóz. Jeden z nich poważnie zranił go w głowę. Tylko dzięki mieszkańcom ocalił życie. Zamachowiec – mnich Ammonis został stracony. Jednak Cyryl widział sprawę inaczej. Wystawił ciało niedoszłego mordercy w kościele i adorował jako męczennika! Teraz Cyryl rozpoczął kampanię nienawiści przeciwko Hypatii. Według prof. Marii Dzielskiej Cyryl żywił do Hypatii głęboką, patologiczną wręcz nienawiść:

 

[…] zarzuty stawiane Cyrylowi dotyczą ponadto głębszego aspektu sprawy niż tylko udziału w zewnętrznych manifestacjach wrogości i kłamstwa. Dotykają sfery jego psychologii i moralności. Cyryl uczynił coś, co można by określić naruszeniem zasad chrześcijańskiego porządku moralnego, któremu miał służyć. Stało się tak dlatego, że nie umiał pogodzić się z przegraną. Chciał być liderem społeczności aleksandryjskiej, a tymczasem to miejsce w kręgach elity zajmowała Hypatia… Pobudzało to jego ambicje, prowadziło do frustracji i patologicznej zawiści. Cyryl stawał się niebezpieczny. Aż trzy źródła mówią nam o zawiści Cyryla jako przyczynie śmierci Hypatii. Chodzi tutaj o Sokratesa, Hezychiusza i Damascjusza. Najcięższe, bezpośrednie, imienne oskarżenia o kierowanie się prymitywną, mroczną zawiścią wobec Hypatii spadają na Cyryla ze strony Damascjusza […].

 

 

Hypatia, ok. 1900, prawdopodobnie fotos teatralny, domena publiczna

Jeśli nawet nie wydał bezpośredniego rozkazu zamordowania Uczonej, to jednoznacznie ponosi moralną odpowiedzialność za to morderstwo, ponieważ na kazaniach występował przeciw aleksandryjskiej matematyczce, oskarżając ją o uprawianie magii. Należy jednak podkreślić, że są historycy, którzy nie dają temu wiary. Irene Artemi uważa, że w zachowanych dokumentach nie ma wzmianki potwierdzającej, zarzuty wobec Cyryla. Napisała – W historycznych źródłach z tamtych czasów nie ma żadnej wzmianki, że Cyryl kiedykolwiek mówił o Hypatii jako czarodziejce; wręcz przeciwnie, wydawał się mieć wielki szacunek dla jej wiedzy naukowej. W co jednak dość trudno uwierzyć. Uczona kobieta szybko została pomówiona jako wysłanniczka piekieł, czarownica, która zagrażała wierze. Która miała zagrażać Stwórcy! Według historyków Hypatię napadnięto w Wielki Post, gdy wracała powozem do domu. Głównym prowodyrem był nijaki Piotr, lektor kościelny, który z bandą święto uwielbionych mnichów wyciągnął Uczoną z powozu i zawlekł do kościoła Cezarejon. Tam obdarto Ją z szat i poćwiartowano za pomocą muszli i glinianych skorup. Jej szczątki spalono za miastem. Sokrates Scholastyk w pracy „Historia Kościoła” napisał:

Żyła w Aleksandrii pewna niewiasta imieniem Hypatia, była ona córką filozofa Teona. Udało jej się osiągnąć tak wysoki stopień wykształcenia, że przewyższała współczesnych sobie filozofów, stała się kontynuatorką wznowionej przez Plotyna filozofii platońskiej i potrafiła wykładać na prośbę zainteresowanych wszelkie, jakie by nie były, doktryny filozoficzne. Dlatego też garnęli się do niej zewsząd ci, którzy chcieli się poświęcić nauce filozofii. Ze względu na zmuszającą do szacunku szczerość i swobodę wypowiedzi, którą zapewniło jej posiadane wykształcenie, umiała mądrze występować także i wobec przedstawicieli władzy; i nie potrzebowała się wstydzić, kiedy się pojawiła wśród mężów: wszyscy nie tylko szanowali ją dla nieprzeciętnej roztropności, ale nawet czuli się onieśmieleni. Otóż tym razem przeciwko niej uzbroiła się zawiść. Ponieważ bowiem dość często spotykała się z Orestesem, fakt ten skłonił ludzi ze sfer kościelnych do wysunięcia oszczerczego oskarżenia, że to właśnie ona stoi na zawadzie i sprzeciwia się nawiązaniu przyjaznych stosunków pomiędzy Orestesem a biskupem Cyrylem. Tak więc ludzie porywczego usposobienia, którym przewodził lektor Piotr, umówiwszy się między sobą upatrzyli moment, kiedy owa niewiasta wracała skądś do domu, i wyrzuciwszy ją z lektyki zawlekli pod kościół zwany Cezarejon; tu zdarłszy z niej szaty zabili ją odłamkami skorup. Następnie rozszarpawszy ciało na sztuki poznosili poszczególne części na miejsce zwane Kinaron i spalili w ogniu. Zbrodnia ta ściągnęła na Cyryla i na Kościół w Aleksandrii niemało hańbiących zarzutów. Bo ci, co żyją według religii Chrystusowej, nie mają absolutnie nic wspólnego z morderstwami, bitwami i podobnymi do tych sprawami.

Cyryl został doktorem kościoła. Później świętym.

Śmierć Hypatii, rycina z książki Louisa Figuiera „Vies des savants illustres, depuis l’antiquité jusqu’au dix-neuvième siècle”, 1886, domena publiczna

Chciałbym, żeby tak się nie stało i nie było to prawdą. Chciałbym, żeby Nauka była potężna poprzez prawdę, a religia poprzez miłosierdzie. Chciałbym napisać o naukowych osiągnięciach Hypatii bez rozpisywania się o dziejowej niesprawiedliwości kościoła. Chciałbym, żeby mordercy byli mordercami i nie czczono ich jako świętych. Chciałbym napisać o Niej więcej. Ponoć kiedyś powiedziała – Zachowaj swoje prawo do myślenia; lepiej podjąć ryzyko popełnienia pomyłki, niż popełnić grzech nie myślenia. […] Straszną rzeczą jest przekazywanie zabobonów, tak jakby to była prawda. Ja, podobnie jak Hypatia, w to wierzę…

 

Literatura zalecana:

  1. M. Dzielska, Hypatia z Aleksandrii, UNIVERSITAS, Kraków, 2010.
  2. J. Navarro, Kobiety w matematyce. Od Hypatii do Emmy Noether, RBA, Hiszpania, 2012.
  3.  Sokrates Scholastyk, Historia Kościoła, Pax, Warszawa 1986.

Dian Fossey — Królowa gór Wirunga

/  Tomasz Pospieszny  /

 

Dian Fossey obserwuje Pucker Pussa (dwuletniego goryla górskiego) i Coco (16-miesięcznego samca), w Parku Narodowego Volcanoes w Rwandzie. Opiekowała się nimi po tym, jak ich rodziny zostały zabite przez kłusowników. Fot. Robert I.M. Campbell, National Geographic Image Collection

 

W samym sercu Afryki Środkowej, tak wysoko, że człowiek częściej drży tam z zimna, niż się poci, znajdują się wielkie, stare wulkany, wznoszące się prawie cztery i pół tysiąca metrów, niemal całkowicie pokryte bujnym, zielonym tropikalnym lasem deszczowym – góry Wirunga.

Dian Fossey przeszła do historii jako kobieta, która oddając własne życie ocaliła goryle górskie. Historia jej życia jest nie tylko niezwykle ciekawa, ale przede wszystkim inspirująca. W swojej książce „Gorillas in the Mistˮ pisała:

Spędziłam wiele lat, tęskniąc za wyjazdem do Afryki, ponieważ kontynent ten był tak odległy i oferował ogromną różnorodność wolno żyjących zwierząt. W końcu zdałam sobie sprawę, że sny rzadko same się spełniają. Aby uniknąć dalszego wyczekiwania, zaciągnęłam trzyletnią pożyczkę bankową i sfinansowałam siedmiotygodniowe safari w tych częściach Afryki, które najbardziej mi się podobały. Po miesiącach spędzonych na planowaniu trasy, z której większość znajdowała się daleko od normalnych tras turystycznych, zatrudniłam kierowcę safari w Nairobi i we wrześniu 1963 roku poleciałam do krainy moich marzeń.

Tak narodziła się legenda kobiety kochającej przyrodę ponad własne życie…

Dian Fossey, b.d., [za:] https://gorillafound.org
Przyszła na świat 16 stycznia 1932 roku w San Francisco w Kalifornii jako córka Kathryn i Georgeʼa E. Fosseyʼa III. Matka była modelką, zaś ojciec agentem ubezpieczeniowym. Kiedy Dian miała sześć lat jej rodzice rozwiedli się. Rok później matka wyszła ponownie za mąż za biznesmena Richarda Priceʼa. Niestety rozwód rodziców i obecność ojczyma mocno zaważyły na życiu przyszłej uczonej. Matka utrudniała ojcu Dian kontakty z córką, natomiast ojczym nigdy jej nie traktował jak własnego dziecka. Wprowadził do domu prawdziwy rygor i dyscyplinę – na przykład nie pozwalał Dian spożywać posiłków w jadalni w obecności rodziców! Dian nie mogąc znaleźć miłości w domu rodzinnym zaczęła jej szukać wśród zwierząt. Szczególnie więź emocjonalna łączyła ją z końmi, na których zaczęła jeździć w wieku sześciu lat.

Pod wpływem ojczyma zapisała się na kurs ekonomii w College of Marin. Nie czuła się tam jednak dobrze i kiedy w wieku dziewiętnastu lat spędziła wakacje w Montanie postanowiła poświęcić swoje życie badaniu zwierząt. Zapisała się na wstępny kurs weterynaryjny na University of California. Ponieważ Dian postanowiła działać w zgodzie z własnymi zainteresowaniami i pasją, a wbrew woli ojczyma, rodzice odcięli ją od źródło finansowania. Fossey od wczesnej młodości charakteryzowała się uporem i wytrwałością, co później okazało się niezwykle cenne w jej pracach nad życiem goryli górskich. Chcąc się utrzymać rozpoczęła pracę jako urzędnik, laborant, a nawet mechanik w fabryce.

Dian Fossey, b.d., [za:] https://gorillafound.org
Niestety ze względu na trudności w przyswajaniu fizyki i chemii oblała egzaminy na drugim roku studiów. Przeniosła się do San Jose State College, gdzie zaczęła studia z terapii zajęciowej, uzyskując tytuł licencjata w 1954 roku. To właśnie te studia przyczyniły się do jej sukcesu. Staż odbyła w szpitalu w Kalifornii, gdzie opiekowała się chorymi na gruźlicę. Rok później rozpoczęła pracę jako terapeuta zajęciowy w Kentucky, a następnie w szpitalu dziecięcym Kosair Crippled w Louisville. Cechy jej niezwykłej osobowości pozwoliły Dian nawiązać szczególnie bliskie kontakty z dziećmi, które uwielbiały swoją terapeutkę. W tym czasie zaprzyjaźniła się z żoną jednego z lekarzy Michaela Henryʼego, Mary White. Była często zapraszana na ich farmę, gdzie opiekowała się zwierzętami i jeździła konno. Ta przyjaźń była namiastką uczuć utraconych przez Dian w dzieciństwie.

Życie Dian Fossey uległo radykalnej zmianie w 1963 roku. Pożyczyła wówczas równowartość rocznej pensji (około 8000 dolarów amerykańskich), zlikwidowała konto oszczędnościowe i pojechała na siedmiotygodniową wycieczkę do Afryki. W Nairobi w Kenii poznała aktora Williama Holdena, który przedstawił ją przewodnikowi safari Johnowi Alexanderowi. Alexander został jej przewodnikiem na następne siedem tygodni po Kenii, Tanzanii i Demokratycznej Republice Konga.

W Wąwozie Olduvai w Tanzanii Fossey spotkała Louisa i Mary Leakeyʼów, którzy byli już wtedy uznanymi badaczami historii człowieka. To właśnie Louis Leakey uważał, że kobiety nadają się doskonale do obserwacji i badań małp człekokształtnych. Jako pierwszą zatrudnił Jane Goodall do badania szympansów, później Dian Fossey do pracy z gorylami górskimi i Birute Galdikas do obserwacji orangutanów (wszystkie trzy panie były nazywane Aniołkami Leakeyʼa). Zauroczona pracą Jane Goodall, Fossey zaproponowała swoją osobę do badania innych małp człekokształtnych. Kiedy poznała parę fotografów przyrody – Joan i Alana Rootów jej los został przesądzony. Para zgodziła się, aby Fossey i Alexander rozbili obóz za ich obozem. W ciągu kilku dni Dian Fossey po raz pierwszy w życiu spotkała dzikie goryle górskie. Była to miłość od pierwszego wejrzenia, miłość obustronna. Miłość zmieniająca losy Dian Fossey i goryli górskich. Po powrocie do Stanów Zjednoczonych Fossey opublikowała trzy artykuły w gazecie „The Courier-Journalˮ relacjonując swoją wizytę w Afryce. Dzięki artykułom oraz wcześniejszemu spotkaniu z Leakeyʼem pozwoliły Fossey przekonać uczonego w 1966 roku do tego, że jest odpowiednią osobą do badania życia goryli górskich.

Mary Leakey i Louis Leakey, 1962, Smithsonian Institution, sygn. SIA Acc. 90-105

Leakey zdobył fundusze na badania goryli górskich i zaproponował Fossey posadę w Afryce. Bez wahania zrezygnowała z pracy i przeprowadziła się do Afryki, chociaż w dzienniku zanotowała – Mimo że miałam spełnić swoje marzenie, nie było mi łatwo powiedzieć „do widzenia” rodzinie, przyjaciołom i moim psom. Ktoś może to nazwać przeznaczeniem, inny czymś niepokojącym. W grudniu 1966 roku przeszła podstawowy kurs suahili i prymatologii, zgromadziła odpowiednie zapasy, kupiła stary Land Rover i pojechała tworzyć legendę. W drodze do obozu spotkała się z Jane Goodall, od której dowiedziała się kilku niezbędnych spraw technicznych w pracy badawczej z naczelnymi.

Dość szybko uczona w swoim obszarze badań zidentyfikowała trzy odrębne grupy goryli. Naśladując zachowanie zwierząt, pokazując uległość wobec nich, wydając charakterystyczne, uspakajające je stęknięcia oraz jedząc ich przysmak – dziki seler została zaakceptowana przez kolejne grupy stając się z czasem członkiem ich stada. Poszczególne osobniki zaczęła, podobnie jak kilka lat wcześniej inny badacz goryli George Schaller, rozpoznawać po indywidualnych liniach i zmarszczkach wokół nosa. Początkowo wykonywała setki szkiców, a później zaczęła używać aparatu fotograficznego. Zaczęła nadawać im imiona: Wuj Bert, Digit, Beznosa, Ferdynand, Mzee, Zmarszczka, Salamon, Dora, Przylepa, Kozioł Ofiarny, Monarcha, Popcorn, Cień, Pani Moses, Kasjusz. Żeby być całkowicie szczerą: myślę, że one ciągle się zastanawiają, do którego gatunku należę! – zanotowała uczona. Podczas późniejszych wykładów mówiła, że sukces zawdzięcza doświadczeniu i pracy z dziećmi dotkniętymi autyzmem. W swojej doskonałej książce wspominała:

 

Nigdy nie zapomnę pierwszego spotkania z gorylami. Dźwięk wyprzedził wzrok. Zapach poprzedzał dźwięk w postaci przytłaczającego piżmowego odoru, przypominającego ludzki zapach. Powietrze zostało nagle rozerwane przez wysoką serię wrzasków, a następnie rytmiczne, ciągłe ostre uderzenia „pok-pokˮ w klatkę piersiową wielkiego, srebrnnogrzbietego samca zasłoniętego czymś, co wydawało się nieprzeniknioną ścianą roślinności. Joan i Alan Root, byli na leśnym szlaku jakieś dziesięć jardów dalej, dali mi znak, żebym się nie ruszała. Nasza trójka zamarła, dopóki echa krzyków i uderzeń w klatkę piersiową nie ucichły. Dopiero wtedy powoli pod osłoną gęstych krzewów skradaliśmy się do przodu około pięćdziesięciu stóp od grupy. Zerkając przez roślinność, mogliśmy dostrzec równie ciekawą grupę czarnych, futrzanych naczelnych wpatrujących się w nas. Ich jasne oczy wystrzeliły nerwowo spod ciężkich brwi, jakby próbując zidentyfikować nas jako znajomych przyjaciół lub potencjalnych wrogów. Natychmiast zostałam powalona przez fizyczną okazałość ogromnych kruczoczarnych ciał zmieszanych z zielenią grubej liściastej leśnej roślinności.

Centrum Badań „Kari”, 1967, [za:] http://gorillasfound.org
Niestety sytuacja polityczna w Kongo była bardzo niestabilna i jednocześnie bardzo niebezpieczna dla białej, samotnej kobiety. Dian przeniosła się do Rwandy, gdzie 24 września 1967 na obszarze Parku Narodowego Wulkanów utworzyła centrum badawcze Karisoke zajmujące się gorylami. Miejscowi dość szybko nazwali ją „Samotną kobietą mieszkającą na górze”. Praca w górach Wirunga była szczególnie trudna. Było wyjątkowo wilgotno i duszno, często padał deszcz, było mrocznie i błotniście, a ścieżki trzeba było samodzielnie wycinać maczetą. Jej upór był godny podziwu. Fossey odkryła między innymi, że samice przenosiły się między rożnymi grupami dobrowolnie, jednakże czasem były porywane. Zauważyła, że samice preferowały samców samotników, gdyż mogły wówczas zając najwyższą pozycję w tworzonym przez niego haremie. Odkryła także, że goryle żyją w stałych, poligynicznych rodzinach tworzonych przez jednego srebrnogrzebietego samca, kilka samic i ich potomstwo. Najwyższą pozycję w haremie zajmowała ta samica, która została pierwszą wybranką. Jej prace przyczyniły się do tego, że goryle przestały być postrzegane jako agresywne i rządne krwi bestie. Dostrzeżono w nich łagodność, troskliwość i emocje. Prace te już w 1974 roku pozwoliły uczonej przedstawić rozprawę opartą o wieloletnie obserwacje, dzięki którym otrzymała tytuł doktora zoologii na Uniwersytecie Cambridge. Warto podkreślić, że doktorat rozpoczęła nie mając magisterium – podobnie zresztą jak Jane Goodall. Od 1974 roku nie przerywając obserwacji terenowych, prowadziła jednocześnie wykłady gościnne na Cornell University w Nowym Yorku.

 

Dian Fossey właściwie od początku przebywała na ścieżce wojennej z kłusownikami. W pamiętniku napisała: Ten, kto dzisiaj zabija zwierzęta, jutro będzie zabijał zawadzających mu ludzi. Wprawdzie prawo zabraniało nielegalnych polowań na goryle w parku narodowym, ale rzadko było egzekwowane. Kłusownicy lub zleceniodawcy często przekupywali urzędników. Fossey trzykrotnie relacjonowała, że była świadkiem schwytania gorylich niemowląt do ogrodów zoologicznych. Zawsze w obronie młodych ginęły dorosłe osobniki. Nierzadko mordowano dziesięć dorosłych goryli. Z ich dłoni preparowano popielniczki, które były sprzedawane jako lokalne gadżety… W 1978 roku Fossey próbowała zapobiec eksportowi dwóch młodych goryli, Coco i Puckera, z Rwandy do zoo w Kolonii w Niemczech. Podczas schwytania niemowląt na polecenie zoo i konserwatora parku w Rwandzie, zabito dwadzieścia dorosłych goryli! Małe goryle zostały przekazane Fossey, aby wyleczyła zadane im rany odniesione podczas schwytania i niewoli. Ze znacznym wysiłkiem przywróciła je do dobrego stanu zdrowia. Wbrew zastrzeżeniom uczonej goryle zostały wysłane do Kolonii, gdzie żyły w niewoli przez dziewięć lat. Oba zmarły w tym samym miesiącu. Dian wraz z grupą pomocników patrolowała okoliczne lasy i osobiście niszczyła pułapki. W ciągu tylko czterech miesięcy w 1979 roku grupa Fossey zniszczyła 987 pułapek kłusowników w pobliżu obszaru badawczego! Natomiast w tym samym czasie oficjalni strażnicy parku narodowego w Rwandzie, składający się z dwudziestu czterech pracowników, nie wyeliminowali ani jednej pułapki. Dian przyczyniła się do schwytania i aresztowania kilku kłusowników, z których niektórzy odbywali długie kary więzienia.

Karisoke – stacja terenowa, którą Dian założyła w Parku Narodowym Volcanoes. Fot. Robert I.M. Campbell, National Geographic Image Collection

Uczona zdawała sobie sprawę, że może wygrać walcząc bronią kłusowników. Wiedziała, że bali się magii. Podczas pobytów w Ameryce lub Europie kupowała czerwone maski, którymi ich straszyła, petardy, tanie zabawki i tzw. magiczne sztuczki, aby trzymać ich na dystans. Plunęłam na niego, uderzyłam go, a następnie przystąpiłam do rutynowych czynności magicznych, tym razem dodając do nich trochę gazu łzawiącego – napisała. Czasami paliła ich obozy, porwała także syna jednego z kłusowników, aby dowiedzieć się jak dotrzeć do ojca. Niektórzy twierdzili, że zdziwaczała i sama sobie zgotowała okrutny los. Jane Goodall w jednym z wywiadów mówiła, że Fossey straciła dystans naukowca zbytnio angażując się w pracę. Stawała się jednym z członków rodziny obserwowanych gorylich grup.

Bob Campbell, b.d., [za:] https://alchetron.com/Bob-Campbell-(photographer)#-
W tej nierównej walce nie była sama. National Geographic Society przysłało jej do pomocy Roberta (Boba) Cambella, fotografa dzikiej przyrody. Miał on filmować pracę uczonej. Kilka dni po jego przybyciu Dian dostała telegram o samobójczej śmierci ojca. Cambell okazał się idealnym słuchaczem jej długich opowieści. Rozmawiali godzinami – tak, jakby znali się od zawsze. To dzięki zdjęciom i filmom Boba świat dowie sie o problemie ochrony goryli górskich. Przy okazji przyniosły one także międzynarodową sławę Fossey. Na jednym z filmów Boba widać Dian, obok której siedzi wielki goryl. Patrzy na nią ciekawie, bierze do dłoni długopis, który trzymała uczona. Fossey opiera głowę o jego ramię. Później go dotyka, mrucząc w charakterystyczny sposób. Wielki samiec był ulubieńcem Fossey. Nazwała go Digit.

W 1970 roku Dian zorientowała się, że jest w ciąży. W Anglii dokonała aborcji. Nie możesz być dziewczyną z okładki „National Geographic” i być w ciąży – tłumaczyła potem tę decyzję. Był to pierwszy krok prowadzący do rozpadu jej związku z Cambellem. Niestety ich historia miłosna zakończyła się w 1972 roku, kiedy fotograf wyjechał do Azji. Później wrócił do żony. Teraz Fossey jeszcze bardziej poświeciła się ukochanym zwierzętom. W dzienniku napisała: Nie zaznałam jeszcze takiej rozpaczy… Niestety miała nadejść gorsza.

W 1978 roku ulubiony goryl Fossey, Digit został zamordowany przez kłusowników. Jego ciało pozbawione głowy i dłoni przyniesiono do obozu Dian. Zapłakana, przyklęknęła i z czułością pogłaskała ciało po nodze. Potem przyjaciela pochowała na cmentarzu, który urządziła nieopodal swojej chaty. Napisała list do prezydenta Rwandy: Jestem pewna, że pamięta Pan pokazanego na filmie National Geographic goryla, który zabrał mi notes i długopis, a potem bardzo łagodnie oddał je, po czym zwinął się w kłębek koło mnie i zasnął. Ten sam goryl, nazywany Digit, 31 grudnia został zakłuty przez kłusowników. Zabili go, ucięli mu głowę i dłonie i uciekli z nimi. Proszę, aby mordercy ponieśli surową karę za swoje zbrodnie. Oddałabym życie za uratowanie Digita, ale jest już za późno. W tym samym roku postrzelono w serce innego ulubieńca Dian Wuja Berta. Bronił stada. Zginała również samica Macho, która broniła syna Kwelego. Wuj Bert zdołał obronić Kwelego przed kłusownikami. Młody został jednak ranny i zmarł w mękach na gangrenę. Dian napisała:

Fot. Robert I.M. Campbell, National Geographic Image Collection

 

Najnowsza wiadomość jest niewiarygodnie tragiczna. Dwudziestego czwartego lipca majestatyczny, srebrnogrzbiety Wuj Bert został zabity strzałem w serce. W trakcie tej samej napaści zastrzelono szesnasto- czy siedemnastoletnią samicę Macho, matkę trzyletniego Kwelego; pocisk przeszedł przez jej prawe ramię, następnie przez serce, złamał żebro i wyszedł na zewnątrz. Jej syn został zraniony w prawe ramię, prawdopodobnie tym samym pociskiem, ale żyje. […] Ślady wskazują, że Wuj Bert biegł na czele grupy, tak jak to miało miejsce w czasie zabójstwa Digita, starając się wyprowadzić ją na bezpieczne górskie stoki. Gdy strzelano do Macho, zawrócił, żeby jej pomóc, i został trafiony z małej odległości. Chociaż kłusownicy zabrali głowę Wuja Berta, zależało im przede wszystkim na Kwelim. Prawdopodobnie zdobyliby go, gdyby Wuj Bert nie zawrócił i za cenę własnego życia nie uniemożliwił mu ucieczki.

Okładka książki „Goryle we mgle”, [za:] https://www.worthpoint.com
Z czasem Fossey stanowczo sprzeciwiała się również turystyce, ponieważ goryle były bardzo podatne na choroby przenoszone przez ludzi. Nie miały na przykład odporności na wirusa grypy, który mógł je zdziesiątkować. Uważała turystykę za ingerowanie w ich naturalne dzikie zachowanie. Zaczęto głośno mówić o jej szaleństwie, że jest niezrównoważona, że ma kłopoty z alkoholem. Fossey wyjechała do Stanów Zjednoczonych z serią wykładów, aby zdobyć fundusze do walki z kłusownikami. Napisała też książkę „Gorillas in the Mistˮ, która ukazała się w 1983 roku. Książkę dedykowała pamięci Digita, Wujowi Berta, Macho i Kweli.

Kiedy wracała do Karisoke w 1983 roku była pełna obaw, czy goryle będą ją pamiętają. Effie, gryząc łodygę selera, zerknęła na mnie, odwróciła się w bok, […] odrzuciła seler i szybko ruszyła w moją stronę – zanotowała. Z gęstwiny roślin wyłoniła się kolejna małpa i położyła się na bezgranicznie szczęśliwej Dian. Zwabiona charakterystycznymi pomrukami przybiegła reszta grupy. Wszystkie ją pamiętały. Zaczęły ją trącać, przytulać. Dian Fossey wróciła do rodziny.

Nic nie osłabiło jej miłości do zwierząt. W obozie mieszkała uratowana przez nią małpka – koczkodan czarnosiwy – Kim oraz suczka Cindy. Fossey co roku organizowała przyjęcia świąteczne dla swoich współpracowników i studentów. Wydaje się, że szczerze przyjaźniła się z Jane Goodall. Z czasem zaczęły się jej problemy z płucami. Cierpiała na zaawansowaną rozedmę płuc spowodowaną intensywnym paleniem papierosów. Na jej chorobę miały wpływ także wysokie góry i wilgotny klimat. Cierpiąc na duszność podczas wspinaczki lub pieszych wędrówek na duże odległości musiała korzystać ze zbiornika tlenowego. Wytrwale walczyła z kłusownikami. Zdarzało się też, że strzelała nad głowami turystów, aby ich zniechęcić do odwiedzania parku. Postrzeliła pani turystę? – To nieprawda. Strzelałam nad ich głowami. Nie zamienią tej góry… w jakieś zoo! – odpierała zarzuty.

Grób Dian Fossey, b.d., domena publiczna

Wczesnym rankiem 27 grudnia 1985 roku Dian Fossey została znaleziona martwa w swojej sypialni w górach Wirunga. Została zamordowana równie brutalnie jak jej człekokształtni przyjaciele. Prawdopodobnie się broniła. Obok ciała leżał automatyczny pistolet i magazynek z nabojami. Rana, którą jej zadano była śmiertelna. Rozcięto jej głowę maczetą. Została pochowana 28 grudnia na cmentarzu obok tych, dla których poświęciła życie. Ostatni wpis w jej dzienniku brzmiał jak motto – Gdy uświadomisz sobie wartość całego życia, mniej będziesz zastanawiać się nad przeszłością, a bardziej skoncentrujesz się na zachowaniu przyszłości.

Dzięki jej pracy goryle górskie nadal żyją na wolności.

Sprawcy morderstwa nigdy nie odnaleziono.

 

Literatura zalecana:

  1. Dian Fossey, Gorillas in the Mist, Boston, Mass: Houghton Mifflin, 1983.
  2. Farley Mowat, Wirunga. Pasja życia Dian Fossey, Warszawa: Prószyński i S-ka, 1996.
  3. Farley Mowat, Woman in the Mists: The Story of Dian Fossey and the Mountain Gorillas of Africa, New York, NY: Warner Books, 1987.

O pierwiastkach chemicznych odkrytych przez kobiety / 150. rocznica powstania układu okresowego pierwiastków

/  Tomasz Pospieszny  /

 

© Ewelina Wajs

W układzie okresowym pierwiastków chemicznych jest dzisiaj 118 pierwiastków (październik 2019 roku). Spośród tych podstawowych cegiełek Wszechświata tylko kilka zostało odkrytych przez kobiety. Jednak historia tych odkryć jest nader fascynująca.

Maria Skłodowskiej-Curie i polon oraz rad (1898)

Pierwszą kobietą, której nazwisko na trwałe wpisało się w historię odkryć pierwiastków chemicznych jest Maria Skłodowska-Curie. Badając fascynujące promieniowanie uranu odkryte przez Becquerela stwierdziła, że niektóre minerały zawierające ten pierwiastek np. blenda smolista, chalkolit czy autunit wysyłają znacznie silniejsze promieniowanie niż wynikało to z zawartości w ich składzie uranu. Uczona dokonała fenomelnego zabiegu – przeprowadziła syntezę chalkolitu i stwierdziła, że wykazuje on normalną promieniotwórczość, czyli taką jakiej należy się spodziewać ze względu na zawartość uranu w próbce. W związku z powyższym w naturalnym minerale musiała istnieć domieszka nowego, nieznanego nauce pierwiastka. Maria zanotowała: Obie rudy uranu: blenda smolista (tlenek uranu) i chalkolit (fosfat miedzi i uranylu) są o wiele bardziej aktywne niż sam uran. Fakt ów jest godny uwagi i pozwala sądzić, że te minerały mogą zawierać pierwiastek o wiele bardziej aktywny niż uran. Niestety Maria i Piotr nie byli w stanie wyodrębnić potencjalnych pierwiastków chemicznych znanymi wówczas metodami. Ich córka Irena Joliot-Curie wyjaśniała po latach:

Irena Joliot-Curie, b.d., Musée Curie, col. ACJC

Ze względu na to, że jedyną znaną właściwością hipotetycznego ciała [nowego pierwiastka] była jego promieniotwórczość, Piotr i Maria Curie wprowadzili nową metodę pracy, która stała się podstawową w całej radiochemii. Przeprowadzali oni chemiczne rozdzielanie różnych ciał zawartych w minerale i mierzyli promieniotwórczość każdej frakcji. Wkrótce stwierdzili, że promieniotwórczość koncentruje się z jednej strony w siarczkach strącanych z kwaśnych roztworów, z drugiej – w pierwiastkach ziem alkalicznych i niebawem przekonali się o istnieniu dwóch nowych pierwiastków promieniotwórczych: polonu i radu […], wyższych homologów telluru i baru.

Upór Madame Curie doprowadził ją do odkrycia, które zrewolucjonizowała spojrzenie na teorię materii. 18 lipca 1898 roku małżonkowie Curie ogłosili, że odkryli nowy pierwiastek chemiczny, który nazywali polonem (symbol Po, liczba atomowa 84). Donosili:

Przypuszczamy, że ciało, które wyodrębniliśmy ze smółki uranowej, zawiera nieznany jeszcze metal, zbliżony do bizmutu ze swoich właściwości chemicznych. Jeśli istnienie tego metalu się potwierdzi, proponujemy dla niego nazwę polon – od imienia ojczyzny jednego z nas.

Maria i Piotr Curie w laboratorium przy ulicy Cuvier, 1904, Musée Curie, col. ACJC

Jednak na tym nie koniec. W połowie listopada przeprowadzili eksperymenty, dzięki którym otrzymali bardzo promieniotwórczy produkt. Wraz z Gustawem Bémontem otrzymali próbkę zawierającą bar, która była dziewięćset razy bardziej promieniotwórcza niż uran. 26 grudnia 1898 roku ogłosili, że odkryli drugi pierwiastek chemiczny, który nazwali radem (symbol Ra, liczba atomowa 88). W pracy pt. „O nowej silnie radioaktywnej substancji zawartej w blendzie smolistej” napisali:

Wyżej wyszczególnione fakty każą nam przypuszczać, że w tym nowym związku promieniotwórczym znajduje się nowy pierwiastek, który proponujemy nazwać radem. Nowy ten związek zawiera na pewno znaczną ilość baru, mimo to jednak jest on silnie promieniotwórczy. Promieniotwórczość radu musi być, zatem ogromna.

Tak zrodziła się legenda godna najwybitniejszej uczonej.

 

Harriet Brooks i radon (1901)

Harriet Brooks, 1898, McCord Museum, Montreal, Quebec

Ernest Rutherford zauważył, że związki toru nieustannie emitują radioaktywny gaz, który zachowuje właściwości promieniotwórcze przez kilka minut. Nazwał to zjawisko emanacją gazu, a później emanacją torową (ThEm). Uczony pisał: promieniowanie z tlenku toru nie było stałe, ale zmieniało się w najbardziej kapryśny sposób, podczas gdy wszystkie związki uranu emitują promieniowanie w sposób niezwykle stały. Pod kierunkiem Rutherforda ( a właściwie na jego prośbę) Harriet Brooks przeprowadziła serię eksperymentów mających na celu określenie charakteru radioaktywnych emisji toru. Wykazała także, że emanację wysyła również rad. Jej prace dowiodły, że emanacja była gazem o specyficznych właściwościach fizycznych, takich jak na przykład mniejsza masa cząsteczkowa niż masa radu. Brooks wspólnie z Rutherfordem zmierzyła szybkość dyfuzji cząsteczek gazu w powietrza. W 1901 roku uczeni ogłosili pracę pt. „Nowy gaz z raduˮ (Trans. R. Soc. Can., 7, str. 21–25), w której pisali: termin „emanacjaˮ został zastosowany do substancji emitowanej w ten sposób, ponieważ w tamtym czasie nie było dowodów, czy emisja materii była parą substancji, radioaktywnym gazem (nasze podkreślenie) czyli cząstkami materii, z których każda zawiera dużą liczbę cząsteczek. […] Musimy zatem stwierdzić, że emanacja jest w rzeczywistości ciężkimi radioaktywnymi oparami lub gazem. […] specjalne eksperymenty pokazują, że szybko się rozprasza, a także ma charakter gazowy.

Ernest Rutherford, 1908, domena publiczna

Nie ulega wątpliwości, że w 1901 roku Harriet Brooks i Ernest Rutherford udowodnili, że emanacja (dziś zwana radonem, pierwiastek 86) jest radioaktywnym gazem. Należy zauważyć, że Rutherford i Brooks […] opisali swoje wysiłki, aby określić naturę emanacji. Nie można było wyizolować znacznej objętości gazu ani zidentyfikować żadnych nowych linii widmowych. W rezultacie doszli do wniosku, że objętość jakiegokolwiek gazu była niewielka. Wykorzystali urządzenie do dyfuzji gazów jako środek nie tylko potwierdzający, że emanacja jest gazem, ale także w celu uzyskania przybliżonej wartości jego masy cząsteczkowej. Podali (błędnie), że gaz miał masę atomową między 40 a 100. Niemniej jednak fakt, że wartość była znacznie mniejsza niż wartość toru, przekonał ich, że emanacja była wcześniej nieznanym gazem. Nie twierdzili wówczas, że jest to nowy pierwiastek, choć wydaje się, że tę implikację pozostawili czytelnikowi. Jak podkreślają małżonkowie Reyner-Canhamowie (badacze historii odkrycia radonu, biografowie Brooks) Rutherford został przekonany o gazowej naturze emanacji w 1901 roku w wyniku badań przeprowadzonych przez jego pierwszą studentkę, Harriet Brooks.

 

Lise Meitner i protaktyn (1918)

W 1899 roku André-Louis Debierne odkrył pierwiastek, który nazwał aktynem (89Ac). Był to niezwykle tajemniczy pierwiastek, bowiem charakteryzował się dość krótkim czasem połowicznego zaniku, wynoszący zaledwie trzynaście i pół lat. Powinien zatem już dawno zniknąć z powierzchni Ziemi. Ponieważ jednak wciąż zdradza swoją obecność musiał powstawać w wyniku przemiany promieniotwórczej z innego nieznanego dotąd pierwiastka chemicznego. Pierwiastek ten powinien znajdować się w układzie okresowym pomiędzy torem i uranem (90Th  9192U).

Lise Meitner i Otto Hahn w laboratorium, Beriln 1912, domena publiczna

W 1900 roku William Crookes wyizolował nowy pierwiastek jako materiał o wysokim stopniu radioaktywności z uranu. Nie potrafił jednak scharakteryzować go jako nowego pierwiastka chemicznego. Nadał mu nazwę uran X (UX). Nie odniósł on sukcesu bowiem rozpuszczał azotan uranu w eterze, zaś pozostałość roztworu wodnego zawierała w większości mieszaninę dwóch pierwiastków: toru-234 i szukanego protaktynu-234.

W 1909 roku Frederick Soddy z 50 kg uwodnionego azotanu(V) uranylowego otrzymał osad, który wykazywał radioaktywność i emitował cząstki alfa. Według dedukcji uczonego z osadu powstawał w niewielkiej ilości produkt, którego ilość stale i regularnie rosła. Soddy zidentyfikował go jako aktyn (jego obserwacje trwały cztery lata!). Jednak nie potrafił on wyizolować szukanego pierwiastka i podać jego właściwości fizycznych i chemicznych. Warto zauważyć, że cztery lata później Soddy (i niezależnie od niego Polak Kazimierz Fajans) odkrył prawo przesunięć, na podstawie, którego stało się jasne, że pierwiastkiem, z którego powstawał obserwowany przez niego aktyn był poszukiwany pierwiastek 91.

Kazimierz Fajans, 1931, Narodowe Archiwum Cyfrowe, sygn. 1–Z–830

W 1913 roku wspomniany Kazimierz Fajans zaczął prace nad uranem X. Wraz ze swoim doktorantem Osvaldem H. Göhringiem doszedł do wniosku, że jest to mieszanina pierwiastków. Nazwał je uranem X1 i uranem X2. Pierwszy z nich zidentyfikowali jako izotop toru-234, natomiast drugi izotop wchodził w skład szeregu uranowo-radowego i powstaje w wyniku przemiany beta z zidentyfikowanego izotopu toru-234. W związku z tym uran X2 powinien znajdować się dokładnie za torem, a przed uranem, czyli powinien być nowym pierwiastkiem 91. Za pomocą metod analitycznych Fajansowi udało się rozdzielić i wyizolować oba izotopy. Pierwiastek 91 charakteryzował się krótkim czasem połowicznego zaniku, wynoszącym około 1,1 minuty, dlatego uczeni nazwali go brewium (ang. Brevium) od łacińskiej nazwy brevis czyli krótki.

Otto Hahn, 1933, Archiv der Max-Planck_Gesellschaft, Berlin-Dahlem

Wszystkie te zagadki zaczęły w szczególności interesować Lise Meitner, która wspólnie z Ottonem Hahnem rozpoczęła poszukiwania pierwiastka 91. Nadała mu nawet nazwę – Abrakadabra. Meitner i Hahn udoskonalili technikę rozdziału oraz założyli, że nowy pierwiastek powinien mieć właściwości zbliżone do tantalu (pierwiastek 73). Zaczęli – wzorem Marii Skłodowskiej-Curie – badać pechblendę, w której pokładali dużą nadzieję. Hahn i Meitner odkryli nową metodę analityczną umożliwiającą oddzielanie wyizolowanych z pechblendy pierwiastków należących do grupy tantalu z minimalnymi ilościami innych substancji promieniotwórczych.

Lise Meitner, 1912, Archiv der Max-Planck-Gesellschaft, Berlin-Dahlem

Kiedy wybuchła pierwsza wojna światowa Hahn pojechał na front, zaś główne prace nad pierwiastkiem Abrakadabra wykonywała Lise Meitner. W listach do Hahna donosiła o postępach pracy. Pisała między innymi, że otrzymała wystarczającą ilość materiału do badań, że zamówiła specjalne platynowe naczynia odporne na działanie fluorowodoru, że jedna z próbek wykazuje znaczną aktywność, której nie można przypisać żadnemu znanemu pierwiastkowi. Praca, którą wykonała Lise Meitner polegała na izolacji oraz zbadaniu właściwości fizycznych i chemicznych nowego pierwiastka chemicznego, a także wykazaniu, że jest on pierwiastkiem macierzystym aktynu. Uczona długo i bardzo skrupulatnie mierzyła wysyłane promieniowanie przez protaktyn. Na podstawie pomiarów doszła do wniosku, że w wyniku przemiany alfa nowy pierwiastek przekształca się w izotop aktynu. Po żmudnych i bardzo trudnych eksperymentach chemicznych Meitner 19 czerwca 1917 roku napisała do Hahna: Mam dobre wiadomości dotyczące naszej pracy. Preparat nr 9 naprawdę wydaje się istotny, aktywność alfa jest najwidoczniej już stała. Myślę, że mamy tę substancję w ręku. 17 stycznia 1918 roku donosiła: […] aktywność [pierwiastka] jest bardzo słaba, ale można ją zmierzyć z całkowitą pewnością i może być zweryfikowana przez prędkość zaniku… W każdym razie teraz możemy myśleć o bardzo szybkiej publikacji. 16 marca 1918 roku w prestiżowym niemieckim czasopiśmie naukowym, Physikalische Zeitschrift, Lise Meitner i Otto Hahn przedstawili artykuł pt. Macierzysta substancja aktynu, nowy pierwiastek radioaktywny o długim okresie półtrwania. Napisali między innymi: Przypuszczenie, że pechblenda była odpowiednim materiałem wyjściowym okazało się w pełni uzasadnione. Udało nam się odkryć nowy pierwiastek radioaktywny, wykazując jednocześnie, że jest to substancja macierzysta aktynu. Dlatego też proponujemy dla niego nazwę protaktyn. Później nazwę zmienili na protaktyn. Chociaż nie od razu była ona oczywista.

Stefan Meyer, b.d., Archiv der Uniwersitat Wien

Stefan Meyer w liście do Lise pisał: Z Twojego listu wynikają strasznie trudne pytania o protaktyn. Wolałbym nazwy Lisonium, Lisottonium, etc. W związku z tym proponuję symbol Lo, ale niestety one się nie nadają, jeśli ktoś pragnie ogólnej akceptacji… Chociaż mimo iż nadal wolę Lisotto, to wiele bardziej znaczące jest, że został odkryty Pa lub Pn, niż pojawiające się najpiękniejszej nazwy. Otto Hahn wspominał: Z powodu wybuchu wojny nie znaliśmy publikacji Soddy’ego i J. A. Cranstona, która ukazała się w tym samym czasie co nasza i donosiła o substancji macierzystej aktynu. Soddy i Cranston próbowali otrzymać tą substancję z pechblendy poprzez sublimację. Preparaty otrzymywali w wyniku zwiększenia ilości emanacji aktynowej, wykazując wzrastające stężenie aktynu. Przy pewnych założeniach, Soddy i Cranston wyliczyli w przybliżeniu czas półtrwania dla aktynu na 3500 lat. […] Nie mogli jednak określić żadnych informacji o charakterystycznych właściwościach nowej substancji. […] Oryginalnymi odkrywcami pierwiastka byli Fajans i Göhring, dlatego mieli prawo do nadania mu nazwy brewium, ze względu na krótki czas półtrwania. Ale Międzynarodowa Komisja Atomowa nie mogła stosować tej nazwy dla pierwiastka, który my odkryliśmy, ponieważ miał on czas półtrwania wielu tysięcy lat. W związku z tym, w pełni uzasadnione okazało się nazwanie długowiecznego izotopu brewium protaktynem (Pa).

Lise Meitner w laboratorium, Berlin, 1912, Archiv der Max-Planck-Gesellschaft, Berlin-Dahlem

Po długich i trudnych dyskusjach z Fajansem ustalono, że nowy pierwiastek będzie nazywał się protaktyn. A dziś, chociaż doskonale wiadomo, że całą pracę wykonała Lise Meitner, tylko dzięki jej uprzejmości i lojalności wraz z nią za odkrywcę pierwiastka 91 uważa się Ottona Hahna.

 

Ida Tacke-Noddack oraz mazur i ren (1925/1926)

György von Hevesy, b.d., domena publiczna
Dirk Coster, b.d., domena publiczna

W 1913 roku brytyjski uczony Henry Moseley przeprowadził systematyczne badania widma promieniowania rentgenowskiego emitowanego przez uprzednio wzbudzone pierwiastki chemiczne. W oparciu o otrzymane wyniki przewidział istnienie brakujących w układzie okresowym pierwiastków o liczbach atomowych 42, 43, 72 i 75. Dzięki jego badaniom Holender Dirk Coster oraz Węgier György von Hevesy pracujący w instytucie Bohra w Kopenhadze odkryli hafn (Hf, liczba atomowa72).

 

Ida i Walter Noddackowie w laboratorium Physikalisch-Technische Reichsamstalt, Berlin, lata dwudzieste XX wieku, Stadtarchiv Wesel

Ida Tacke-Noddack i jej mąż Walter skupili się na pierwiastkach chemicznych o numerach 43 i 75. Szczególnie ciekawym pierwiastkiem był pierwiastek 43. Na przestrzeni lat wielokrotnie donoszono o jego odkryciu i proponowano różne nazwy: w 1818 roku Polinium (gr. szary), w 1844 roku Pelopium (na cześć Pelopsa syna Tantala), w 1846 roku Ilmenium (od gór Ilmensky), w 1877 roku Davyum (na cześć wybitnego chemika Humphrey’a Davy’ego), w 1896 roku lucium (łac. lux, świato) czy w 1908 roku nipponium (jap. Japonia). Ida przystąpiła do pracy analizując dostępną literaturę naukową. Wspominała – Od wiosny 1923 r. spędziłam dziesięć miesięcy, od wczesnego rana do późnej nocy w Państwowej Bibliotece w Berlinie przeszukując prawie sto lat literatury dotyczącej chemii nieorganicznej. Niemieckie małżeństwo uczonych zaczęło badać rudy manganu i platyny. Ida i Walter najpierw mozolnie rozpuszczali, następnie wytrącali, ekstrahowali i zatężali roztwory zawierające nowe pierwiastki. Później wytrącali je w postaci osadów (siarczków), które redukowali gazowym wodorem, następnie ogrzewali w tlenie otrzymując sublimaty bogate w ren, ale nie mazur. Przy udziale Ottona Berga zastosowali analizę opartą na spektroskopii rentgenowskiej. Otrzymane wyniki wskazywały na obecność obu pierwiastków 43 i 75 w badanych rudach. 11 czerwca 1925 roku Walther Nernst przedstawił wyniki pracy w Pruskiej Akademii Nauk. Komunikat donosił o odkryciu w niobicie i tantalicie nowych pierwiastków 43 i 75, których ilości były rzędu 10–6 do 10–7 grama. Pierwiastek 43 uczeni nazwali Masurium (mazur, symbol Ma) dla uczczenia Mazur ojczystego kraju przodków W. Noddacka, zaś pierwiastek 75 Rhenium (ren, symbol Re) od rzeki Ren (łac. Rhenus) w Nadrenii miejsca urodzenia I. Tacke.

Ida Noddack, b.d., Stadtarchiv Wesel

Warto zauważyć, że równolegle z odkryciem Idy i Waltera nowy pierwiastek znaleźli Anglicy i Czesi. Podczas, gdy ci pierwsi uznali odkrycie Niemców, Czesi byli uparci i zaproponowali dla pierwiastka 75 nazwę pragium (na cześć Pragi). Musieli jednak w końcu ulec, gdyż Ida wysłała im swoje próbki, w których potwierdzono obecność pierwiastka Noddacków. W 1926 roku Ida i Walter wydzielili 2 miligramy czystego renu. Roku później Ida wydzieliła 120 miligramów tego metalu z molibdenitu, a w1928 roku z 660 kg molibdenitu gram renu. Noddackowie określili właściwości pierwiastka i zbadali jego związki. Nie zdołali jednak wydzielić czystego mazuru, ani – co gorsze –odtworzyć jego widma. Ernest O. Lawrence nazwał prawa Noddacków do odkrycia mazuru widocznymi urojeniami i dodawał, że najwyraźniej sobie ten fakt wmówili. Jednakże mazur figurował jako pierwiastek chemiczny w tablicy Mendelejewa i podręcznikach do chemii aż do 1949 roku, kiedy to w Amsterdamie podczas ustaleń konferencji Międzynarodowej Unii Chemii Czystej i Stosowanej (IUPAC) skreślono go z listy pierwiastków. W 1937 roku Carlo Perrier i Emilio Segrè otrzymali pierwiastek 43 w wyniku reakcji syntezy jądrowej, poprzez bombardowanie metalicznego molibdenu (pierwiastek 42) deuteronami (izotopami wodoru) lub neutronami. Nazwali go technetem (symbol Tc, z gr. technetos – sztuczny). W 1967 roku Segrè twierdził, że Noddackowie w kwestii mazuru byli zwyczajnie nieuczciwi.

Ida Noddack w laboratorium, b.d., Stadtarchiv Wesel

Historyk nauki William H. Brock wyjaśnił konkretnie, dlaczego Ida i Walter powinni zostać uznanymi odkrywcami mazuru. W książce Historia chemii napisał:

Ren został łatwo uznany i niezależnie odkryty w tym samym roku przez innych badaczy, natomiast odkrycie mazuru okazało się wątpliwe. Małżonkowie Noddack zdołali wydzielić miligramowe próbki renu z setek kilogramów rud, nie udało się to jednak w przypadku mazuru. W latach trzydziestych, mimo wzmianek o mazurze w podręcznikach i umieszczaniu go w zestawieniach pierwiastków, na ogół uważano, że dane rentgenowskie nie stanowią dostatecznego dowodu istnienia tego pierwiastka. Sądzono, że Noddackowie pośpieszyli się z ogłoszeniem swego odkrycia. Jak dziś wiadomo, pierwiastek 43 (technet) jest produktem rozszczepienia uranu i wykazano, że rudy badane przez Noddacków zawierały uran w ilości umożliwiającej pojawienie się linii mazuru (technetu) w widmach rentgenowskich.

Z perspektywy czasu wydaje się więc słusznym przywrócić mazur do układu okresowego i przypisać pierwszeństwo odkrycia pierwiastka 43 Idzie i Walterowi Noddackom. Czy jest to jednak możliwe?

 

Marguerite Perey i frans (1939)

Pracownicy Instytutu Radowego w Paryżu w bibliotece, 1930. Siedzą, od lewej: Marguerite Perey, Leonie Razet, Marie-Isabelle Archinard i Sonia Cotelle. Stojący od lewej: Andre Régnier, Alexis Yakimach, Raymond Grégoire, Renée Galabert, Tcheng-Da-Tchang i Frederic Joliot-Curie, Musée Curie, coll. ACJC

Poszukiwania fransu nazywanego eka-cezem były równie długie jak poszukiwanie pierwiastków Noddacków. W 1925 roku Radziecki chemik D. K. Dobroserdov twierdził, że znalazł eka-cez w próbce potasu (radioaktywność z próbki pochodziła z naturalnie występującego radioizotopu potasu-40). Opublikował wyniki pracy, a pierwiastek nazwał russium. Rok później angielscy chemicy Gerald J. F. Druce i Frederick H. Loring analizowali zdjęcia rentgenowskie siarczanu manganu(II). Zaobserwowali linie spektralne, które uważali za eka-cez. Zapowiedzieli odkrycie pierwiastka 87 i zaproponowali nazwę alkalium, gdyż byłby to najcięższy metal alkaliczny. W 1930 roku Fred Allison z Alabama Polytechnic Institute twierdził, że odkrył pierwiastek 87 podczas analizy minerałów polucytu i lepidolitu i zaproponował nazwę virginium. Cztery lata później H. G. MacPherson z UC Berkeley podważył i obalił odkrycie Allisona, co doprowadziło do otwartego sporu uczonych. W 1936 roku rumuński fizyk Horia Hulubei i jego koleżanka Yvette Cauchois przeanalizowali polucyt używając aparat rentgenowski o wysokiej rozdzielczości. Zauważyli kilka słabych linii emisyjnych, które przypuszczalnie należały do pierwiastka 87. Zgłosili swoje odkrycie i zaproponowali nazwę moldavium. Rok później prace Hulubeia zostały skrytykowane przez amerykańskiego fizyka F. H. Hirsha Jr., który odrzucił metody badawcze Hulubeja i Cauchois twierdząc, że analizowali oni linie rtęci lub bizmutu.

Marguerite Perey, 1940, Musée Curie, col. ACJC

W 1935 roku Marguerite Perey uczennica Marii Skłodowskiej-Curie przeczytała artykuł amerykańskich naukowców, którzy donosili, że odkryli promieniowanie beta wysyłane przez aktyn. Perey była sceptyczna względem ich doniesień, bowiem energia cząstek beta nie pasowała do cząstek emitowanych przez aktyn. Miała ona spore doświadczenie z aktynem, gdyż pracowała z nim już ponad siedem lat. Domyślała się, że amerykanie muszą dysponować zanieczyszczoną próbką, w której cząstki beta emituje atom potomny tj. taki, który powstaje z aktynu i pozostaje w badanej przez nich próbce. Chcąc udowodnić swoją hipotezę przystąpiła do pracy przygotowując niezwykle czystą próbkę aktynu-227. Zadanie było czasochłonne i bardzo precyzyjne. Uczona musiała działać szybko, aby w próbce nie powstawały atomy potomne. Jej finezyjne badanie polegało na spostrzeżeniu, że niewielka część – około 1,2% – całkowitej radioaktywności aktynu pochodziła z emisji cząstek alfa. Nikt nie podejrzewał, że aktyn-227 emituje cząstki alfa przekształcając się w pierwiastek 87 o czasie połowicznego zaniku 22 minuty i jednocześnie cząstki beta (98,8%) przechodząc w izotop toru-227 (chociaż pierwsze doniesienia na ten temat pojawiły się już w 1914 roku). Jest to tzw. rozgałęzienie. Powstający w ten sposób izotop pierwiastka 227 Perey nazwała aktynem K (Ac-K).

Andre Debierne, 1940, Musée Curie, col. ACJC

Jej bezpośrednim przełożonym był Debierne, chociaż pracowała w laboratorium kierowanym przez Irène Joliot-Curie. Dlatego też o swoim zaskakującym odkryciu poinformowała najpierw Irène. Zaproponowała nawet nazwę catium, ale Joliot-Curie odradziła jej ją, gdyż mylnie by się mogła kojarzyć z kationem. Idąc wzorem Marii Skłodowskiej-Curie Perey zaproponowała więc nazwę dla nowego pierwiastka frans. W tym samy czasie o odkryciu dowiedział się Debierne. Uważał, że jego pracownica powinna najpierw poinformować o odkryciu jego i poczuł się urażony. Jego złość była tak potężna, że nie chciał uznać odkrycia Perey. Nie trafiały do niego żadne argumenty. Konflikt trwał kilka miesięcy. Ostatecznie zgodził się, aby uznać Perey za odkrywczynię pierwiastka i zaakceptował proponowaną przez nią nazwę frans (87Fr). Uczona w jednym z listów pisała: Mam wielką nadzieję, że frans przyda się do leczenia wcześnie rozpoznanego raka. Moim największym życzeniem jest, aby wykonać to zadanie w przyszłości. Niestety sama padła ofiarą radioaktywności – zmarła na nowotwór 15 maja 1975 roku…

 

Zalecana literatura:

  1. T. Pospieszny, Pasja i geniusz. Kobiety, które zasłużyły na Nagrodę Nobla, Wydawnictwo Po Godzinach, Warszawa, 2019.
  2. M. Fontani, M. Costa, M. V. Orna, The lost elements. The periodic table’s shadow side, Oxford University Press, New York, 2014.
  3. I. Eichstaedt, Księga pierwiastków, Wiedza Powszechna, Warszawa 1970.
  4. S. Kean, Znikająca łyżeczka. Dziwne opowieści chemicznej treści, Ferria Science, Łódź, 2017.

Kobiety, które zmieniały świat

Ubiegły tydzień spędziliśmy m.in. w Krakowie, gdzie na antenie Radia Kraków rozmawialiśmy z Marzeną Florkowską o Piękniejszej Stronie Nauki i kobietach, które zasłużyły na Nagrodę Nobla. Serdecznie zapraszamy na podcast TU.

Spotkaliśmy się także z czytelnikami w krakowskim Klubie Dziennikarzy pod Gruszką, gdzie Ewelina Wajs rozmawiała z Tomaszem Pospiesznym o książce Pasja i geniusz. Kobiety, które zasłużyły na Nagrodę Nobla. Spotkanie współorganizowała Polska Sieć Kobiet Nauki, która patronuje książce.

fot. Marta du Vall
fot. Marta du Vall
fot. Sławomir Paszkiet

W cieniu matematyczki. Historia Julii Lermontowej

 

Julia Lermontowa, b.d., domena publiczna

 Julia Lermontowa była pierwszą kobietą na świecie, która uzyskała dyplom z chemii, pierwszą Rosjanką z doktoratem z chemii i trzecią kobietą w Europie posiadającą ten stopień naukowy. Była uważana za jedną z najważniejszych postaci w chemii. Mimo wielu naukowych zasług pozostawała zawsze w cieniu innych. Podobnie jak Maria Skłodowska-Curie, Lermontowa nie umiała być sławną. Przez całe życie Lermontowa stała w cieniu swojej przyjaciółki Zofii Kowalewskiej, matematyczki, która została pierwszą kobietą profesorem w Europie.

 

Uczona urodziła się w arystokratycznej rodzinie 21 grudnia 1846 roku (według kalendarza juliańskiego) lub 2 stycznia 1847 r. (według kalendarza gregoriańskiego) w Petersburgu. Jej matką była Elisawjeta Andrejewna Kossikowska, zaś ojcem generał Wsiewołoda Lermontow. Warto odnotować, że stryjkiem przyszłej uczonej był Michaił Lermontow, jeden z najważniejszych twórców romantyzmu.

Julia Lermontowa, b.d., domena publiczna

Julia była wychowywana zarówno w tradycji grecko-prawosławnej, jak i rzymskokatolickiej. Rodzice Julii zaliczani byli do moskiewskiej inteligencji, mieli też szeroki światopogląd. Uważali, że kobiety powinny mieć zapewnioną edukację na wysokim poziomie. Ich córka miała opiekę zagranicznych guwernantek, co sprzyjało nauce języków obcych. Dbano także, aby uczyli ją wysokiej klasy nauczyciele prywatni. Dziewczynce pozwalano czytać i w żaden sposób nie ograniczano jej intelektualnych potrzeb. Kiedy rodzice zorientowali się, że interesują ją nauki ścisłe zadbali by miała dostęp do literatury specjalistycznej, a co ważniejsze zezwolili jej na wykonywanie eksperymentów w domu. Lermontowa początkowo myślała o studiach medycznych, jednak przeraziły ją prace w prosektorium. Postanowiła więc podjąć studia na Państwowym Uniwersytecie Rolniczym w Moskwie. Niestety pomimo poparcia wielu profesorów jej kandydatura została odrzucona. Julia nie poddała się jednak i postanowiła wyjechać na studia za granicę. Z dzisiejszej perspektywy to nic nadzwyczajnego, ale jeśli uświadomimy sobie, że żyła ona w XIX wieku, pochodziła z Rosji to jej decyzja wymagała dużej odwagi, wytrwałości i silnej osobowości. Warto podkreślić, że Julia nie była odosobniona w swoim postanowieniu.

 

Sofja Kowalewska, domena publiczna

Dzięki kuzynce Annie Jewreinowej (pierwszej kobiecie doktor prawa), poznała Zofię Kowalewską [patrz: Tomasz Pospieszny, Sofja (Zofia) Kowalewska, PSN, 2 stycznia 2019]. To właśnie ona przekonała rodziców Julii, że w towarzystwie zamężnej kobiety będzie mogła czuć się bezpiecznie, a co ważniejsze będzie miała przyzwoitkę.

Jesienią 1869 roku Julia pojechała do Heidelbergu, gdzie rozpoczęła studia na tamtejszym uniwersytecie. Zamieszkała z Kowalewskimi. Dzięki wstawiennictwu Zofii, Julia została przyjęta do laboratorium kierowanym przez Roberta Bunsena. Bunsen słynął z wielkiego oddania dla chemii. Był świetnym naukowcem i wykładowcą. Wykłady uzupełniał ciekawymi doświadczeniami. Niestety słynął też z niechęci do kobiet. Pomimo tego uległ czarowi Zofii i zgodził się na uczestniczenie w jego zajęciach Julii. Karl Weierstrass – mentor Kowalewskiej – w jednym z listów do niej pisał:

 

On [Bunsen] planował nie przyjmować do swojego laboratorium siebie żadnych kobiet, zwłaszcza Rosjanek. Nie chciał, żeby panna Lermontowa pracowała u niego lub słuchała jego wykładów. Wówczas Ty [Kowalewska] poszłaś do niego i błagałaś go tak żarliwie, że nie mógł się oprzeć i sprzeniewierzył się swoim zasadom.

Robert Wilhelm Bunsen, domena publiczna

W laboratorium Bunsena Julia zaczęła badania związków platyny polegające na rozdzielaniu jej stopów i precyzyjnym wyznaczeniu ciężaru atomowego. Prawdopodobnie na polecenie Mendelejewa podjęła też prace związane z udoskonaleniem procesów separacji innych metali z grupy platynowców. Był to wstępny, ale niezwykle ważny warunek dla kolejnego etapu ich uporządkowania w układzie okresowym, nad którym pracował Mendelejew.

 

August Wilhelm von Hofmann, 1902, Wellcome Library, domena publiczna, CC BY 4.0

W 1871 roku Lermontowa wraz z Kowalewską przeniosła się do Berlina. Tutaj rozpoczęła badania w laboratorium Augusta Wilhelma Hofmanna, jednego z najwybitniejszych chemików organików epoki. Została jego studentką, a ich współpraca zaowocowała opublikowaniem prze Julię pracy dotyczącej struktury i syntezy 4,4′-diaminoazobenzenu. 24 października 1874 roku w Getyndze Julia Lermontowa przedstawiła tezy swojej rozprawy doktorskiej związane z analizą związków metylowych. Egzaminy nie należały do najłatwiejszych, jednakże profesorowie orzekli, że zdała je magna cum laude. Warto podkreślić, że jednym z egzaminatorów był Friedrich Wöhler, który jako pierwszy uczony przeprowadził syntezę mocznika – związku organicznego z substratów nieorganicznych.

Po obronie doktoratu Julia postanowiła powrócić do Rosji. W rodzinnym kraju podczas uroczystości związanych z jej sukcesem naukowym poznała osobiście Dmitrija Mendelejewa oraz innych uczonych należących do Rosyjskiego Towarzystwa Chemicznego m. in. Aleksandra Butlerowa zwolennika wyższego wykształcenia dla kobiet. Chemik zasugerował jej by dołączyła do jego grupy badawczej. Julia przyjęła zaproszenie znanego uczonego ochoczo i została jego asystentką. Do jej zadań należały między innymi badania związane z syntezą kwasu 2-metylo-2-butenowego.

Od 1876 roku rozpoczęła współpracę z prestiżowym naukowym czasopismem „Bulletin de la Société Chimique de Paris”. W tym samym roku Julia zaraziła się durem brzusznym, którego następstwem było ciężkie zapalenie mózgu. Na szczęście wyszła z choroby i mogła w pełni sił intelektualnych powrócić do pracy. W 1877 roku zmarł ojciec uczonej Aby pomóc rodzinie Julia przeniosła się do Moskwy, gdzie w laboratorium Władimira Markownikowa rozpoczęła badania ropą naftową. Opracowała zestaw laboratoryjny do ciągłej destylacji ropy naftowej, który były wysoko ceniony przez jej współczesnych. Prowadziła też badania nad węglowodorami alifatycznymi, czego efektem była m.in. synteza 1,3-dibromopropanu.

W 1878 r. na konferencji Rosyjskiego Towarzystwa Chemicznego A. P. Eltekow omówił nową metodę syntezy rozgałęzionych węglowodorów nienasyconych. Wiele eksperymentów przeprowadziła Julia. Dziś reakcja jest znana jako reakcja Butlerowa–Eltekowa–Lermontovej (Rysunek 1).

Rysunek 1. Reakcja Butlerowa-Eltekoawa-Lermontowej (R – część alkilowa; X – halogen np. jod, brom; MetO – tlenek metalu; Δ – temperatura).

 

Sofja Kowalewska z córką Fufą, b.d., [za:] E. Høyrup, Verdens føorste kvindelige, professionelle matematiker, Matilde: Nyhedsbrev for Dansk Matematisk Forening, 2004.
W uznaniu jej zasług w 1881 r. przyjęto Julię do Rosyjskiego Stowarzyszenia Technicznego. Została tym samym pierwszą kobietą należącą do towarzystwa.

Julia odziedziczyła rodzinną posiadłość Semenkowo, gdzie spędzała coraz więcej czasu. W końcu osiadła tam na stałe. Zainteresowała się rolnictwem, a jej praca nad udoskonaleniem produkcji sera sprawiła, że stał się on przysmakiem sprzedanym w całej Rosji i na Ukrainie. Wiosną 1889 r. poważnie zachorowała na obustronne zapalenie płuc. Jesienią tego samego roku pojechała do Sztokholmu, by odwiedzić Kowalewską. Nagła śmierć przyjaciółki w 1891 r. głęboko ją poruszyła. Julia przysposobiła córkę Zofii Fufę. W grudniu 1919 r. Julia Lermontowa doznała wylewu do mózgu, w wyniku którego zmarła. Nigdy nie wyszła za mąż. Jej pasierbica Fufa Kowalewska uznawała ją za matkę. Odziedziczyła jej cały majątek.

 

Literatura zalecana:

  1. M. Offereins, Julia Lermontova (1846-1919), [w] J. Apotheker, L.S. Sarkadi, European Women in Chemistry, Wiley-VCH Verlag GmbH & Co. KGaA, 2011, s. 27–30.
  2. M. Creese, Early Women Chemists in Russia: Anna Volkova, Iuliia Lermontova, and Nadezhda Ziber-Shumova, Bull. Hist. Chem., 1998, 21, s. 19–24.
  3. E. Roussanova, Julia Lermontowa – die erste promovierte Chemikerin, Nachrichten aus der Chemie, 2003, 51 (12), s. 1296–1297.
  4. A. H. Koblitz, Science, Women, and the Russian Intelligentsia: The Generation of the 1860s, Isis, 1988, 79 (2), s. 208–226.