Twórcy nauki o promieniotwórczości — Madame Curie i Lord Rutherford

 

/   Tomasz Pospieszny   /

 

Życie i praca Marii Skłodowskiej-Curie splatała się nieustannie z życiem i pracą Ernesta Rutherforda. Oboje uchodzili za twórców nauki o radioaktywności i oboje wnieśli do niej wiele. I mimo, że byli naukowymi konkurentami bardzo się szanowali i podziwiali.

Łączyło ich wiele. Ernest był zaledwie cztery lata młodszy od Marii (urodził się 30 sierpnia 1871 roku), pochodził podobnie jak ona z zubożałej rodziny. Był czwartym z dwanaściorga dzieci Jamesa i Marthy z domu Thompson. Matka Erna (jak go nazywano), podobnie jak rodzice Marii była nauczycielką. W domu państwa Rutherfordów, tak jak w domu państwa Skłodowskich, robiono wszystko, żeby dzieci miały dostęp do nauki. Ernest uwielbiał czytać, od wczesnego dzieciństwa wykazywał zainteresowanie otaczającym go światem. Tak jak Maria był niezwykle uzdolniony w kierunku nauk ścisłych. Przyszli nobliści byli prymusami, a nauka nie stanowiła dla nich żadnego kłopotu, a wszystko co osiągnęli zawdzięczali własnej ciężkiej pracy i wyrzeczeniom. Nauka jednak była dla nich pasją, a ciekawość odkrywania i podążania w nieznanych kierunkach wiedzy stanowiło sens ich życia. Warto dodać, że oboje mieli ciekawe pochodzenie: Maria urodziła się w „nieistniejącejˮ Polsce, a Ernest pochodził z odległej i zapomnianej Nowej Zelandii.

Obie rodziny dotknęły też wielkie tragedie. W 1876 roku na tyfus zmarła najstarsza siostra Marii Zofia, a dwa lata później na gruźlicę umarła matka uczonej Bronisława. Na początku 1886 roku dwaj młodsi bracia Ernesta, Herbert i Charles, utonęli po wypadnięciu za burtę łodzi. Również w dojrzałym wieku uczonych dotknęła wielka strata: w 1906 roku Maria straciła ukochanego męża Pierreʼa, zaś Ernest w 1930 roku jedyną córkę Eileen, która zmarła w wyniku powikłań poporodowych.

Maria Skłodowska-Curie, 1903, archiwum rodzinne Piotra Chrząstowskiego

Maria pierwszy raz spotkał się z Ernestem po jej obronie doktoratu, 25 czerwca 1903 roku, kiedy to uczony wraz z żoną przebywał w Paryżu. Rutherford wspominał:

W lecie odwiedziłem profesora i Madame Curie w Paryżu i okazało się, że ta ostatnia otrzymała w dniu mojego przybycia stopień naukowy doktora. Wieczorem mój stary przyjaciel, profesor Langevin, zaprosił moją żonę, mnie, [państwo] Curie i Perrina na kolację. Po bardzo żywym wieczorze przeszliśmy spontanicznie około godziny 11 do ogrodu, gdzie profesor Curie wyjął probówkę pokrytą częściowo siarczkiem cynku i zawierającą dużą ilość radu w roztworze. W ciemnościach jasność była olśniewająca i była wspaniałym finałem niezapomnianego dnia. W tym czasie nie mogliśmy nie zauważyć, że ręce profesora Curie miały stan bardzo zapalny i bolesny z powodu ekspozycji na promienie radu. To był pierwszy i ostatni raz, kiedy zobaczyłem [Piotra] Curie. Jego przedwczesna śmierć w wypadku ulicznym w 1906 roku była wielką stratą dla nauki, a szczególnie dla szybko rozwijającej się nauki o radioaktywności. [T. Pospieszny, Maria Skłodowska-Curie. Zakochana w nauce, Warszawa, 2020, s. 142.]

 

IV Konferencja Solvaya , Bruksela 1924, fot. Benjamin Couprie. W pierwszym rzędzie od lewej siedzą: Ernest Rutherford i Maria Skłodowska-Curie, [za:] http://www.solvayinstitutes.be
            Wzajemne docenianie pracy było niezwykłe. Maria była jedną z pierwszych uczonych uważających koncepcję jądra atomowego odkrytego przez Rutherforda za wyjątkowo ważną i słuszną. Pisała:

Pan Rutherford, wykorzystując badania nad rozpraszaniem promieni α, wywnioskował, iż owo dodatnio naładowane jądro musi mieć niezwykle ograniczone wymiary, tak że prezentuje się niemal jak wyizolowany, dodatni ładunek, otoczony pozostającymi w pewnej od niego odległości, rozproszonymi elektronami, które określają wielkość średnicy atomu. [T. Pospieszny, Maria Skłodowska-Curie. Zakochana w nauce, Warszawa, 2020, s. 188.]

Kiedy w 1913 roku William Ramsay opublikował pracę, w której twierdził, że jako pierwszy prawidłowo określił ciężar atomowy radu, robiąc przy tym złośliwe uwagi  dotyczące kunsztu naukowego Marii, uczona napisała do Ernesta:

Wie Pan już, być może, że pan Ramsay opublikował pracę na temat ciężaru atomowego radu. Doszedł on do dokładnie takich samych wyników jak ja, a jego pomiary są mniej spójne od moich. Pomimo to w podsumowaniu napisał, że jego dokonanie jest pierwszą poprawną pracą z tej dziedziny!!! Muszę przyznać, że byłam zdumiona. [T. Pospieszny, Maria Skłodowska-Curie. Zakochana w nauce, Warszawa, 2020, s. 188.]

Ernest Rutherford, b.d., kolekcja Tomasza Pospiesznego

Rutherford rozumiał jej oburzenie. „Wiedział, że [Maria] podchodzi, podobnie jak on, do swoich badań naukowych bardzo osobiście i emocjonalnie. Wiedział też, jak trudno było jej się wybić w zdominowanym przez mężczyzn świecie nauk ścisłych. Mimo że czasami z zazdrości lub zwykłej konkurencji krytykował jej opinie, nigdy nie podzielał poglądu Ramsaya czy Boltwooda w kwestii jej warsztatu naukowego. Zawsze traktował ją jak równą sobie badaczkę.ˮ [T. Pospieszny, Maria Skłodowska-Curie. Zakochana w nauce, Warszawa, 2020, s. 188.]

Oboje byli laureatami Nagrody Nobla z chemii – Ernest został wyróżniony w 1908 roku, Maria otrzymała ją w 1911 roku. Co ciekawe, że część pieniędzy z pierwszej Nagrody Nobla z 1903 roku Maria przeznaczyła na wyremontowanie i zmodernizowanie łazienki, Ernest zaś kupił sobie wymarzony samochód. Uczeni wielokrotnie spotykali się na konferencjach Solvaya, gdzie wymieniali poglądy dotyczące współczesnego im stanu wiedzy o atomie. Po śmierci Marii Ernest Rutherford w opublikowanym w „Nature” obszernym wspomnieniu poświęconym jej pamięci napisał:

[…] wielu przyjaciół Marii Curie na całym świecie, którzy podziwiają nie tylko jej naukowe talenty, ale także jej wspaniały charakter i osobowość, opłakują przedwczesne odejście osoby, która wniosła tak wielki wkład do nauki, a poprzez swoje odkrycia przyczyniła się do pomyślności całej ludzkości. [T. Pospieszny, Maria Skłodowska-Curie. Zakochana w nauce, Warszawa, 2020, s. 344.]

Uczeni odeszli w podobnym wieku: Maria miała zaledwie sześćdziesiąt siedem lat (zmarła 4 lipca 1934 roku), Rutherford w wieku sześćdziesiąt sześć (zmarł 19 października 1937 roku).

 

Książki z kolekcji Tomasza Pospiesznego

 

Po śmierci uczonych ich bliscy napisali kanonicze już dziś biografie. Córka Marii, Ève Curie, poświeciła matce piękną biografię pt. Madame Curie (wyd. 1937, pierwsze polskie wyd. 1938). Kiedy ją zapytano, dlaczego tak szybko ukazała się książka, Ève odpowiedziała, że pośpiech był uzasadniony, bowiem nie chciała, aby ktoś napisał o jej matce niewłaściwie. W książce niektóre wątki zostały pominięte lub przemilczane, co nie zmienia faktu, że jest to najważniejsza biografia uczonej.

Pierwsze polskie wydanie książki Ewy Curie w języku polskim z 1938 roku, kolekcja Tomasza Pospiesznego

 

Z kolei biografię Rutherforda napisał bliski przyjaciel uczonego Arthur Eve. Jego książka pt. Rutherford. Being the Life and Letters of the Rt Hon. Lord Rutherford, O. M. ukazała się w 1939 roku. Większość materiałów dostarczyła rodzina uczonego. Lady Rutherford udostępniła wiele materiałów, ale jednocześnie ingerowała w jej treść i na jej prośbę niektóre sprawy przemilczano. Kiedy więc przed oficjalną biografią Eve’a ukazała się pośpiesznie napisana biografia jej męża pt. Power. The life story of Lord Rutherford, O. M. autorstwa Ivora B. N. Evansa — Lady Rutherford była dość zła i krytyczna.

Biografia autorstwa Arthura Eve’a z 1939 roku, kolekcja Tomasza Pospiesznego

 

Marię Skłodowską-Curie i Ernesta Rutherforda uznajemy dziś za jednych za najwybitniejszych uczonych wszechczasów. Ich osiągnięcia naukowe są wspaniałą pamiątką świadczącą o ich niebywałym geniuszu. Wszystkich, których interesuje ich życie i osiągnięcia odsyłam do książek, które napisali ci, którzy ich znali i widzieli jak uczeni pracowali, żyli, cieszyli się i smucili. Książki Ève Curie i Arthura Eve pokazują uczonych jako ludzi pełnych pasji, wpatrzonych w naukę niczym w baśń czarodziejską.

Szczęśliwego Nowego Roku

Widok kosmosu z księżyca, fot. NASA
Szanowni Państwo,
z okazji Nowego 2021 Roku życzymy spokoju, nadziei, zdrowia i radości. Miniony rok był trudny, ale jak napisała kiedyś Lise Meitner — „życie nie musi być łatwe, byle tylko nie było puste.”
Szczęśliwego Nowego Roku oraz nieustającego podziwu dla wspaniałości Natury i Nauki życzy Piękniejsza Strona Nauki — Tomasz Pospieszny & Ewelina Wajs

#kartkazkalendarza — Lise Meitner i rozszczepienie jądra atomowego

 

/   Tomasz Pospieszny   /

 

Ostatnie dni grudnia 1939 roku należały do Lise Meitner i Ottona Hahna, którzy wymieniając niezwykle intensywnie korespondencję rozpisywali się o jednym z najważniejszych wydarzeń w historii nauki. O rozszczepieniu jądra atomowego.

Zapraszamy do lektury fragmentu książki Tomasza Pospiesznego pt. Zapomniany geniusz. Pierwsza dama fizyki jądrowej, Novae Res, Gdynia 2016.

 

***

Teraz Hahn musiał się spieszyć. Wyniki były może do końca niezrozumiałe, a wyjaśnienie dalekie, ale trzeba było się spieszyć. W Paryżu ta „przeklęta baba”, Irène Joliot-Curie, mogła mieć rację z lantanem i dreptała tuż za Hahnem. Kto wie, może równo z nim. Na gotowy maszynopis Hahn naniósł szybkie poprawki. W ostatnim momencie, uzgadniając to z Fritzem, zmienił tytuł na „Odkrycie izotopów metali alkalicznych powstających przy napromieniowaniu uranu neutronami i ich zachowanieˮ. W tej subtelnej zmianie – izotopów metali alkalicznych – ujął rad i bar, bowiem oba pierwiastki należą do metali alkalicznych. 22 grudnia oryginalny maszynopis odebrał Paul Rosbaud (redaktor „Naturwissenschaften”), a Hahn wrzucił do skrzynki pocztowej kopię zaadresowaną do Lise Meitner. W ciągu doby tekst pracy Hahna i Strassmanna przeczytały tylko te dwie osoby:

 

[…]Gdy wykonaliśmy odpowiednie badania promieniotwórczych próbek baru, które nie zawierały żadnych produktów późniejszych rozpadów, wyniki były zawsze negatywne. Substancja promieniotwórcza rozłożona była równomiernie we wszystkich frakcjach baru. […]Doszliśmy do wniosku, że nasze „izotopy radu” mają właściwości baru. Jako chemicy właściwie powinniśmy stwierdzić, że nowe produkty nie są radem, lecz barem. Żadne inne pierwiastki oprócz radu i baru nie wchodzą w rachubę.  […]

[…]Jako chemicy powinniśmy w istocie zmienić podany wyżej schemat rozpadu i wstawić symbole Ba [bar] , La [lantan] , Ce  [cer] na miejsce Ra  [rad] , Ac [aktyn] , Th [tor]. Jednakże jako „chemicy jądrowi”, pracujący w dziedzinie bardzo zbliżonej do fizyki, nie możemy zdobyć się na podjęcie tak drastycznego kroku, który byłby sprzeczny z wszystkimi dotychczas obowiązującymi prawami fizyki jądrowej. Być może wskutek szeregu niezwykłych zbiegów okoliczności otrzymaliśmy fałszywe wskazania[1].

 

Artykuł autorstwa niemieckich uczonych musiał wzbudzać kontrowersje. Po pierwsze, praca ta potwierdzała przypuszczenia Idy Noddack, która głośno i samotnie kwestionowała wcześniejsze prace Fermiego oraz zespołu Hahn–Meitner–Strassmann. Po drugie, ostatecznie przyznawała rację trudnej i zawiłej interpretacji doświadczeń przeprowadzonych przez Irène Joliot-Curie i Pavlé Savića. Po trzecie, podważała wcześniejsze badania nad transuranowcami, które zaowocowały przecież wieloma publikacjami grupy berlińskiej. Wreszcie nikt nie miał pewności, a wręcz przeciwnie: całą masę wątpliwości, że atom uranu jakimś sposobem przekształca się w atom baru. Hahn cały czas rozmyślał o wynikach ostatnich doświadczeń. 27 grudnia zatelefonował do Rosbauda z zapytaniem, czy można jeszcze dodać krótki akapit uzupełniający wnioski.

 

Jeśli chodzi o „grupę transuranowców”, to pierwiastki te są chemicznie powiązane, ale nie identyczne z ich niższymi homologami renu, osmu, irydu i platyny. Nie zostały jeszcze wykonane eksperymenty, które by potwierdzały, że mogą one być chemicznie identyczne z jeszcze niższymi homologami mazurem [obecnie technet] , rutenem, rodem, palladem.  […]Suma mas atomowych Ba + Ma [mazur] , na przykład, 138+101 wynosi 239! [2]

 

I ponownie Hahn szukał poparcia dla swoich pomysłów u Lise Meitner. Dzień później napisał do niej i Frischa list[3] dotyczący dołączonego akapitu. Korespondencja była dynamiczna (skoro tak intensywnie pracowali na odległość, co mogłoby się wydarzyć, gdyby Lise nie musiała emigrować?).

 

28 grudnia 1938 roku

Chcę Ci jeszcze szybko napisać parę słów o moich fantazjach dotyczących Ba, etc. Może w Kungälv jest z Tobą Otto Robert i może omówicie ten problem przez chwilę. Wysłaliśmy Tobie rękopis naszej pracy*.  […]Czy byłoby możliwe, aby uran 239 rozpadł się na 1 Ba i 1 Ma? Ba 138 i Ma 101 dają razem 239. Nie musi być akurat taka liczba masowa. Mogłoby też być 136 + 103, czy coś podobnego. Oczywiście nie zgadzają się liczby atomowe. Kilka neutronów musiałby się przemienić w protony, aby uzyskać takie ładunki. Czy to energetycznie jest możliwe? Wszystko inne jest udowodnione,  […]wówczas transuranowce „ausenium” i „hesperium” [pierwiastki 93 i 94] znikną. Nie wiem, czy to by mnie bardzo smuciło, czy nie*[4].

 

Było to intrygujące stwierdzenie. Jeśli Hahn miał rację, to odkrył zupełnie nowe zjawisko i jednocześnie przekreślił lata wspólnych badań z Meitner. Swoimi badaniami podważył istnienie transuranowców! Powodowało to znaczne zamieszanie w fizyce i chemii jądrowej. Przekreślało prace Fermiego i jego rzymskiej grupy, przekreślało prace Meitner i Hahna. Nieco oszołomiona Lise wyznała:

 

Nie mogliśmy tego zauważyć. To jest zupełnie niespodziewane. Hahn jest dobrym chemikiem i ufałam, że jeśli zidentyfikował jakieś pierwiastki, to miał rację. Kto mógłby pomyśleć, że chodzi o coś znacznie lżejszego?[5]

 

Kiedy Hahn i Strassmann przeprowadzali pierwsze doświadczenia z neutronami i uranem, Lise Meitner obchodziła pierwsze Boże Narodzenie na emigracji. Z dala od rodziny, przyjaciół. Z dala od domu. Jedyną bliską osobą, która mieszkała w Szwecji, była Eva von Bahr-Bergius, z którą Meitner zaprzyjaźniła się jeszcze w latach dwudziestych. Eva wspólnie z mężem Niklasem Bergiusem (1871–1947) wybudowała piękny dom w Kungälv, oddalonym około dwadzieścia kilometrów od Göteborga, do którego zaprosiła na święta bożonarodzeniowe Meitner. Uczona chyba z radością przyjęła zaproszenie, tym bardziej że miała się tam spotkać z ukochanym siostrzeńcem Ottonem Robertem. Frisch – podobnie jak ciotka – był uchodźcą pracującym w Kopenhadze pod opieką Nielsa Bohra. Niestety święta 1938 roku były dla nich obojga bardzo przykre i smutne. Spędzali je z dala od rodziny i nie wiedzieli, czy osoby bliskie ich sercom nadal żyją. Od czasu aresztowania ojca Frischa nie było także kontaktu z jego matką.

Meitner zatrzymała się w przytulnym pensjonacie i z niecierpliwością oczekiwała na swojego siostrzeńca. Pojawił się wieczorem, zmęczony podróżą. Nazajutrz podekscytowana Meitner zaczęła relacjonować siostrzeńcowi doświadczenia Hahna. Frisch początkowo był bardzo sceptyczny wobec opowieści ciotki. W tym czasie zajmował go problem magnetycznych właściwości neutronów i miał nadzieję, że przedyskutuje go z Lise. Ta jednak nie dawała za wygraną. Zmusiła siostrzeńca, by przeczytał list Hahna z 19 grudnia. Po pierwszej lekturze listu Frisch nie był nastawiony przychylnie:

 

Bar? Nie wierzę. Gdzieś jest jakiś błąd[6].

Nie, Hahn był zbyt dobrym chemikiem. Ale jak bar może tworzyć się z uranu?[7]

– Ale to niemożliwe! Nie można jednym uderzeniem odłupać od jądra stu cząsteczek. Nie można go nawet przeciąć. Wystarczy oszacować siły jądrowe, wszystkie te wiązania, które musisz naraz zerwać – to fantazja. To zupełnie niemożliwe, by coś takiego mogło się z jądrem zdarzyć[8].

 

Uczona była przekonana, że nie może być mowy o błędzie. Błędy mogła popełniać Irène Joliot-Curie, ale nie współpracownicy jej, Lise Meitner. Wybrali się na wspólny spacer. Frisch założył narty, a ciotka towarzyszyła mu pieszo. Kiedy siostrzeniec wyraził obawę, że Lise za nim nie nadąży, odpowiedziała, że szybkie chodzenie ją odmładza i utrzymuje w ruchu[9]. Po latach Frisch wspominał:

 

[…]Usiedliśmy oboje na pniu drzewa (wszystkie dyskusje miały miejsce, gdy szliśmy przez las w śniegu, ja na moich biegówkach, a Lise Meitner (zgodnie z wcześniejszym zapewnieniem, szła równie szybko bez nart) i zaczęliśmy wykonywać obliczenia na skrawkach papieru[10].

Jak może z uranu powstać bar? Nikomu nigdy nie udało się oderwać od jądra żadnych fragmentów większych niż protony czy jądra helu (cząstki alfa) i należało odrzucić myśl, że możliwe jest oddzielenie naraz wielu takich cząstek.  […]Wykluczone również, by jądro uranu po prostu pękło. Naprawdę, jądro to nie krucha bryłka, którą można rozłupać lub przełamać. Bohr podkreślał, że jądro bardziej przypomina kroplę cieczy[11].

 

Rzeczywiście model kroplowy jądra atomowego zaproponowany przez Bohra umożliwił wyjaśnienie zagadki Lise i Robertowi. Frisch podsumowywał:

 

Powoli zdaliśmy sobie sprawę z tego, że rozszczepienie uranu na dwie w przybliżeniu równe części… należy ująć z innej strony. Obraz byłby taki… jądro atomu zmienia stopniowo pierwotny kształt, wydłuża się, zwęża pośrodku, po czym dzieli się na dwie połowy[12].

 

Im większy ładunek w jądrze atomowym, tym większa jego niestabilność. Uran ma aż 92 protony, zatem jest niestabilny (protony odpychają się, przez co niestabilność jądra wzrasta). Dlatego w przyrodzie nie ma naturalnie występujących pierwiastków o liczbie protonów większej niż 92. Wystarczył jeden jedyny neutron, który powodował zwiększenie energii jądra, wskutek czego jądro zaczęło drgać i w efekcie pękać. Powstające dwa nowe jądra oddalają się od siebie z dużą prędkością. Ich masa było nieco mniejsza niż jądro macierzyste, a ów ubytek masy zgodnie z równaniem Einsteina E = mc2 przekształcał się w energię wynoszącą 200 MeV![13] Frisch wspominał:

 

Lise Meitner obliczyła, że dwa jądra powstałe w wyniku podziału jądra uranu będą lżejsze niż pierwotne jądro uranu o około jednej piątej masy protonu… Zgodnie z formułą Einsteina E = mc2… jedna piąta masy protonu jest równoważna 200 MeV[14].

 

24 grudnia 1938 roku w przepięknie zaśnieżonym lesie w odległej Szwecji Meitner wspólnie ze swoim siostrzeńcem wyjaśniła jedną z zagadek Matki Natury. Wszystko stało się jasne. Lise napisała do Hahna, ale jeszcze nie wyznała mu, że wspólnie z Frischem odkryła rozwiązanie.

 

29 grudnia 1938

Drogo Otto,

bardzo dziękuję za Twój list z 28… Wyniki Ra-Ba są bardzo ekscytujące. Otto R. i ja łamiemy sobie głowy; niestety nie dostałam jeszcze maszynopisu, ale właśnie posłałam po niego i mam nadzieję otrzymać go jutro. Wtedy będziemy mogli o tym lepiej pomyśleć.

1 stycznia 1939, godz. 12:30

Drogi Otto,

rok zaczynam listem do Ciebie. Może to być dobry rok dla nas wszystkich. Przeczytaliśmy i przemyśleliśmy bardzo dokładnie Twoją pracę, ale czy energetycznie byłoby możliwe, żeby takie ciężkie jądro pękało. Wprawdzie Twoja hipoteza o powstawaniu Ba i Ma jest niemożliwa z kilku powodów[15].

_____________________________________

[1] Ibidem, str. 228.

[2] P. Rife, „Lise Meitner…”, op. cit., str. 187.

[3] Profesor Sime podaje, że korespondencja pomiędzy Hahnem i Meitner dochodziła z dnia na dzień. Co za czasy!

 

[4] K. Hoffmann, „Wina i odpowiedzialność…”, op. cit., str. 141.

*Cytuję zdanie za: P. Rife, „Lise Meitner…”, op. cit., str. 192.

* Cytuję zdanie za: R. L. Sime, „Lise Meitner…”, op. cit., str. 239.

[5] R. Rhodes, „Jak powstała bomba atomowa”, op. cit., str. 232.

[6] Ibidem, str. 230.

[7] O. R. Frisch, „What Little I Remember”, op. cit., str. 115.

[8] R. Rhodes, „Jak powstała bomba atomowa”, op. cit., str. 230.

[9] Ibidem, str. 209.

[10] O. R. Frisch, „What Little I Remember”, op. cit., str. 116.

[11] R. Rhodes, „Jak powstała bomba atomowa”, op. cit., str. 230.

[12] R. Jungk, „Jaśniej niż tysiąc słońc”, op. cit., str. 62.

[13] 200 milionów eV (elektronovoltów). Energia z jednego atomu nie oszałamia, ale z jednego grama uranu już tak. Znajduje się w nim bowiem 2,53 x 1022 atomów!

[14] N.-T. H. Kim-Ngan, „Niedoceniony przez komitet Nagrody Nobla…”, op. cit., str. 20.

[15] R. L. Sime, „Lise Meitner…”, op. cit., str. 240.

122. rocznica odkrycia radu

 

Z okazji 122. rocznicy odkrycia radu zapraszamy do lektury fragmentu rozdziału Robaczki świętojańskie z książki Tomasza Pospiesznego pt. Maria Skłodowska-Curie. Zakochana w nauce, Wydawnictwo Po Godzinach, Warszawa 2020.

 

 

***

Na kolejny sukces małżonkowie Curie nie musieli zbyt długo czekać. Po spędzonych wakacjach w Owernii na południu Francji z większym zapałem zabrali się do pracy. Ich wnuczka Hélène Langevin-Joliot uważa, że

[…] po ślubie Maria i Piotr oczywiście pracowali wspólnie. Tak urządzili swoje życie by móc dużo czasu poświęcić pracy. To badaniom naukowym podporządkowali wszystko. Ale chciałabym wspomnieć, że pomimo tak intensywnej pracy mieli czas na rozrywkę np. spędzali razem wakacje. Między odkryciem polonu i radu wyjeżdżają z rodziną Piotra do Owernii, a więc przerywają badania naukowe na całe dwa miesiące. Dziś to może się wydawać absolutnie niesamowite.[1]

 

W połowie listopada przeprowadzili serię doświadczeń, dzięki którym otrzymali bardzo promieniotwórczy produkt. Przy udziale Gustave Bémonta udało im się pozyskać próbkę zawierającą pierwiastek bar (symbol Ba, liczba atomowa 56) o promieniotwórczości dziewięćset razy większej niż uran! 26 grudnia 1898 roku wspólnie z asystentem Bémontem ogłosili, że odkryli drugi pierwiastek chemiczny – rad (symbol Ra, liczba atomowa 88)[2]. W komunikacie zatytułowanym O nowej silnie radioaktywnej substancji zawartej w blendzie smolistej[3] napisali:

 

Wyżej wyszczególnione fakty każą nam przypuszczać, że w tym nowym związku promieniotwórczym znajduje się nowy pierwiastek, który proponujemy nazwać radem. Nowy ten związek zawiera na pewno znaczną ilość baru, mimo to jednak jest on silnie promieniotwórczy. Promieniotwórczość radu musi być, zatem ogromna.[4]

Małżonkowie Curie na okładce czasopisma „Le Petit Parisien” z 10 stycznia 1904, archiwum Tomasza Pospiesznego

Maria będzie później żałowała, że rad przyćmił swą międzynarodową sławą polon. Poza tym polon bardziej strzegł swoich tajemnic. Jeden z pierwszych polskich współpracowników Marii, Mirosław Kernbaum, po latach powiedział o polonie – Dziwnym więc trafem dzieli on los narodu, ku czci którego otrzymał imię: egzystuje de facto, jako pierwiastek chemiczny, de iure jednak przez międzynarodową komisję chemików nie jest za taki uznawany.[5] Polska jeszcze długo nie będzie miała szczęścia…

Jaką rolę w odkryciu radu odegrał Bémont nie wiadomo do końca. Znakomita biografka Marii, Françoise Giroud, podaje, że uczestniczył w badaniach, ponieważ w zeszycie laboratoryjnym z maja 1898 roku istnieją notatki wykonane jego ręką.[6] Jego badania mogły jednak ograniczać się do drobnych prac laboratoryjnych. Nie mniej jednak jest współautorem komunikatu donoszącym o istnieniu radu.

Maria i Piotr Curie oraz ich asystent Petit w szopie przy ul. Lhomond 42, ok. 1898, domena publiczna

Polon i rad zostały zaobserwowane przez małżonków Curie dzięki dużej aktywności promieniotwórczej. Teraz uczeni potrzebowali dodatkowego dowodu, aby potwierdzić, że oba pierwiastki istnieją. Eugène Demarçay specjalista z zakresu spektroskopii emisyjnej wykonał widma nowo odkrytych pierwiastków. Demarçay rozgrzewał w płomieniu palnika substancje zawierające polon i rad do stanu gazowego, a następnie przeanalizował widma, które powstały w wyniku rozszczepienia światła przez nie emitowanego. Curie mieli dowód istnienia radu w postaci widma emisyjnego, na którym było widać słabą, ale wyraźną linię fioletową przy 381,48 nm odpowiadającą temu pierwiastkowi.[7] Niestety stężenie polonu w badanej próbce było zbyt słabe, żeby zaobserwować linię emisyjną. Dlaczego? Otóż trzy pierwiastki promieniotwórcze uran, tor i rad należą do pierwiastków długożyciowych, przez co uczeni prawie w ogóle nie obserwowali spadku ich promieniotwórczości. Z kolei polon należy do pierwiastków krótkożyciowych, dla których aktywność promieniotwórcza maleje wraz z upływem czasu. Ponadto jest też pierwiastkiem rzadkim. W jednej tonie blendy uranowej (w zależności od jej pochodzenia) znajduje się około 1,4 grama radu i tylko 0,1 miligrama polonu. Maria wysunęła hipotezę, że aktywność promieniotwórcza jest stała dla danego pierwiastka. Pojawiła się więc wątpliwość czy polon nie jest bizmutem, którego aktywność została wzbudzona przez rad. Dodatkowo przemawiała za tym faktem obecność w widmie emisyjnym tylko linii bizmutu. Z drugiej strony Maria wnioskowała, że ilość polonu w badanej próbce może być tak mała, że nie zauważono jego linii. Jedynym sposobem na potwierdzenie tej teorii było otrzymanie próbki o większym stężeniu polonu, przez co byłoby można dokładnie zbadać jego właściwości chemiczne. Niestety to zadanie przez długie lata było nieosiągalne. Dopiero w czerwcu 1902 roku niemiecki chemik pracujący w Berlinie, Willy Marckwald wydzielił wolny polon. Zanurzył on czysty bizmut w roztworze otrzymanym przez roztworzenie[8] bizmutu otrzymanego z odpadów po przerobie blendy uranowej w kwasie solnym. Bizmut jako aktywniejszy pierwiastek wyparł z soli polon, który osadził się na jego powierzchni[9]. W ten sposób roztwór stawał się nieaktywny, a powierzchnia bizmutu stawała się promieniotwórcza poprzez obecność cienkiej warstewki nowego ciała. Uczony sądząc, że odkrył nowy pierwiastek, który właściwościami zbliżony był do telluru, nazwał go radiotellurem. Maria Curie udowodniła, że radiotellur i polon mają te same właściwości fizyczne i chemiczne – są więc tą samą substancją. Koronnym argumentem było porównanie czasów połowicznego zaniku obu pierwiastków. Kiedy okazało się, że wynosi on w obu przypadkach 140 dni, Maria nie miała wątpliwości. W sprawozdaniu pt. O zmniejszeniu się radioaktywności polonu wraz z upływem czasu pisała: Polon Marckwalda wydaje się identyczny z naszym oraz nie ma wątpliwości […] że substancja przygotowana przez Marckwalda jest po prostu tą samą, którą odkryłam wcześniej i opisałam jako polon.[10] Maria zadbała, aby jej wyniki badań, wnioski i eksperymenty ukazały się także po niemiecku. Kiedy jest pewna swych racji potrafi być bezwzględna. W świecie mężczyzn to trudna sztuka, ale za to jak bardzo imponująca. Marckwald, uznając rację Marii, powołując się na Szekspira, napisał: Jeśli wonną różę nazwać inaczej, czyż przestanie pachnieć?* Proponuję w przyszłości zastąpić nazwę radiotellur przez polon.[11]

Widmo emisyjne było wystarczającym dowodem istnienia radu dla fizyków, nie przekonywało jednak chemików. Chemicy żądali właściwości chemicznych nowych pierwiastków, chcieli znać masę radu. Irena Joliot-Curie wspominała:

 

W tym czasie oznaczenie widma i ciężaru atomowego radu miało wielkie znaczenie dla przekonania chemików, że nowe radiopierwiastki były takimi samymi substancjami, jak inne, różniąc się jedynie posiadaniem właściwości promieniotwórczych.[12]

Maria i Piotr Curie w szopie przy ulicy Lhomond 42, ok. 1898, domena publiczna

Ażeby Maria mogła określić masę atomową radu potrzebowała dziesiątek ton smółki uranowej, a ta niestety po pierwsze zawierała bardzo małe ilości radu, a po drugie kosztowała fortunę. Z pomocą przyszła fabryka uranu z Czech, znajdująca się w Jachymowie. Wspaniałomyślnie rząd austriacki po namowach Franza Exnera – późniejszego nauczyciela fizyki eksperymentalnej Erwina Schrödingera i Mariana Smoluchowskiego – podarował małżonkom Curie najpierw sto kilogramów, a potem całą tonę ziemi, stanowiącą odpady po wydzieleniu uranu. W rozprawie doktorskiej Maria napisała:

 

To ta pozostałość zawiera substancje radioaktywne; jej czynność promieniotwórcza jest cztery i pół razy większa od aktywności uranu metalicznego. Rząd austriacki, do którego należą kopalnie blendy, uprzejmie zaoferował nam na cele naszych poszukiwań jedną tonę tych odpadków i upoważnił kopalnie do dostarczania nam większej ilości ton tego materiału.[13]

 

Odpady te zawierały drogocenny rad i polon. Wreszcie, fundacja barona Rothschilda za bardzo niską cenę odkupiła od rządu Austrii kilka ton ziemi. Maria rozpoczęła swoją przygodę z radem. Zaczęła rodzić się legenda.

Wnętrze laboratorium państwa Curie przy ul. Lhomond 42, 1898, Bibliotheque numerique du Cirad en agronomie tropicale, domena publiczna

 

W 1902 roku po serii bardzo żmudnych i ciężkich prac laboratoryjnych, udało się Marii pozyskać 1 decygram[14] chlorku radu (RaCl2) i wyznaczyć masę radu na 225±1 (dziś wiemy, że wynosi ona 226,025 u). Wszystkie prace małżonkowie Curie wykonywali w legendarnej, drewnianej szopie przy ulicy Lhomond 42 niedaleko Wyższej Szkoły Fizyki i Chemii Przemysłowej Miasta Paryża, gdzie wykładał Piotr. Nie było tam wentylacji, zimą było bardzo zimno, podczas deszczu przeciekał dach, a latem panował niewyobrażalny ukrop. Maria pisała:

 

Była to pozbawiona wszelkich sprzętów szopa z desek, o cementowej podłodze i oszklonym dachu, przez który miejscami przeciekał deszcz. Całe wyposażenie składało się ze zniszczonych drewnianych stołów, żelaznego pieca, dającego bardzo niedostateczne ciepło i z tablicy, na której Piotr chętnie pisał i rysował. Nie było tam wyciągu do robót, przy których wydzielają się szkodliwe gazy, trzeba było zatem wykonywać takie prace na podwórzu, gdy pogoda na to pozwalała. Podczas deszczu musieliśmy je prowadzić w szopie, przy otwartych drzwiach.[15]

 

________________________

[1] Maria, reż. A. Albrecht, Polska 2011.

[2] Rad leży w układzie okresowym pod barem. Oba pierwiastki należą do tej samej grupy berylowców.

[3] M. P. Curie, Mme. P. Curie, M. G. Bémont, Sur une nouvelle substance fortement radio-active, contenue dans la pechblende, CR 127, 1898, str. 1215–1217.

[4] E. Curie, Maria Curie, dz. cyt., str. 174.

[5] M. Skłodowska-Curie, Badanie ciał radioaktywnych, dz. cyt., str. <4>.

[6] F. Giroud, Maria Skłodowska-Curie, dz. cyt., str. 88.

[7] Linie w widmie emisyjnym są swoistymi odciskami palców pierwiastków chemicznych. Każdy z nich ma swoją własną, charakterystyczną dla siebie linię.

[8] Roztworzenie to zjawisko chemiczne, które polega na rozpuszczaniu ciała stałego przy jednoczesnej jego reakcji z rozpuszczalnikiem lub składnikiem roztworu. Po odparowaniu rozpuszczalnika nie powstanie substancja wyjściowa, ale produkt reakcji.

[9] Maria pisała: Można wydzielić radiopierwiastki z roztworu drogą elektrolizy lub osadzania na odpowiednio dobranym metalu, zanurzonym w roztworze. […] Tak np. w celu oddzielenia lub oczyszczenia polonu osadza się go zazwyczaj na miedzi lub srebrze. Zob. M. Skłodowska-Curie, Promieniotwórczość, reprint wydania z 1939, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa 2011, str. 340.

[10] S. Quinn, Życie Marii Curie, dz. cyt., str. 249–250.

[11] M. Fontani, M. Costa, M.V. Orna, The lost elements. The periodic table’s shadow side, Oxford University Press, New York, 2014, str. 472.

*W. Szekspir, Romeo i Julia, akt II, scena 3, przekład J. Iwaszkiewicz, Świat Książki, Warszawa 1999.

[12] I. Joliot-Curie, Naturalne pierwiastki, dz. cyt., str. 8.

[13] M. Skłodowska-Curie, Badanie ciał radioaktywnych, dz. cyt., str. 19.

[14] Decygram to 1/10 grama.

[15] M. Skłodowska-Curie, Autobiografia, dz. cyt., str. 117.

145. rocznica urodzin Milevy Marič

 

/   Tomasz Pospieszny  /

 

Mileva Marič odeszła w zapomnieniu i taką też pozostała przez wiele lat. Pochowano ją w obrządku prawosławnym w jej ukochanym Zurychu na cmentarzu Nordheim. Nagrobek Milevy Marič został usunięty w latach siedemdziesiątych ubiegłego stulecia przez władze cmentarza, gdyż przez wiele lat po jej śmierci nie była uiszczana opłata za grób. Z inicjatywy dra Ljubo Vujevicia z The Tesla Memorial Society w Nowym Yorku odnaleziono grób Milevy w 2004 roku. Zainicjowano także ponowne wzniesienie nagrobka kobiety, która była towarzyszką życia Alberta Einsteina.

Proponujemy Państwu lekturę fragmentu książki Tomasza Pospiesznego pt. Pasja i geniusz. Kobiety, które zasłużyły na Nagrodę Nobla opisujący życie Milevy Marič.

 

Pani Einstein-Marity

Niezwykle uporządkowana Mileva wprowadziła ład w życie Einsteina. W dzieciństwie nauczyła się szyć, a później także gotować. Nie tylko szyła swoje sukienki, ale także reperowała ubrania Alberta. Umiała trafić do jego serca przez swój intelekt, ale także przez jego żołądek. Roztargnienie, brak organizacji, bałaganiarstwo i zapominalstwo Einsteina była zdolna okiełznać jak nikt inny. Tak doskonale nam idzie wspólne zgłębianie naszych mrocznych dusz, picie kawy, jedzenie kiełbasek itd. – pisał Albert[1]. Jeden z biografów Einsteina Peter Michelmore napisał, że Mileva:

 

[…] potrafiła szybciej niż [Albert] wyrobić sobie zdanie na temat ludzi i była bardzo stała w swoich wyborach. W każdej sprawie zajmowała zdecydowany punkt widzenia. Z góry planowała zarówno przebieg swoich studiów, jak i rozkład każdego dnia. Próbowała również wprowadzić porządek w życie Alberta. I matematyka była tylko częścią tego wszystkiego. Namawiała go do regularnego spożywania posiłków i uczyła oszczędności. Często wściekała się na jego roztargnienie. Wtedy spoglądał na nią ze spokojem, jak tupie nóżką niczym mała dziewczynka, a w jego oczach pojawiały się łobuzerskie ogniki. Potem robił śmieszne miny lub opowiadał żarcik i jej złość powoli ustępowała[2].

Mileva,Albert i ich pierwszy syn Hans Albert, Berno, 1904, Instytut Leo Baecka, [za:] http://einstein-virtuell.mpiwg-berlin.mpg.de/VEA/SC-1668110491_MOD-736752543_SEQ1883770543_SL-110908586_en.html
Niestety nie wszyscy byli przychylni ich związkowi. Przyjaciele Milevy uważali, że Albert nie jest dla niej odpowiednim partnerem. Z kolei jego znajomi nie potrafili zrozumieć, co widzi w utykającej, humorzastej Milevie. Albert jednak podziwiał jej inteligencję. I był zakochany. Kiedy jeden z jego kolegów powiedział: Wiesz, nigdy nie odważyłbym się poślubić kobiety, która nie byłaby zupełnie zdrowa, Albert odpowiedział: Ale ona ma taki cudowny głos[3].

Tymczasem zbliżał się czas egzaminów: międzykursowego i końcowego. Einstein zdał egzamin międzykursowy w październiku 1898 roku, Mileva zaś musiała przygotowywać się do niego dłużej z racji pobytu na uniwersytecie w Heidelbergu. Przystąpiła do niego w październiku następnego roku, zdając z piątą lokatą. Latem 1899 roku, gdy Mileva przygotowywała się do egzaminów, Einstein przebywał na wakacjach wraz z matką i siostrą. Pokazał wówczas matce zdjęcie Milevy. W liście do ukochanej pisał, że wywarło ono na Paulinie Einstein wrażenie – moja stara matka pozdrawia Cię jak najserdeczniej[4]. Niestety kiedy Frau Einstein zorientowała się, że nie jest to kolejny romans syna, lecz związek poważny, jej zachowanie względem Milevy uległo radykalnej zmianie. Przeszkadzało jej, że jest Serbką, że nie jest Żydówką, że pochodzi z pospolitej rodziny, że jest starsza od Alberta, że jest ułomna fizycznie. Jednym słowem, była najgorszą z możliwych partii dla jej ukochanego syna. Pierwsze niepokojące wieści nadesłała Helena Kaufler, która na własne oczy widziała niechęć Pauliny do Milevy. Zrozpaczona Mileva pisała do niej:

 

Sądzisz, że ona w ogóle mnie lubi? Naprawdę się ze mnie tak strasznie naśmiewała? Wiesz, poczułam się głęboko nieszczęśliwa, ale potem się pocieszyłam, że w końcu ten najważniejszy dla mnie człowiek jest innego zdania, a kiedy on roztacza nade mną wspaniałą wizję naszej przyszłości, nie myślę już o moim nieszczęściu[5].

 

Niestety najgorsze miało dopiero nadejść. Latem 1900 roku przystąpili do egzaminów końcowych składających się z części pisemnej i ustnej. Einstein zdał, Mileva nie. Jako jedyna uzyskała średnią poniżej pięciu. Tym samym jako jedyna nie otrzymała dyplomu. Być może miał na to wpływ egzamin ustny, który Mitza zdawała przed profesorami mężczyznami, z góry przeświadczonymi o braku zdolności kobiet do nauk ścisłych. Możliwe też, że nie opanowała całego materiału, przecież w tym samym roku zdawała także egzamin międzykursowy. Załamana wróciła do rodziców z mocnym postanowieniem przystąpienia do egzaminów w roku następnym. Albert zaś udał się na wakacje z rodziną. Niestety sytuacja pomiędzy nim i matką była bardzo napięta. Kiedy Paulina dowiedziała się, że Mileva oblała egzaminy, zapytała: No, i kim teraz będzie ta twoja Laleczka?. Z pewnością i wyzwaniem w oczach Albert odpowiedział: Moją żoną. Ona jest takim samym molem książkowym jak ty, a tobie potrzebna jest żona. Gdy ty będziesz miał trzydziestkę, z niej będzie już stara krowa! – krzyczała Paulina[6]. Jej wściekłość zmieniła się w histerię i bezradność:

 

Mama rzuciła się na łóżko, ukryła głowę w poduszkach i rozpłakała jak dziecko. Gdy tylko się opanowała, natychmiast przystąpiła do gwałtownego ataku: „W ten sposób rujnujesz swoją przyszłość i grzebiesz swoje szanse! Żadna porządna rodzina by jej nie chciała. Jeśli zajdzie w ciążę, dopiero będziesz się miał z pyszna!” Przy tym ostatnim wybuchu, przed którym było jeszcze wiele innych, w końcu straciłem cierpliwość. Zaprzeczyłem ostro, abyśmy żyli w grzechu, po czym zrugałem ją, na czym świat stoi […][7].

Akademia Olimpijska: Albert Einstein z przyjaciółmi: Conradem Habichem i Maurice’m Solovine’em, ok. 1903, domena publiczna

Wydaje się, że młody Einstein był na tyle uparty, że dążył do celu za wszelką cenę. Dopiero teraz widzę jak szaleńczo Cię kocham – pisał do Milevy[8]. Żywiołowe wręcz wyznania uczuć mogą świadczyć o buncie Alberta przeciw rodzinie, chociaż na pewno kochał Milevę. Napisał do niej:

 

Co będzie, to będzie, ale i tak będziemy mieć najpiękniejsze życie pod słońcem. Przyjemna praca i bycie razem – czegóż można jeszcze chcieć? Jak uciułamy trochę pieniędzy, kupimy sobie rowery i będziemy co parę tygodni jeździć na wycieczki[9].

Państwo Einsteinowie w Kacu w Serbii, ok. 1912, domena publiczna

Czy ta romantyczna deklaracja nie nasuwa skojarzeń z francusko-polską parą uczonych pędzących na bicyklach?

Niestety sytuacja materialna Einsteina z dnia na dzień się pogorszyła: chcąc go ukarać, rodzina przestała przekazywać mu pieniądze. Udzielał korepetycji, ale był to skromny dochód, który nie pozwalał na finalizację planów Alberta i Milevy. A przecież mieli marzenia. Jakże cudnie będzie wyglądał świat, gdy będę już Twoją małą żoną – pisała Mileva[10]. Niestety rodzice Einsteina robili wszystko, co tylko mogli, by utrudnić im życie. Zwłaszcza Milevie. Do Heleny pisała:

 

Ta kobieta najwyraźniej obrała sobie za cel życia, by zatruć życie nie tylko moje. Ale i swojego syna […]. Posunęli się nawet do tego, by napisać list do moich rodziców, w którym oczerniają mnie w stopniu wręcz skandalicznym[11].

 

Brak stabilności finansowej nie ograniczył jednak pracy twórczej Alberta. Pierwszą pracą, której się poświęcił, było padanie efektu kapilarnego, czyli podnoszenie się słupa cieczy w bardzo cienkiej rurce. 3 października 1900 roku, na dwa miesiące przed wysłaniem artykułu do redakcji „Annalen der Physikˮ, w liście do Milevy pisał:

 

Wnioski na temat efektu kapilarnego, do jakich doszedłem niedawno w Zurychu, wydają mi się całkiem nowe, choć są takie proste. Kiedy oboje będziemy już w Zurychu, spróbujemy zdobyć jakieś dane empiryczne na ten temat […]. Jeśli ujawnia się tu jakieś prawo przyrody, poślemy rezultaty do „Annalenˮ[12].

 

Walter Isaacson, autor doskonałej biografii Einsteina, podaje, że był to początek sporów dotyczących udziału Milevy Marič w badaniach i teoriach Einsteina. W tym jednak przypadku wydaje się, że jej rola ograniczała się do słuchaczki i być może dyskutantki. W liście do Heleny Savić (od 15 listopada 1900 roku żony Milivojea Savića) pisała:

 

Albert napisał artykuł z fizyki, który prawdopodobnie wkrótce zostanie opublikowany w „Annalen der Physik”. Możesz sobie wyobrazić, jaka jestem dumna z mojego ukochanego. Nie jest to taki zwykły artykuł, tylko bardzo ważny – dotyczy teorii cieczy. Wysłaliśmy kopię do Boltzmanna, gdyż chcielibyśmy wiedzieć, co on o tym myśli. Mam nadzieję, że nam odpisze[13].

Boltzmann nie odpisał, a artykuł Einstein z czasem uznał za mało znaczący. Pomimo pierwszego osiągnięcia naukowego nadal pozostawał bez pracy. Zmuszony przez rodzinę pojechał do Mediolanu. Miało to służyć rozdzieleniu kochanków.

Z listów można wnioskować, że im dłużej Albert nie widział Mitzy, tym bardziej szalał z miłości:

 

Bez Ciebie brakuje mi pewności siebie, przyjemności z pracy, przyjemności z życia – krótko mówiąc, bez Ciebie moje życie straciło swój sens[14].

 

Jakże mogłem przedtem żyć. […] Bez myśli o Tobie wolałbym umrzeć. […] Spośród wszystkich ludzi, Ty kochasz mnie najmocniej i najlepiej rozumiesz. […] Wieczorami myślę o tym, że [Ty] myślisz o mnie i całujesz w łóżku poduszkę. Wiem, jak to jest! […]. Moim szczęściem jest Twoje szczęście. […] Moje życie zyskuje prawdziwy sens tylko dzięki myślom o Tobie. […] Jak cudownie było ostatnim razem, gdy mogłem Cię obejmować, tak jak natura stworzyła[15].

 

W innym liście dodawał: Na zawsze pozostaniemy studentami i gówno będzie nas obchodził cały świat[16]. Niestety nie dane było im pozostać wiecznymi studentami. Mileva rozpoczęła przygotowania do ponownego podejścia do egzaminów końcowych i miała nadzieję, że uzyskanie dyplomu umożliwi jej przygotowanie rozprawy doktorskiej. Promotorem miał być profesor Heinrich Martin Weber (1842–1913). W marcu 1900 roku w liście do Heleny pisała:

 

Profesor Weber przyjął moją propozycję pracy dyplomowej i był z niej całkiem zadowolony. Szukam tematów dalszych badań, które będę musiała wykonać. E. [Albert] wybrał dla siebie bardzo interesujący temat[17].

 

Albert z kolei pisał:

 

Ja również cieszę się bardzo, że będziemy nad tym razem pracowali. Nie wolno Ci teraz przerywać Twoich badań – jakiż będę dumny, gdy moje małe kochanie zostanie już panią doktor, a ja wciąż będę zupełnie zwykłym człowiekiem![18]

 

Niestety współpraca nie układała się idealnie. Weber był autorytatywny i z czasem coraz mniej lubił zuchwałego Einsteina. Milevie dostawało się także. Wiosną następnego roku pisała:

 

Miałam kilka kłótni z Weberem, ale jestem już do tego przyzwyczajona[19]. Dzięki obawom Webera nie udało mi się jeszcze zdobyć doktoratu [pomimo ukończenia kursu]. Znosiłam zbyt wiele i w żadnym wypadku nie wrócę do niego ponownie[20].

 

Można z dużą dozą prawdopodobieństwa przypuszczać, że Mileva nie uzyskała dyplomu, gdyż Albert nie potrafił ukrywać niechęci do profesora Webera. Tymczasem życie Milevy uległo radykalnej zmianie.

W maju 1900 roku spędziła z Albertem piękne, romantyczne i namiętne wakacje nad jeziorem Como. Niebawem okazało się, że jest w ciąży. 28 maja Einstein w liście do ukochanej pisał: Jak się czujesz, kochana? Jak tam chłopiec? […] Jak tam nasz mały synek?[21]. Pomimo dolegliwości ciążowych Mileva starała się przygotować do egzaminu, który miała zdawać w lipcu. Niestety i tym razem się nie udało. Abraham Pais podkreśla: teraz, gdy już wiemy, że w tym czasie była w odmiennym stanie, tym bardziej winniśmy podziwiać jej odwagę i upór, by zdawać raz jeszcze[22]. Bez dyplomu, w ciąży, bez ukochanego przy sobie wróciła do Nowego Sadu. Musiała zmierzyć się sama z trudami ciąży i porzuconymi marzeniami o karierze naukowej. Co jednak najgorsze, była przekonana, że na zachodzie zostanie uznana za ladacznicę, która zrujnowała Albertowi życie, na wschodzie zaś za idiotkę[23]. Jesienią 1901 roku Einstein został prywatnym nauczycielem w Szafuzie nad Renem. Jednocześnie wiązał nadzieje z otrzymaniem posady w urzędzie patentowym w Bernie. Mileva czuła się osamotniona. W liście do Alberta pisała:

 

Gdybyś tylko wiedział, jak bardzo samotna i opuszczona się czuję, na pewno byś przyjechał. […] Żebyś wiedział, jak bardzo chcę Cię znowu zobaczyć! Myślę o tobie całymi dniami, a jeszcze bardziej nocami[24].

 

W grudniu 1901 roku Albert pisał:

 

Wyczekuję naszej drogiej Lieserl [córeczki], ale po kryjomu (tak aby Doxerl się nie dowiedziała) wyobrażam sobie, że jest to Hanserl […]. Istnieje tylko kwestia, jak moglibyśmy przyjąć naszą Lieserl; nie chciałbym jej oddawać […][25].

 

Kiedy kilka dni później dowiedział się, że otrzymał pracę w Bernie, przyszło ukojenie i spokój. W listach do Mitzy pisał:

 

Zurych, 30 kwietnia 1901 roku

Mój kochany kotku,

[…] Sama się przekonasz, jaki pogodny i radosny się stałem. Dawno zapomniałem o wszystkich moich troskach. I tak bardzo Cię znowu kocham! To tylko z nerwów byłem tak niedobry dla Ciebie […] i tęsknię bardzo do chwili, kiedy znowu Cię ujrzę. […]

Całuję Cię z dna mojego serca.

Twoje kochanie[26]

 

Winterthur, 9 maja 1901 roku

Kochany kotku,

[…] Gdybym tylko mógł przekazać Ci chociaż cząstkę własnego szczęścia, abyś już na zawsze była wolna od smutku i melancholii. […]

Najlepsze życzenia i całusy dla Ciebie.

Albert[27]

 

W styczniu 1902 roku otrzymał wiadomość, że został ojcem. Poród był długi i ciężki. Córeczce Mileva nadała imię Lieserl. Einstein pisał do ukochanej:

 

Berno, 4 lutego 1902 roku

Moje najdroższe kochanie,

Biedne, najdroższe kochanie; co musiałaś wycierpieć, jeśli nie możesz nawet samodzielnie do mnie napisać! Szkoda, że nasza droga Lieserl musi zostać przedstawiona światu w ten sposób! Mam nadzieję, że do czasu nadejścia mojego listu będziesz zdrowsza i weselsza. […] Więc faktycznie jest dziewczynka. Czy jest zdrowa i płacze jak trzeba? Jakiego koloru ma oczka? Skąd bierzesz mleko? Czy dużo je? Musi być kompletnie łysa. Kocham ją bardzo, a przecież nawet nie wiem, jak wygląda. […] Chętnie sam zmajstrowałbym taką Lieserl, to musi być fascynujące! Z pewnością umie już płakać, lecz śmiać nauczy się dopiero później. Jest w tym pewna głęboka prawda. […]

Dla Ciebie tysiące pocałunków od Twojej miłości,

Johnnie[28]

Albert Einstein na rok przed otrzymaniem Nagrody Nobla, 1920, domena publiczna

Niestety nie ma żadnych listów świadczących o tym, że Einstein widział swoją córkę. Trudno domniemywać, czy o istnieniu dziecka wiedziała także rodzina i najbliżsi przyjaciele Einsteina. Wprawdzie jego matka 20 lutego 1902 roku pisała: tej Marič zawdzięczam najgorsze chwile mojego życia; gdyby to leżało w mojej mocy, zrobiłabym wszystko, aby zniknęła z naszego horyzontu[29], ale nie ma pewności, że odnosi się tym samym do narodzin wnuczki. Nie wiadomo też nic pewnego o losie dziecka. Michele Zackheim w swojej książce o Lieserl twierdzi, że była niepełnosprawna fizycznie i zamieszkała z rodziną Milevy. Według niej prawdopodobnie zmarła na szkarlatynę we wrześniu 1903 roku[30]. Z kolei wieloletni badacz życia Einsteina Robert Schulmann wysunął hipotezę, że Lieserl adoptowała Helena Savić. Nadano jej imię Zorka i miała żyć aż do lat dziewięćdziesiątych ubiegłego wieku. W rzeczywistości Saviciowie mieli niewidomą od wczesnego dzieciństwa córkę o takim imieniu, która zmarła w 1992 roku. Jednakże wnuk Heleny, a siostrzeniec Zorki doktor Milan Popović, odrzucił możliwość, że była to Lieserl, i twierdził, że to dziecko zmarło we wrześniu 1903 roku. W swojej książce napisał: wysunięta teoria, jakoby moja babcia adoptowała Lieserl, jest pozbawiona jakichkolwiek podstaw, gdyż zostało to dokładnie sprawdzone w historii mojej rodziny[31]. Znajduje to potwierdzenie w korespondencji Milevy i Alberta. W sierpniu 1903 roku Mileva pojechała do Nowego Sadu, gdyż została poinformowana, że Lieserl zachorowała na szkarlatynę. Z podróży wysłała kartę Albertowi: Podróż upływa szybko, ale jest ciężka. Nie czuję się dobrze. Co porabiasz, mój Jonzile? Napisz do mnie prędko. Twoja biedna Laleczka[32]. Złe samopoczucie Milevy wynikało z tego, że była ponownie w ciąży. Albert odpisał:

 

Bardzo mi przykro z powodu tego, co się stało z Lieserl. Szkarlatyna pozostawia często trwałe ślady. Jak Lieserl została zarejestrowana urzędowo? Musimy bardzo uważać, bo inaczej dziecko będzie miało problemy w przyszłości[33].

Mileva i Albert Einsteinowie, ok. 1905, domena publiczna

10 października 1902 roku zmarł ojciec Alberta. Krótko przed śmiercią wyraził zgodę na ślub syna z Milevą[34]. 6 stycznia 1903 roku Einstein dotrzymał słowa i ożenił się z Mitzą. Ślub cywilny odbył się w Bernie w towarzystwie najbliższych przyjaciół. Rok później, 14 maja 1904 roku, Mileva urodziła syna Hansa Alberta. W liście do Heleny pisała, żeby przyjechała do Berna, gdyż chciała jej pokazać moje małe kochanie, które też ma na imię Albert. Nie umiem wyrazić, ile daje mi radości, gdy śmieje się po przebudzeniu albo fika nóżkami w kąpieli[35]. Ojciec Milevy przyjechał zobaczyć wnuka i zaoferował zięciowi pokaźną sumę pieniędzy. Einstein jednak ich nie przyjął, argumentując:

 

Nie poślubiłem twojej córki dla pieniędzy, ale dlatego, że ją kocham, potrzebuję jej, ponieważ oboje jesteśmy jednością. Wszystko, co zrobiłem i osiągnąłem, zawdzięczam Milevie. Jest moim genialnym źródłem inspiracji, moim aniołem ochronnym przeciwko pokusom w życiu, a tym bardziej w nauce. Bez niej nie rozpocząłbym pracy, nie mówiąc już o jej zakończeniu[36].

_______

[1] R. Highfield, P. Carter, Prywatne życie Alberta Einsteina, op. cit., s. 67.

[2] P. Michelmore, Einstein: Profile of the Man, Dodd, Mead and Company, New York 1962, s. 36.

[3] W. Isaacson, Einstein, op. cit., s. 59.

[4] R. Highfield, P. Carter, Prywatne życie Alberta Einsteina, op. cit., s. 76.

[5] Ibidem, s. 77.

[6] Ibidem, s. 79.

[7] Ibidem, s. 80.

[8] W. Isaacson, Einstein, op. cit., s. 67.

[9] Ibidem, s. 69.

[10] A. Pais, Tu żył Albert Einstein, Prószyński i S-ka, Warszawa 2005, s. 24.

[11] Ibidem, s. 24.

[12] W. Isaacson, Einstein, op. cit., s. 71.

[13] M. Popović, In Albertʼs Shadow, op. cit., s. 70.

[14] J. Renn, R. Schulmann, Albert Einstein/Mileva Marić, op. cit., s. 26.

[15] A. Pais, Tu żył Albert Einstein, op. cit., s. 24.

[16] D. Overbye, Zakochany Einstein, op. cit., s. 72.

[17] M. Popović, In Albertʼs Shadow, op. cit., s. 60.

[18] J. Renn, R. Schulmann, Albert Einstein/Mileva Marić, op. cit., s. 32.

[19] M. Popović, In Albertʼs Shadow, op. cit., s. 76.

[20] Ibidem, s. 78.

[21] J. Renn, R. Schulmann, Albert Einstein/Mileva Marić, op. cit., s. 54.

[22] A. Pais, Tu żył Albert Einstein, op. cit., s. 25.

[23] D. Overbye, Zakochany Einstein, op. cit., s. 127.

[24] W. Isaacson, Einstein, op. cit., s. 86.

[25] A. Pais, Tu żył Albert Einstein, op. cit., s. 25.

[26] J. Renn, R. Schulmann, Albert Einstein/Mileva Marić, op. cit., s. 46.

[27] Ibidem, s. 51.

[28] J. Renn, R. Schulmann, Albert Einstein/Mileva Marić, op. cit., s. 73.

[29] A. Pais, Tu żył Albert Einstein, op. cit., s. 25.

[30] M. Zackheim, Einsteinʼs Daughter: The Search for Lieserl, Riverhead Hardcover, New York 1999.

[31] M. Popović, In Albertʼs Shadow, op. cit., s. 11.

[32] W. Isaacson, Einstein, op. cit., s. 98.

[33] Ibidem, s. 98.

[34] A. Pais, Pan Bóg jest wyrafinowany… Nauka i życie Alberta Einsteina, Prószyński i S-ka, Warszawa 2001, s. 61.

[35] W. Isaacson, Einstein, op. cit., s. 100.

[36] D. Trbuhović-Gjurić, Im Schatten Albert Einsteins, op. cit., s. 76.

Tydzień Noblowski — Nagroda Nobla dla Marii Goepert-Mayer w 1963 roku

Drugą kobietą wyróżnioną Nagrodą Nobla z fizyki była — nagrodzona 60 lat po Marii Skłodowskiej-Curie — Maria Goeppert-Mayer. Uczona wyznała:
Ku mojemu zaskoczeniu zdobycie nagrody nie było aż tak ekscytujące, jak wykonanie samej pracy. To była fajna zabawa, widzieć, jak to działa. [Jeśli kochasz naukę, wszystko, czego naprawdę pragniesz, to kontynuowanie pracy. Nagroda Nobla wzbudza emocje, ale nie zmienia niczego].
Poniżej plansza z naszej wystawy, która towarzyszy książce Tomasza Pospiesznego pt. Pasja i geniusz. Kobiety, które zasłużyły na Nagrodę Nobla, Wydawnictwo Po Godzinach, Warszawa 2019.
© Tomasz Pospieszny & Ewelina Wajs / Piękniejsza Strona Nauki

Tydzień Noblowski — Nagroda Nobla dla małżonków Joliot-Curie w 1935 roku

 

Drugą kobietą, która otrzymała Nagrodę Nobla z chemii była Irena Joliot-Curie. Otrzymała ją wraz z mężem Fryderykiem w 1935 roku za odkrycie sztucznej radioaktywności.
Paul Langevin podczas wykładu wygłoszonego w styczniu 1936 roku powiedział:
Mamy więc prawo powiedzieć, że Fryderyk i Irena Joliot-Curie są założycielami nowej chemii; to gałąź chemii jądrowej, w której uświadamiamy sobie starożytne marzenie alchemików, transmutacji jednego pierwiastka w drugi […]. W 1935 roku została dodana do nazwiska Curie trzecia Nagroda Nobla. Wszystkie te prace doprowadziły do odkrycia tego, co nazywamy rodzinami promieniotwórczymi […].
Jeśli więc mamy rodziny naturalne i rodziny sztuczne, możemy z pewnością powiedzieć, że najbardziej radioaktywną rodziną świata jest rodzina Curie […]. Piotr i Maria Curie z jednej strony, Irena i Fryderyk Joliot-Curie z drugiej dają nam uderzający symbol, zdecydowanie wykazujący twórczość wynikającą z współpracy obu płci w dziedzinie nauki, którą możemy uznać za jedną z najwyższych, jaka istnieje.
Poniżej plansza z naszej wystawy, która towarzyszy książce Tomasza Pospiesznego pt. Pasja i geniusz. Kobiety, które zasłużyły na Nagrodę Nobla, Wydawnictwo Po Godzinach, Warszawa 2019.
© Tomasz Pospieszny & Ewelina Wajs / Piękniejsza Strona Nauki

Tydzień Noblowski — Nagroda Nobla dla Marii Skłodowskiej-Curie w 1911 roku

W 1911 roku Maria Skłodowska-Curie została wyróżniona po raz wtóry Nagrodą Nobla — tym razem z chemii. Jak dotąd jest jedynym człowiekiem, który otrzymał dwie Nagrody Nobla z dwóch różnych dyscyplin naukowych. Odbierając nagrodę Maria powiedziała:
Promieniotwórczość to bardzo młoda dziedzina wiedzy. To niemowlę, przy którego narodzinach byłam obecna i do którego rozwoju przyczyniałam się z całych mych sił. To dziecko już urosło i jest piękne […] trudno sobie wyobrazić wspanialsze błogosławieństwo dla tego dziecka niż przyznanie przez szwedzką Akademię trzech Nagród Nobla – jednej w dziedzinie fizyki i dwóch w dziedzinie chemii – czterem osobom: Henri Becquerelowi, Pierre’owi Curie, Marii Curie i Ernestowi Rutherfordowi.
Poniżej plansza z naszej wystawy, która towarzyszy książce i którą mogą Państwo oglądać na ogrodzeniu Ambasady Francji w Warszawie przy ulicy Pięknej.
© Tomasz Pospieszny & Ewelina Wajs / Piękniejsza Strona Nauki