Ellen Gleditsch — norweska pionierka radiochemii

 

 

Ellen Gleditsch jest jedną z niewielu pionierek radiochemii, która jest nie tylko zapomniana w świecie, ale także w Norwegii – kraju rodzimym. Była niezwykle aktywna zawodowo, większą część życia spędziła podróżując i współpracując z innymi naukowcami. Działała także w organizacjach międzynarodowych.

Dom rodziny Gleditsch w Tromsø, National Library of Norway, domena publiczna

Uczona przyszła na świat 29 grudnia 1879 roku w Mandal – małym miasteczku położonym nad Morzem Północnym w południowej Norwegii. Była najstarszym z dziesięciorga rodzeństwa: Karl (1881–1974), Birgit (1882–1941), Eivind (1885–1943), Leif (1886–1946), August (1888–1913), Adler (1893–1978), bliźniaczki Liv (1895–1977) i Astrid (1895–1924) oraz Kristian (1901–1973). Rodzina Gleditschów przybyła do Norwegii około sto lat wcześniej z Jugosławii. Wędrowali przez Niemcy i Danię, gdzie przodek uczonej, Carl August Ludwig von Gleditsch z Sachsen-Weimar, podjął pracę jako kapral w duńskiej armii i poślubił Dunkę. Para później przeprowadziła się i osiedliła w Norwegii, która w 1790 roku była częścią Danii. Ojciec Ellen, Karl Kristian (1851–1913) był synem luterańskiego ministra. Szybko zyskał opinię szanowanego nauczyciela przedmiotów ścisłych, a później także jako dyrektor szkoły średniej w Mandal. W 1889 roku rodzina przeprowadziła się do Tromsø na dalekiej północy Norwegii, gdzie Karl Kristian kontynuował karierę nauczycielską. Kilka lat później został także szanowanym politykiem. Z kolei matka Ellen, Petra Birgitte Hansen (1857–1913) była córką kapitana żeglugi. Była silną i niezależną kobietą angażującą się w politykę. Należała do pierwszego ruchu sufrażystek w Norwegii. Uwielbiała muzykę ludową i tą pasją zainspirowała także swoje dzieci. Według Ellen matka miała niezwykłe zdolności językowe. Pasjonowała ją przyroda i astronomia. Gleditschowie lubili spędzać czas na wsi i zabierali dzieci na długie wędrówki po lasach i górach. Często także żeglowali. Podczas wycieczek ojciec zakochany w botanice uczył swoje dzieci jak rozpoznawać i stosować rośliny w lecznictwie.

Ellen z matką i ojcem, 1913/1914, National Library of Norway, domena publiczna

Miłość rodziców, ich wzajemna troska oraz otwartość na świat sprawiła, że dzieci wychowywały się w szczęśliwej i opiekuńczej rodzinie. Ellen bardzo wcześnie nauczyła się szacunku dla innych ludzi, ale również dla przyrody. Często także, jako najstarsza z rodzeństwa, pomagała matce w opiece nad młodszym rodzeństwem. Wydaj się, że właśnie wówczas rozwinęła się w niej etyka pracy, bezinteresowność, skromność, troska o innych i głębokie wartości humanitarne, które zdominowałyby jej osobowość i pozostały w niej przez całe życie. Ellen w wieku osiemnastu lat zdała egzamin końcowy będąc najlepszą uczennicą w klasie. Znała łacinę, niemiecki, angielski, ale najbardziej interesowała się naukami przyrodniczymi. Zdecydowała się na podjęcie stażu w aptece. W 1897 roku przeniosła się do Oslo, gdzie kontynuowała naukę. Po kilkuletniej praktyce zdała dwa ważne egzaminy: w 1900 roku egzamin na asystenta farmaceutycznego i w 1902 roku niezwykle trudny egzamin na farmaceutę dyplomowanego.

 

Ellen Gleditsch w stroju absolwentki, b.d., National Library of Norway, domena publiczna

 

Po latach uczona wspominała:

Po egzaminie z farmakologii dr Bødtker doradził mi kontynuację studiów w laboratorium uniwersyteckim pod kierunkiem profesora Hiortdahla. Tak bardzo chciałam kontynuować naukę, ale nie miałam pieniędzy, a trzeba było przetrwać, więc zacząłem pracować jako korepetytorka. Wszystko układało się nawet dobrze, ale nie miałam tyle czasu na naukę, ile bym chciała. To była najpierw kwestia przetrwania, a potem nauki. Ale tak naprawdę poszło lepiej, niż mogłoby się wydawać. W 1903 roku zostałam asystentką w uniwersyteckim laboratorium chemicznym, a w 1905 roku zdałam egzamin maturalny, zaś w 1906 roku kwalifikacyjny egzamin wstępny na uniwersytet.

 

Ellen Gleditsch (z lewej) i jej przyjaciółka — botaniczka Thekla Resvoll (1871–1948)[1900 roku prowadziła kursy z botaniki roślin dla farmaceutów], ok. 1905, Oslo Museum, CC BY–SA
Eyvind Bødtker, d.b., fot. Borgens Atelier, Norsk Farmasihistorisk Museum, CC BY–SA

Doktor Eyvind Bødtker (1867–1932) był jednym z najlepszych norweskich chemików organików. Przez lata był mentorem i przyjacielem Ellen. W 1907 roku opublikowała swój pierwszy artykuł naukowy, który za jego radą został przetłumaczony na język francuski i opublikowany we francuskim czasopiśmie naukowym. Bødtker często bywał we Francji i był pod wielkim wrażeniem francuskiego życia kulturalnego oraz naukowego. To on miał niewątpliwy wpływ na Ellen i zapewne obudził w niej pragnienie wyjazdu poza odizolowaną społeczność naukową Oslo. Kiedy podopieczna wyznała mu, że jej największym marzeniem jest nauka w laboratorium Marii Skłodowskiej-Curie, Bødtker postanowił działać. Pojechał do Paryża i odwiedził laboratorium Madame Curie. Ponieważ jej nie zastał zostawił wiadomość moja utalentowana asystentka bardzo chciałaby pracować dla Pani, wyłącznie z zamiłowania do nauki, nie dla zdobycia dyplomu. Kiedy po kilku dniach powrócił spotkał się z Marią. To początkowo odrzuciła prośbę Bødtkera twierdząc, że nie ma już miejsca w laboratorium. Uczony jednak nie ustępował. Pokazał Marii Curie pracę autorstwa Ellen. Praca wydawała się interesująca, ale noblistka nadal twierdziła, że nie ma miejsca w pracowni. Wówczas Bødtker stwierdził, że mademoiselle Gleditsch jest tak mała i lekka, że nie zajmie dużo miejsca w pracowni. W końcu Maria Curie ustąpiła. Według wielu historyków nauki decydującym czynnikiem było prawdopodobnie to, że większość stypendystów w laboratorium Marii była fizykami, a Curie bardzo potrzebowała chemika. Idealną kandydatką była Gleditsch. Wielkie marzenie się ziściło.

 

Instytut Radowy w Paryżu, 1929, Wellcome Images, CC BY–4.0

Gleditsch otrzymała stypendium królowej Norwegii i Szwecji. Było ono niezbędne, aby opłacić pobyt w laboratorium Curie. Jednak Maria Skłodowska-Curie zrobiła tym razem wyjątek. W liście do Ellen napisała: […] jeśli podejmie Pani tę pracę [rekrystalizacja soli baru i radu], która zajmie tylko część Pani czasu, a będzie stanowić ogólną korzyść dla laboratorium, mógłbym zwolnić Panią z opłat […]. Jednocześnie mogłaby Pani pracować nad innymi, bardziej interesującym problemami, które mogą prowadzić do nowych wyników. W październiku 1907 roku Ellen Gleditsch wyjechała do Paryża. Początkowo mieszkała ze swoim bratem Adlerem, a później wynajęła małe mieszkanko za Panteonem, skąd miała blisko do pracowni i Sorbony. Po latach wspominała:

Pomieszczenia, które miała do dyspozycji Maria Curie były położone rozłożyście. Przy wejściu znajdowało się duże biuro z przylegającym ciemnym pokojem, w pobliżu pokoju pełniącego funkcję biblioteki. Trzeba było przejść przez podwórko, by dostać się do dużego laboratorium, w którym można było znaleźć większość sprzętu naukowego. Obok znajdowało się mały gabinet Marii Curie i inny pokój używany przez André Debierneʼa.

 

Maria Skłodowskia-Curie, 1911, Library of Congress

Precyzja z jaką Ellen podjęła się rozdziału soli baru i radu była tak wielka, że Madame Curie szybko uczyniła z niej osobistą asystentkę. W 1907 roku obie rozpoczęły prace nad eksperymentem, który miał obalić teorię Williama Ramsaya (1852–1916). Chemik ów twierdził, że w wyniku działania emanacji radu na miedź, otrzymał lit i sód. Maria Curie wraz z Ellen przeprowadziły niezwykle staranne doświadczenia, stosując w miejsce szklanych naczyń, naczynia platynowe. Stosunkowo szybko uczone stwierdziły, że efekt opisany przez Ramsaya nie istnieje, a obecność litu i sodu jest związana z używanymi przez niego szklanych i kwarcowych naczyń. Pomimo wielu różnic w osobowościach obie panie szybko się polubiły i być może zaprzyjaźniły. Gleditsch była często zapraszana do domu Curie w Sceaux, gdzie poznała córki Marii. Wydaje się również, że był to początek przyjaźni pomiędzy Ellen i Irène. Podczas jednej z krótkich wizyt w Norwegii Gleditsch zaręczyła się z młodym oficerem. Według biografów uczonej, para była bardzo różna i intelektualnie niedobrana. Zaręczyny – prawdopodobnie jedyny związek uczuciowy Gleditsch, który mógł zakończyć się małżeństwem – wkrótce zostały zerwane. W 1926 roku Gleditsch mówiła:

Często wymagana jest obecność [kobiety] w domu. Kobieta, która chce zostać badaczem, musi pogodzić dwa przeciwstawne żądania. Badania wymagają przede wszystkim refleksyjnej atmosfery, możliwości myślenia w ciszy i spokoju oraz skoncentrowania się na konkretnym problemie. Materialne obawy, troska o męża lub dzieci pozostawione w domu bez odpowiedniej pomocy lub opieki zabiją wszelkie szanse na pierwszorzędne wysiłki.

W 1912 roku Gleditsch otrzymała licencjat, z którym powróciła do Norwegii. Przyznano jej skromne stypendium na uniwersytecie w Oslo. Uczona próbowała kontynuować badania związane z czasem połowicznego zaniku radu, a jeszcze rozpoczęte w Paryżu, jednak na przeszkodzie stał brak odpowiednio wyposażonego laboratorium. Bardzo szybko zorientowała się, że swoją pasję i zainteresowanie radioaktywnością będzie mogła rozwijać w Stanach Zjednoczonych. Niestety los pisze własny scenariusz.

 

Portret dr Ellen Gleditsch, b.d., National Library of Norway

Na początku 1913 roku Ellen straciła oboje rodziców i jednego z braci. Została tym samym głową rodziny. Starała się utrzymywać dom i łożyła na edukacje rodzeństwa. Więzi rodzinne były bardzo mocne, co manifestowało się między innymi tym, że Ellen do końca życia mieszkała z bratem Adlerem. Pod koniec feralnego roku Gleditsch otrzymała stypendium Fundacji Amerykańsko-Skandynawskiej. Napisała do Bertrama Boltwooda (1870–1927) z Yale oraz Theodore’a Lymana (1874–1954) z Harvardu wyrażając chęć podjęcia z nimi współpracy. Po odmowie Lymana, który stwierdził, że żadna kobieta nigdy nie pracowała w jego laboratorium, i nie do końca optymistycznym liście Boltwooda, uparta i zdecydowana Ellen pojechała do Stanów Zjednoczonych. Może budzić to zdziwienie, bowiem Boltwood słyną ze swoich szowinistycznych poglądów. Po latach Gleditsch mówiła (nie odnosząc się do jego nazwiska), że pracowała z uczonym, który był znany z nienawiści do kobiet. I ją akceptował bo nie krzyczała. Według uczonej był to największy komplement w mojej karierze naukowej. To właśnie tutaj w semestrze 1913–1914 uczona określiła okres połowicznego zaniku radu na 1686 lat (dziś wiadomo, że wynosi on 1620 lat). Praca ta sprawiła, że uczona została rozpoznawalna w świecie nauki. Stała się wiodącą specjalistką w izolacji i oddzielaniu substancji promieniotwórczych od minerałów. Theodore W. Richards (1868–1928), zaprosił ją na Harvard, a wiosną 1914 roku otrzymała doktorat honoris causa Smith College w Massachusetts. Również Lyman zmienił zdanie i zaproponował jej posadę. Gleditsch wykładała teorię atomu, omawiając powstałą właśnie teorię kwantów oraz ostatnie prace Bohra, Rutherforda i Moseleya. Rozszerzyła swoje prace o badania nad radioaktywnymi minerałami, którymi interesowała się przez całe życie. Opracowała procedury analityczne izolacji wielu substancji radioaktywnych znalezionych w norweskich minerałach i dostarczała próbki do laboratorium Curie. Jako pierwsza zwróciła uwagę na znaczenie izotopów ołowiu w celu dokładnego określenia wieku Ziemi.

Na Uniwersytecie Harvarda Gleditsch zaangażowała się w badania izotopów. W tamtym czasie wiadomo było, że masa atomowa pierwiastków promieniotwórczych (lub tych, które powstawały w wyniku rozpadu promieniotwórczego) może się różnić w zależności od ich pochodzenia geologicznego. Na przykład, w rudach bogatych w naturalnie występujący tor obfitował ołów-208. Natomiast w rudach bogatych w uran dominował ołów-206. Problem pojawił się kiedy Francis Aston (1877–1945) ogłosił, że znalazł dwie różne masy atomowe dla chloru (odpowiednio 35 i 37), a średnia masa atomowa wynosi 35,46. Chlor nie jest pierwiastkiem radioaktywnym, zatem trudno było wytłumaczyć tą anomalię. Wyglądało na to, że także w tym przypadku skład izotopowy zmieniał się w zależności od źródła (tak jak w dla pierwiastków radioaktywnych). Gleditsch i jej współpracownicy badając chlor pochodzący z różnych źródeł, odkryli, że skład izotopowy chloru w rzeczywistości nie różnił się w zależności od źródła. Badacze określili masę atomową pierwiastka na dwa różne sposoby. W pierwszej metodzie strącili chlorek srebra za pomocą azotanu srebra. Chlorek srebra przemyli, wysuszyli i zredukowali do srebra metalicznego za pomocą gazowego wodoru. Na podstawie masy wysuszonego chlorku srebra i srebra metalicznego wyznaczyli ciężar atomowy chloru. Druga metoda polegała na określeniu gęstości nasyconych roztworów chlorku sodu, a następnie masy chloru. Jednakże Irène Curie w Paryżu otrzymała inny wynik. Gleditsch doszła jednak do wniosku, że próbki Curie musiały być zanieczyszczone. Masa atomowa chloru była zatem stała.

Oczywiście bardzo szybko zaczęła się uczoną interesować prasa. Podczas jednego z wywiadów zapytano ją o chęć wyjścia za mąż. Ze względu na sporą ilość pracy zwyczajnie nie mam [na małżeństwo] czasu; moimi zainteresowaniami są badania [naukowe], które pochłaniają wszystkie moje myśli – odpowiedziała Gleditsch.

Eva Ramstedt, ok. 1910, Uppsala University Library

Wybuch pierwszej wojny światowej przyniósł uczonej naukową izolację. Nie mogła wyjeżdżać, miała kłopoty z dostępem do światowej literatury specjalistycznej. W listopadzie 1915 roku pisała do Marii Skłodowskiej-Curie:

Minęło dużo czasu, odkąd miałam od Ciebie jakieś wiadomości. Mam nadzieję, że radzisz sobie tak dobrze, jak pozwalają na to takie czasy… Jak zapewne wiesz, tego lata spotkałam się z panią Ramstedt. Wspólnie badałyśmy radioaktywność w źródłach i wodzie oraz elektryczność w atmosferze. Mamy nadzieję, że będziemy mogły kontynuować [badania] w przyszłym roku. Miło było rozmawiać o Paryżu, laboratorium Curie i wspomnieniach z naszych czasów studenckich. Przydało mi się przynajmniej rozmawiać z kimś, kto pracuje nad radioaktywnością. Mam tu przyjaciół, chemików i fizyków, ale żaden z nich nie zajmował się wiele promieniotwórczością… Chciałabym pojechać do Paryża i Cię odwiedzić! Oby tylko warunki na to wkrótce pozwoliły!

W 1916 roku otrzymała stanowisko docenta oraz uczciwą pensję. Mogła prowadzić badania i zatrudniać współpracowników. Napisała pierwszy podręcznik dotyczący radioaktywności wydany jednocześnie w Szwecji i Norwegii pt. Rad i procesy radiochemiczne. W 1917 roku została wybrana na członkinię Akademii Nauk w Oslo. Została tym samym drugą kobietą, która dostąpiła tego zaszczytu (pierwszą była Kristine Bonnevie). Uważała, że współpraca międzynarodowa jest niezwykle ważna dla nauki. Ellen Gleditsch twierdziła, że:

W tej atmosferze [wyjazdów] dowiedziałam się, w jaki sposób problem [naukowy] rodzi się w jednym laboratorium, jest podejmowany w innym, a potem może zostać rozwiązany w jeszcze innym. Dowiedziałam się, że konkurencja i wyścig związany z rozwiązaniem [problemów naukowych] jest ściśle powiązany z postępem nauki. Powstaje rodzaj braterstwa między tymi, którzy pracują w tym samym laboratorium, w którym powstają różne problemy, gdzie są omawiane i być może ich rozwiązania skutkują publikacją. Rozwiązanie to dociera w końcu do laboratoriów w innych krajach, w których badane są te same problemy. I w końcu człowiek zdaje sobie sprawę – być może tylko poprzez małe osobiste rozczarowania lub sukcesy, że ktokolwiek podejmuje ten decydujący, ostatni krok związany z rozwiązaniem [problemu], czy płynie z zagranicy czy nie, ma drugorzędne znaczenie.

W 1919 roku Gleditsch wyjechała na dziewięciomiesięczne stypendium do Paryża. Rok później pojechała do Rutherforda do Cambridge i Soddy’ego do Oxfordu, z którym się zaprzyjaźniła i którego prace szczególnie ceniła. Następnie powróciła do Paryża, aby zastąpić podróżującą do Ameryki Południowej Marię Curie w laboratorium. Po powrocie do Norwegii została uhonorowana przez Norweską Akademię Nauk prestiżową nagrodą Nansena.

 

Ellen Gleditsch na schodach Instytutu Radowego w Paryżu, 1924 [za:] Natalie Pigeard-Micault, Les femmes du laboratoire Curie, Glypche, Paris 2013

W 1922 roku Gleditsch po raz pierwszy w liście do Marii Skłodowskiej-Curie skarżyła się na problemy zdrowotne. Pisała, że cierpi na anemię, która powoduje częste przeziębienia. Być może było to związane z pracą z substancjami radioaktywnymi, jednakże zważywszy na fakt, że uczona żyła prawie osiemdziesiąt dziewięć lat można wnioskować, że miała wyjątkowo silny organizm.

W okresie międzywojennym Gledisch skoncentrowała się na badaniu izotopów w minerałach. Część prac wykonała wspólnie z młodszą siostrą Liv, która także była chemikiem. Uczona zaangażowała się również w jedną z komisji działających przy Lidze Narodów. Głośno mówiła:

Nie ma znaczenia, czy praca jest wykonywana przez niską kobietę w Bułgarii czy przez wysokiego mężczyznę w Stanach Zjednoczonych, jeśli wykonano ją dobrze. I właśnie to musimy zrobić: pracować tak dobrze, aby nikt nie ośmielił się powiedzieć – to dobra robota dla kobiety, ale aby wszyscy mogli powiedzieć – to dobra robota w ogóle. Rasa i płeć nie mają znaczenia w nauce.

Ellen Gledtisch, ok. 1935, Oslo Museum, CC CC 1.0

W 1929 roku po wielu perturbacjach została profesorem chemii. W liście do Marii Curie pisała: Dokonało się. Trzy dni temu zostałam profesorem. Mam szczerą nadzieję, że będę w stanie wykonać dobrą robotę; i że nie będzie brakowało pracy. Mam również nadzieję, że od czasu do czasu będę Cię odwiedzać i że te wizyty będą dla mnie źródłem inspiracji i zachęty. Uważała, że praca ze studentami oznacza pracę nad przyszłością. To uczeń jutro będzie kontynuował naszą pracę. Aby popularyzować naukę, Gleditsch zaczęła wygłaszać wykłady popularnonaukowe w radio, pisała też artykuły w języku francuskim, angielskim, niemieckim i norweskim. Była autorką biografii wielu naukowców, których znała osobiście.

Podczas drugiej wojny światowej Gleditsch przyczyniła się do znalezienia bezpiecznej przystani w Norwegii dla uchodźców, głównie ze społeczności uniwersyteckiej. W jej laboratorium w Oslo i innych częściach kraju znaleziono miejsca dla uciekających naukowców. Wśród nich znaleźli się Elizabeth Rona i Marietta Blau. Kiedy Niemcy okupowali Norwegię, Gleditsch nigdy nie rezygnowała z wysiłków przeciwstawienia się okupantom i marionetkowemu reżimowi. Starała się utrzymać ducha oporu i przygotować się na spodziewane ataki na wolność akademicką i osobistą. Nic jej nie złamało. Jej brat, Adler był przez kilka lat jeńcem wojennym. Siostra Liv została aresztowana w ostaniem roku wojny. Ellen Gleditsch nadal okazywała pogardę okupantom, pomagając studentom, naukowcom i innym ludziom, którzy znaleźli się w niebezpieczeństwie. Kilkakrotnie ukrywała ich w swoim mieszkaniu. W 1943 roku uczona została aresztowana. Przesłuchiwał ją dobrze wykształcony niemiecki oficer. Po niemiecku przekonała go, aby ją wypuścił. I właściwie nie wiadomo dlaczego, oficer podziękował jej za miłe spotkanie i wyraził nadzieję, że spotkają się ponownie w przyjemniejszych okolicznościach. Wkrótce jednak została oskarżona o działalność polityczną na uniwersytecie i zakazano jej pracy na uczelni.

 

Zebranie Komisji Norm i Jednostek Promieniotwórczości w Sztokholmie w 1953; od lewej m.in: Raymond Delaby (1.),  Irène Joliot-Curie (6.), Ellen Gleditsch (9.), Friedrich Paneth (10.), austriacka fizyk Berta Karlik (11.) i George de Hevesy (12.), National Library of Norway

 

Po wojnie pozostała w kontakcie z przyjaciółmi i kolegami, takimi jak np. Lise Meitner, którą regularnie odwiedzała w Sztokholmie. W 1946 roku uczona przeszła na emeryturę i rozpoczęła współpracę z UNESCO. Jej celem była walka z analfabetyzmem. W 1947 roku na zaproszenie Frederica Joliota-Curie wzięła udział w ceremonii z okazji dziesiątej rocznicy śmierci Rutherforda. W 1952 roku została powołana do norweskiej komisji ds. koordynacji naukowej jako przedstawicielka rządu, gdzie była rzecznikiem międzynarodowej kontroli nad bombą atomową. W tym samym roku zrezygnowała z pracy w UNESCO w proteście przeciwko przyjęciu Hiszpanii pod faszystowskim reżimem Franco jako członka instytucji. Przez cały czas publikowała. Pod koniec życia zainteresowała się szczególnie historią nauki. Jej ostatni artykuł dotyczący życia i pracy szwedzkiego chemika Carla Wilhelma Scheele’a został opublikowany w 1968 roku. Uczona otrzymała wiele nagród i wyróżnień, w tym między innymi w 1962 roku jako pierwsza kobieta doktorat honoris causa Sorbony, medal miasta Paryża, została także honorowym obywatelem Paryża. Otrzymała również doktorat honoris causa Uniwersytetu w Strasburgu.

Pod koniec maja 1968 roku spędzała weekend w swoim wiejskim domu w Enebakk pod Oslo. Poczuła się źle. Straciła przytomność. Lekarze orzekli, że dostała udaru. Kilka dni później, 5 czerwca w wieku osiemdziesięciu dziewięciu lat Ellen Gleditsch zmarła.

Można by oczekiwać, że w Norwegii pamięć o uczonej będzie pielęgnowana i trwała. Niestety niewiele osób zna tą wyjątkową kobietę i jej osiągnięcia. Niestety mało kto pamięta Ellen Gleditsch – wybitną uczoną, działaczkę pokojową oraz przyjaciółkę i współpracowniczkę Marii Skłodowskiej-Curie.

 

W styczniu 2019 roku Svein Stølen – rektor Uniwersytetu w Oslo – odsłonił pamiątkową plakietę na budynku przy ulicy Jonas Reins 1 w Oslo, gdzie Ellen Gleditsch mieszkała w latach 1931–1968, fot. Eivind Torgersen, [za:] https://forskning.no
_______________

Literatura zalecana:

[1] A.-M. Weidler Kubanek, Nothing Less Than An Adventure: Ellen Gleditsch and Her Life in Science, CreateSpace Independent Publishing Platform, 2010.

[2] A. Lykknes, Ellen Gleditsch and Research on Radium, Chlorine and Potassium, [w]: Women in Their Element: Selected Women’s Contributions To The Periodic System, ed., Annette Lykknes, Brigitte Van Tiggelen, World Scientific Publishing Co, Singapore 2019.

[3] A. Lykknes, L. Kvittingen, A. K. Børrese, Ellen Gleditsch: Duty and responsibility in a research and teaching career, 1916-1946, Historical Studies in the Physical and Biological Sciences, 36 (1), 2005, str. 131–188.

[4] A. Lykknes, H. Kragh, L. Kvittingen, Ellen Gleditsch: Pioneer Woman in Radiochemistry, Phys. Perspect., 6, 2004, str. 126–155.

[5] A. Lykknes, Ellen Gleditsch: Woman Chemist in IUPAC’s Early History, Chemistry International, 2019, str. 26–27.

[6] A.-M. Weidler Kubanek, C. P. Grzegorek, Ellen Gleditsch: Professor and Humanist, [w]: A Devotion to Their Science: Pioneer Women of Radioactivity, ed., Marlene F. Rayner-Canham, Geoffrey W. Rayner-Canham, McGill-Queen’s University Press, Québec 1997.

[7] A. Lykknes, Ellen Gleditsch: Professor, Radiochemist, and Mentor, Department of Chemistry Norwegian University of Science and Technology Trondheim, Norway, Ph. D. thesis, 2005.

[8] M. F. Rayner-Canham, G. W. Rayner-Canham, Sir W. Grenfell College, Stefanie Horovitz, Ellen Gleditsch, Ada Hitchins, and the discovery of isotopes, Bull. Hist. Chem., 25(2), 2000, str. 103–108.

„Robaczki świętojańskie” — fragment książki profesora Tomasza Pospiesznego pt. „Maria Skłodowska-Curie. Zakochana w nauce”.​

Splendor sławy nadszedł z końcem 1903 roku, kiedy prace Marii i Piotra Curie zostały uhonorowane Nagrodą Nobla z fizyki „w uznaniu nadzwyczajnych zasług w ich wspólnych badaniach nad zjawiskiem promieniowania wykrytym przez profesora Henriego Becquerela”. Otrzymali ją wspólnie z Becquerelem, który nagrodę dostał „w uznaniu za odkrycie promieniotwórczości naturalnej”. Wydaje się, że Becquerel został wyróżniony w dużej mierze ze względu na swoją pozycję naukową.

Ernest Rutherford, b.d., Kolekcja Tomasza Pospiesznego

Już w 1898 roku Rutherford – wschodząca gwiazda nauki – zaznaczał, że Becquerel – uznany autorytet w kręgach nauki, może się mylić:

Wyniki doświadczeń Becquerela wykazują, iż promieniowanie Röntgena i promieniowanie uranowe są bardzo podobne pod względem przenikania przez ciała stałe i wywoływania przewodnictwa elektrycznego w gazie, przez który przechodzą; jednak między tymi dwoma rodzajami promieniowania istnieje zasadnicza różnica. Becquerel stwierdził, że promieniowanie uranu można załamywać i polaryzować, podczas gdy nie uzyskano żadnych pewnych wyników dotyczących polaryzacji i załamania promieni Röntgena. Wszystkie otrzymane wyniki wykazują, że uran wysyła jakieś promieniowanie, które pod względem działania na gaz jest podobne do promieni Röntgena i wtórnego promieniowania wysyłanego przez metale przy padaniu na nie promieni Röntgena. Jeśli okaże się, że promienie wysyłane przez uran nie ulegają polaryzacji i załamaniu, to podobieństwo będzie zupełne.

Poza wcześniejszymi błędami, w dwa lata po otrzymaniu Nagrody Nobla, uczony dalej publikował błędne wyniki. Ernest Rutherford, nie przebierając w słowach, w liście do Williama Bragga napisał:

Zapewne spostrzegł Pan już, że Becquerel oszalał… On napisał, że promienie radu są jednorodne i przy przejściu przez materię nie zmniejszają, lecz raczej zwiększają prędkość!!! Nigdy nie widziałem tak przerażającej impotencji intelektualnej u kogoś, kto uważa się za lidera nauki… Uważam, że Becquerel to osioł pierwszej klasy…

 

Antoine Henri Becquerel, 1904, Library of Congres

10 grudnia 1903 roku na uroczystość wręczenia Nagrody Nobla do Sztokholmu Becquerel pojechał sam. Zgodnie z przyjętym zwyczajem wygłosił wykład pt. O radioaktywności, nowej właściwości materii. Rozpoczął go słowami:

Temat, który proponuję, stał się w ciągu zaledwie kilku lat tak obszerny, że aby zamknąć go w jednym wykładzie, jestem zmuszony ograniczyć się do wymienienia jedynie głównych odkryć w porządku chronologicznym. Na początku należałoby przedstawić znakomitą pracę nad radem państwa Curie, aby później podsumować moje własne badania.

 

Dyplom Nagrody Nobla w dziedzinie fizyki dla Piotra i Marii Curie. Warto zauważyć, że wers dzielący imiona i nazwisko małożnków znaczy — "i jego żony". Zatem w opinii Szwedzkiej Królewskiej Akademii Nauk Maria była jedynie żoną, wsparciem i pomocą Piotra, a nie samodzielnym naukowcem.

Podczas bardzo uroczystej ceremonii (wręczenie nagród odbywało się dopiero po raz trzeci) prezydent Szwedzkiej Akademii Nauk doktor Henricus Ragnar Tornebladh po wychwalaniu geniuszu Becquerela powiedział:

Wielki sukces profesora i Madame Curie jest najlepszą ilustracją starego przysłowia […] zjednoczenie jest siłą. To pozwala nam spojrzeć na słowo Boga w zupełnie nowym świetle: – Nie jest dobrze, żeby mężczyzna był sam; Uczynię mu zatem odpowiednią dla niego pomoc.

Maria Skłodowska-Curie w dniu obrony doktoratu, 1903, Archiwum Piotra Chrząstowskiego

Doktor Maria Curie, uczona, została przedstawiona jako Madame Curie i tylko odpowiednia pomoc! Ta, od której wszystko się rozpoczęło, ta, dzięki której Becquerel mógł pojechać do Sztokholmu, ta, która stanowiła intelektualny autorytet w tematyce promieniotwórczości! Echa umniejszania zasług Madame Curie znalazły także odbicie w prasie, gdzie często pisano o niej jako współpracownicy czy pomocnicy Piotra. Bardzo rzadko uważano ją za samodzielną uczoną z własnym warsztatem badawczym, osiągnięciami czy pomysłami. Wyraz tego można znaleźć także na dyplomie Nagrody Nobla, gdzie pod nazwiskiem Piotra Curie dodano napis „i jego żony Marii Curie”. Dziwić może także, że nazwisko Piotra jest wymienione w pierwszej kolejności. Cóż, szowinistyczne poglądy Szwedzkiej Akademii Nauk będziemy mieli okazję podziwiać jeszcze wiele razy. Należy jednak przyznać, że były też komentarze pozytywne – „Maria, będąc naukowcem i towarzyszem prac badawczych swojego męża, jest jednocześnie żoną, matką, panią domu. […] w żaden sposób te dwie role nie wykluczają się i nie kłócą”. Niestety wypowiedzi takie były raczej sporadyczne.

 

Ilustracja prasowa z 1905 roku — Państwo Curie z wizytą w Sztokholmie, dzięki uprzejmości Karin Blanc

Małżonkowie Curie przebywali w Sztokholmie w dniach od 3 do 6 czerwca 1905 roku. Jak podaje Karin Blanc:

 

[…] podczas swojego pobytu poprowadzą wykład na uniwersytecie, spędzą dzień w Uppsali z profesorem Knutem Angstromem i, wbrew powszechnym opiniom, wspólnie zasiądą na scenie królewskiej Akademii Muzycznej, gdzie wygłoszą przemówienie noblowskie. Maria Curie usłyszy ponadto pochwały ze strony szwedzkiej Ligi Kobiet.

 

Warto w tym miejscu podkreślić, że Maria nigdy nie była sufrażystką ani feministką. Uważała, że równość płci polega nie tyle na równości praw, ile na równości obowiązków. Skoro mężczyzna może wykonywać jakąś pracę, może ją również wykonywać kobieta.

 

Według Karin Blanc Maria Curie miała demonstrować w trakcie wystąpienia Piotra pokazy eksperymentów z radem. Kiedy jedno z doświadczeń zakończyło się niepowodzeniem, Piotr wykrzyknął: „Przeklęty rad!”.

Państwo Curie w roku odebrania Nagrody Nobla z fizyki, 1905, Zbiór Korotyńskich, Archiwum Państwowe w Warszawie

6 czerwca 1905 roku w wykładzie pt. Substancje radioaktywne, w szczególności rad Piotr Curie mówił:

Proszę pozwolić, że przede wszystkim wyrażę swoją wdzięczność za to, że mogę dziś przemawiać przed Akademią Nauk, która obdarzyła Madame Curie i mnie wielkim zaszczytem przyznania nam Nagrody Nobla. Musimy również przeprosić za opóźnienie wizyty w Sztokholmie z przyczyn niezależnych od nas. […] Można przypuścić, iż w rękach zbrodniczych rad mógłby stać się bardzo niebezpieczny. Nasuwa się więc pytanie, czy poznawanie tajników natury jest pożyteczne dla ludzkości. Czy jest ona dość dojrzała, aby z nich korzystać? Czy też – przeciwnie – poznanie to przyniesie jej szkodę? Charakterystyczny jest przykład wynalazków Nobla. Potężne materiały wybuchowe pozwoliły ludziom dokonać prac godnych podziwu, ale są one równocześnie straszliwym środkiem zniszczenia w rękach wielkich zbrodniarzy, którzy prowadzą narody ku wojnie. Należę do tych, którzy wraz z Noblem myślą, że ludzkość wyciągnie więcej dobra niż szkody z nowych wynalazków.

***

Tomasz Pospieszny, Maria Skłodowska-Curie. Zakochana w nauce,
Wydawnictwo Po Godzinach, Warszawa 2020,
s. 143–145 i 153–154.

Splendor sławy nadszedł z końcem 1903 roku, kiedy prace Marii i Piotra Curie zostały uhonorowane Nagrodą Nobla z fizyki „w uznaniu nadzwyczajnych zasług w ich wspólnych badaniach nad zjawiskiem promieniowania wykrytym przez profesora Henriego Becquerela”. Otrzymali ją wspólnie z Becquerelem, który nagrodę dostał „w uznaniu za odkrycie promieniotwórczości naturalnej”. Wydaje się, że Becquerel został wyróżniony w dużej mierze ze względu na swoją pozycję naukową.

Ernest Rutherford, b.d., Kolekcja Tomasza Pospiesznego

Już w 1898 roku Rutherford – wschodząca gwiazda nauki – zaznaczał, że Becquerel – uznany autorytet w kręgach nauki, może się mylić:

Wyniki doświadczeń Becquerela wykazują, iż promieniowanie Röntgena i promieniowanie uranowe są bardzo podobne pod względem przenikania przez ciała stałe i wywoływania przewodnictwa elektrycznego w gazie, przez który przechodzą; jednak między tymi dwoma rodzajami promieniowania istnieje zasadnicza różnica. Becquerel stwierdził, że promieniowanie uranu można załamywać i polaryzować, podczas gdy nie uzyskano żadnych pewnych wyników dotyczących polaryzacji i załamania promieni Röntgena. Wszystkie otrzymane wyniki wykazują, że uran wysyła jakieś promieniowanie, które pod względem działania na gaz jest podobne do promieni Röntgena i wtórnego promieniowania wysyłanego przez metale przy padaniu na nie promieni Röntgena. Jeśli okaże się, że promienie wysyłane przez uran nie ulegają polaryzacji i załamaniu, to podobieństwo będzie zupełne.

Poza wcześniejszymi błędami, w dwa lata po otrzymaniu Nagrody Nobla, uczony dalej publikował błędne wyniki. Ernest Rutherford, nie przebierając w słowach, w liście do Williama Bragga napisał:

Zapewne spostrzegł Pan już, że Becquerel oszalał… On napisał, że promienie radu są jednorodne i przy przejściu przez materię nie zmniejszają, lecz raczej zwiększają prędkość!!! Nigdy nie widziałem tak przerażającej impotencji intelektualnej u kogoś, kto uważa się za lidera nauki… Uważam, że Becquerel to osioł pierwszej klasy…

 

Antoine Henri Becquerel, 1904, Library of Congres

10 grudnia 1903 roku na uroczystość wręczenia Nagrody Nobla do Sztokholmu Becquerel pojechał sam. Zgodnie z przyjętym zwyczajem wygłosił wykład pt. O radioaktywności, nowej właściwości materii. Rozpoczął go słowami:

Temat, który proponuję, stał się w ciągu zaledwie kilku lat tak obszerny, że aby zamknąć go w jednym wykładzie, jestem zmuszony ograniczyć się do wymienienia jedynie głównych odkryć w porządku chronologicznym. Na początku należałoby przedstawić znakomitą pracę nad radem państwa Curie, aby później podsumować moje własne badania.

 

Dyplom Nagrody Nobla w dziedzinie fizyki dla Piotra i Marii Curie. Warto zauważyć, że wers dzielący imiona i nazwisko małożnków znaczy — "i jego żony". Zatem w opinii Szwedzkiej Królewskiej Akademii Nauk Maria była jedynie żoną, wsparciem i pomocą Piotra, a nie samodzielnym naukowcem.

Podczas bardzo uroczystej ceremonii (wręczenie nagród odbywało się dopiero po raz trzeci) prezydent Szwedzkiej Akademii Nauk doktor Henricus Ragnar Tornebladh po wychwalaniu geniuszu Becquerela powiedział:

Wielki sukces profesora i Madame Curie jest najlepszą ilustracją starego przysłowia […] zjednoczenie jest siłą. To pozwala nam spojrzeć na słowo Boga w zupełnie nowym świetle: – Nie jest dobrze, żeby mężczyzna był sam; Uczynię mu zatem odpowiednią dla niego pomoc.

Maria Skłodowska-Curie w dniu obrony doktoratu, 1903, Archiwum Piotra Chrząstowskiego

Doktor Maria Curie, uczona, została przedstawiona jako Madame Curie i tylko odpowiednia pomoc! Ta, od której wszystko się rozpoczęło, ta, dzięki której Becquerel mógł pojechać do Sztokholmu, ta, która stanowiła intelektualny autorytet w tematyce promieniotwórczości! Echa umniejszania zasług Madame Curie znalazły także odbicie w prasie, gdzie często pisano o niej jako współpracownicy czy pomocnicy Piotra. Bardzo rzadko uważano ją za samodzielną uczoną z własnym warsztatem badawczym, osiągnięciami czy pomysłami. Wyraz tego można znaleźć także na dyplomie Nagrody Nobla, gdzie pod nazwiskiem Piotra Curie dodano napis „i jego żony Marii Curie”. Dziwić może także, że nazwisko Piotra jest wymienione w pierwszej kolejności. Cóż, szowinistyczne poglądy Szwedzkiej Akademii Nauk będziemy mieli okazję podziwiać jeszcze wiele razy. Należy jednak przyznać, że były też komentarze pozytywne – „Maria, będąc naukowcem i towarzyszem prac badawczych swojego męża, jest jednocześnie żoną, matką, panią domu. […] w żaden sposób te dwie role nie wykluczają się i nie kłócą”. Niestety wypowiedzi takie były raczej sporadyczne.

 

Ilustracja prasowa z 1905 roku — Państwo Curie z wizytą w Sztokholmie, dzięki uprzejmości Karin Blanc

Małżonkowie Curie przebywali w Sztokholmie w dniach od 3 do 6 czerwca 1905 roku. Jak podaje Karin Blanc:

 

[…] podczas swojego pobytu poprowadzą wykład na uniwersytecie, spędzą dzień w Uppsali z profesorem Knutem Angstromem i, wbrew powszechnym opiniom, wspólnie zasiądą na scenie królewskiej Akademii Muzycznej, gdzie wygłoszą przemówienie noblowskie. Maria Curie usłyszy ponadto pochwały ze strony szwedzkiej Ligi Kobiet.

 

Warto w tym miejscu podkreślić, że Maria nigdy nie była sufrażystką ani feministką. Uważała, że równość płci polega nie tyle na równości praw, ile na równości obowiązków. Skoro mężczyzna może wykonywać jakąś pracę, może ją również wykonywać kobieta.

 

Według Karin Blanc Maria Curie miała demonstrować w trakcie wystąpienia Piotra pokazy eksperymentów z radem. Kiedy jedno z doświadczeń zakończyło się niepowodzeniem, Piotr wykrzyknął: „Przeklęty rad!”.

Państwo Curie w roku odebrania Nagrody Nobla z fizyki, 1905, Zbiór Korotyńskich, Archiwum Państwowe w Warszawie

6 czerwca 1905 roku w wykładzie pt. Substancje radioaktywne, w szczególności rad Piotr Curie mówił:

Proszę pozwolić, że przede wszystkim wyrażę swoją wdzięczność za to, że mogę dziś przemawiać przed Akademią Nauk, która obdarzyła Madame Curie i mnie wielkim zaszczytem przyznania nam Nagrody Nobla. Musimy również przeprosić za opóźnienie wizyty w Sztokholmie z przyczyn niezależnych od nas. […] Można przypuścić, iż w rękach zbrodniczych rad mógłby stać się bardzo niebezpieczny. Nasuwa się więc pytanie, czy poznawanie tajników natury jest pożyteczne dla ludzkości. Czy jest ona dość dojrzała, aby z nich korzystać? Czy też – przeciwnie – poznanie to przyniesie jej szkodę? Charakterystyczny jest przykład wynalazków Nobla. Potężne materiały wybuchowe pozwoliły ludziom dokonać prac godnych podziwu, ale są one równocześnie straszliwym środkiem zniszczenia w rękach wielkich zbrodniarzy, którzy prowadzą narody ku wojnie. Należę do tych, którzy wraz z Noblem myślą, że ludzkość wyciągnie więcej dobra niż szkody z nowych wynalazków.

***

Tomasz Pospieszny, Maria Skłodowska-Curie. Zakochana w nauce,
Wydawnictwo Po Godzinach, Warszawa 2020,
s. 143–145 i 153–154.

100. rocznica przyznania Marii Skłodowskiej-Curie doktoratu honorowego Uniwersytetu Poznańskiego

 


W 1922 roku Senat Uniwersytetu Poznańskiego wybrał Marię Skłodowską-Curie na pierwszego honorowego doktora uczelni.
Genialna uczona, odkrywczyni dwóch pierwiastków radioaktywnych – polonu i radu, badaczka zjawiska radioaktywności, współtwórczyni radiochemii oraz radioterapii, laureatka Nagrody Nobla z fizyki w 1903 roku i z chemii w 1911 roku nigdy nie przyjechała do Poznania i nie odebrała dyplomu doktora honoris causa. Według wspomnień ówczesnego dziekana Wydziału Lekarskiego Uniwersytetu Poznańskiego profesora Adama Wrzoska dyplom nie został wydrukowany, nie doszło także do uroczystej promocji.

Po stu latach od nadaniu godności doktora honoris causa Uniwersytetu Poznańskiego z inicjatywy prof. UAM dr. hab. Tomasza Pospiesznego oraz dr Iwony Taborskiej z Wydziału Chemii UAM postanowiono przekazać dyplom honorowy wnuczce uczonej prof. Hélène Langevin-Joliot. Uroczystość została objęta patronatem Jej Magnificencji Rektor prof. Bogumiły Kaniewskiej i honorowym patronatem Prezydenta Miasta Poznania Pana Jacka Jaśkowiaka.

Podniosłym obchodom towarzyszyć będzie wernisaż wystawy pt. „Maria Skłodowska-Curie. Zakochana w nauce” oraz sympozjum naukowe z udziałem gości honorowych i prelegentów: prof. Hélène Langevin-Joliot, Hanny Karczewskiej (prawnuczki Heleny Skłodowskiej-Szalay, siostry Marii), dr. inż. Piotra Chrząstowskiego (prawnuka Józefa Skłodowskiego, brata Marii), Renaud Huynh (dyrektora Muzeum Curie w Paryżu) ,dr Natalie Pigeard-Micault, prof. Jerzego Niewodniczańskiego, prof. Marka Sikorskiego i prof. Tomasza Pospiesznego.

Uroczyste przekazanie dyplomu doktora honoris causa Marii Skłodowskiej-Curie jej wnuczce pani prof. Hélène Langevin-Joliot odbędzie się 8 listopada w Sali Lubrańskiego Uniwersytetu im. Adama Mickiewicza w Poznaniu. Z kolei wernisaż wystawy oraz sympozjum naukowe z udziałem gości honorowych i prelegentów będzie miało miejsce 9 listopada w Collegium Chemicum Uniwersytetu im. Adama Mickiewicza w Poznaniu ul. Uniwersytetu Poznańskiego 8.

Udział w uroczystościach tylko z zaproszeniem.

Opracował Tomasz Pospieszny

125. rocznica urodzin profesor Alicji Dorabialskiej

 

 

 

Nie zwalczymy prawa natury. Możemy sobie jedynie — jako przestrogę — przypomnieć piękne słowa wypowiedziane ongiś przez Aleksandra Świętochowskiego: „Niech rzesze ludzkie będą uczone przez tych, którzy je kochają, a nie gnane przez tych, którzy nimi rządzić pragną”.

Alicja Dorabialska

W szary wieczór październikowy 1897 roku w Sosnowcu, w domu przy ulicy zwanej Czystą, prawdopodobnie dlatego, że była przeraźliwie brudna – narodziła się dziewczynka. Była okrutnie mała i bardzo wrzeszczała. To JA! Stworzonko nie było entuzjastycznie przez świat witane. Matka chciała mieć syna. Dopiero ojciec musiał jej wytłumaczyć, że „przecież i z córki można mieć jakąś pociechęˮ.

Tak opisała swoje narodziny jedna z najważniejszych postaci polskiej fizyki i chemii – Alicja Dorabialska. Pomimo – jak sama wspominała – wątłego zdrowia po urodzeniu okazała się bardzo silna i ciekawa świata. Dziewczynka była naprawdę wyjątkowa. Jej starsza o dwa lata siostra Lilka była dla małej Alicji wyrocznią. Nauczyła ją chodzić, mówić, czytać w wieku czterech lat i co ważniejsze śpiewać. Podobno jako jedenastomiesięczne dziecko śpiewała w wózku krakowiaka. W 1908 roku rodzina powiększyła się o brata panien Dorabialskich Stefana.

Ojciec Alicji Tomasz Dorabialski był urzędnikiem pocztowym. Jej matka Helena z Kamińskich– córka powstańca – bardzo dbała aby cały dom był pełen tradycji powstańczych. Alicja najpierw uczyła się w domu, a później w latach 1908–1913 uczęszczała do Szkoły Handlowej Żeńskiej. W 1913 roku wspólnie z matką wyjechała do Warszawy. Było to podyktowane faktem, że matura zdawana w stolicy znacznie ułatwi jej wstęp na studia. Przyjazd do Warszawy łączył się z wielką radością, gdyż Alicja mogła przebywać w towarzystwie Lilki, która już uczyła się w klasie fortepianu. W stolicy poza intensywną nauką Alicja poświęciła się działalności społecznej czego wyraźmy obrazem było współtworzenie przez nią tajnego skautingu. Po roku nauki i ukończeniu klasy VII w Siedmioklasowej Szkole Handlowej pani Teodory Raczkowskiej w Warszawie przyszła uczona uzyskała świadectwo dojrzałości. Ponieważ od początku nauki zdradzała intensywne zainteresowanie naukami ścisłymi, a w szczególności chemią, rozpoczęła studia w Towarzystwie Kursów Naukowych w Warszawie. Współpracowało ono z Towarzystwem Naukowym Warszawskim, przy którym istniała pracownia radiologiczna kierowała z Paryża przez Marię Skłodowską-Curie. Niestety wybuch pierwszej wojny światowej pokrzyżował plany Dorabialskiej. W 1915 roku cała rodzina przeprowadziła się do Moskwy, gdzie do 1918 roku Alicja kontynuowała studia na wydziale fizyko-chemicznym Wyższego Kursu Żeńskiego.

Alicja Dorabialska, b.d., [za:] http://zchf.ch.pw.edu.pl/files/historia_zchf.pdf, s. 15.
W wieku osiemnastu lat poznała w domu przyjaciółki profesora Wojciecha Świętosławskiego, z którym natychmiast podjęła polemikę, bowiem uważał on, że kobiety nie są zdolne do pracy naukowej. Alicja miała mu wówczas powiedzieć – Jeszcze w życiu pana znajdzie się kobieta, która dowiedzie, że kobiety mogą pracować naukowo! Nie mogła wiedzieć, że tą kobietą będzie ona. W maju 1918 roku Dorabialska wróciła do Warszawy, gdzie została asystentką profesora Świętosławskiego, który objął Katedrę Chemii Fizycznej na politechnice. Ich współpraca trwała szesnaście lat. Poza pracą naukową i dydaktyczną Dorabialska intensywnie działała społecznie m. in. w Lidze Akademickiej Obrony Państwa, Klubie Gazeciarzy, Straży Kresowej. Doskonaliła także swój warsztat wokalny uczęszczając na prywatne lekcje śpiewu. W 1922 roku Dorabialska uzyskała na Uniwersytecie Warszawskim tytuł doktora filozofii za pracę Badania termochemiczne nad stereoizomerią ketoksymów, którą wykonywała pod kierunkiem profesora Wiktora Lampego.W 1925 roku ziściło się jedno z największych marzeń Dorabialskiej. Z okazji położenia kamienia węgielnego pod budowę Instytutu Radowego do Warszawy przyjechała Maria Skłodowska-Curie. Obie panie spotkały się na bankiecie wydanym na cześć noblistki przez Polskie Towarzystwo Chemiczne. Wielka uczona zaprosiła wówczas do Paryża Dorabialską. Zmieniło to jej życie. W Paryżu została bliską współpracowniczką Madame Curie. Czasem odprowadzała ją do domu, przemywała także palce poparzone radem. Później była jedną z najważniejszych uczennic Marii działającą w Polsce. Zawsze podkreślała niezależność swojej mistrzyni mówiąc przecież to Maria, a nie Becquerel wpadła na pomysł aby zbadać promieniowanie ze starych preparatów uranowych z muzeum mineralogicznego. To ona stwierdziła, że niektóre preparaty wykazują silniejsze promieniowanie niż czysty uran. To ona samodzielnie wysunęła koncepcję, że muszą tam być inne promieniotwórcze pierwiastki. To ona w oparciu o doświadczenia zdobyte podczas zajęć w Towarzystwie Kursów Naukowych przeprowadziła własnoręcznie rozdział blendy smolistej na frakcje zawierające polon i rad. Marii i Piotrowi Curie Dorabialska poświeciła niewielką, ale bardzo urokliwą książeczkę. Kiedy spędziła rok 1931/1932 na Uniwersytecie Karola w Pradze koledzy nazywali ją pieszczotliwie „żaczkiem pani Curie”.W 1928 roku Dorabialska habilitowała się na Politechnice Warszawskiej w dziedzinie chemii fizycznej, a w 1934 roku uzyskała tytuł profesora nadzwyczajnego oraz nominację na kierownika Katedry Chemii Fizycznej Politechniki Lwowskiej. Została tym samym pierwszą kobietą profesorem Politechniki Lwowskiej. Wielu mężczyzn profesorów uważało, że kobiety na tym stanowisku doprowadzi do obniżenia poziomu i powagi uczelni. Po latach uczona wspominała:Na jakimś przyjęciu w Belwederze ówczesny minister wyznań religijnych i oświecenia publicznego Wacław Jędrzejewicz zwrócił się do marszałka: Panie Marszałku? Mamy kłopot. Kandydatką na katedrę Chemii Fizycznej na Politechnice Lwowskiej jest kobieta, Alicja Dorabialska. No to co? huknął marszałek. Niech się baba pokaże! Tak, ale jest jeszcze drugi szkopuł. Ona podpisała protest brzeski. No to co? Ma baba charakter! Więc pan Marszałek nie ma nic przeciwko temu, aby pan prezydent podpisał nominację? Oczywiście!
Delegacja Politechniki Lwowskiej przed uroczystością wręczenia Orderu Odrodzenia Polski Politechnice Lwowskiej i profesorowi Kazimierzowi Bartlowi na Zamku Królewskim w Warszawie; pierwsza z lewej profesor Alicja Dorabialska, 13 lutego 1937, NAC, sygn. 1-N-3209-1

Wybuch drugiej wojny światowej zastała uczoną wraz z rodziną w domku letniskowym w Wołominie pod Warszawą. Alicja zdecydowała się powrócić do Lwowa. Jej pociąg został trafiony pociskami. Uczona była w jednym z dalszych wagonów i nic jej się nie stało. W maju 1940 roku ogłoszono repatriację obywateli polskich z miasta, Dorabialska z niej skorzystała, co uratowało jej życie, bowiem, gdy Niemcy weszli w maju 1941 roku do Lwowa rozstrzelali wszystkich profesorów pod zarzutem współpracy z bolszewikami. Czas wojny uczona wraz z matką i Lilką spędziła w Warszawie. Była niezwykłą kobietą – w tajemnicy przed najbliższymi ukrywała w mieszkaniu Żydówkę, a także nauczała w tajnych kompletach. Przed wybuchem Powstania Warszawskiego spadła na uczoną wielka tragedia – w lipcu 1944 roku zmarła jej ukochana siostra. W powstaniu Dorabialska nie walczyła, ale opatrywała rannych, zdobywała leki i żywność.

Po wojnie Dorabialska otrzymała od rektora nowo powstałej Politechniki Łódzkiej profesora Bohdana Stefanowskiego propozycję objęcia katedry chemii. Wspólnie z profesorem Osmanem Achmatowiczem zajęła się organizacją Wydziału Chemicznego. Została powołana na dziekanem Wydziału Chemii. Była świetnym pedagogiem. Studenci nazywali ją „mamą”. Była odważna i niezależna. Kiedy ministerstwo wysłało do profesorów ankietę, w której zapytywało w jakim stopniu w swoich wykładach uwzględniają idee marksizmu-leninizmu, Alicja Dorabialska odpisała – Uprzejmie zawiadamiam, że nie znany jest jakikolwiek wkład tych panów do chemii fizycznej.

Profesor Alicja Dorabialska ze studentami, 1966, [za:] „Eliksir”, nr 2, 2015, s. 7.
We wrześniu 1968 roku uczona przeszła na emeryturę. Jednak nadal żywo interesowała się życiem wydziału. Do jej dziedzictwa należy zaliczyć kierowaną prze nią Katedrę Chemii Fizycznej, gdzie utworzono ośrodki mikrokalorymetrii i radiochemii. Pozostała zawsze wierna ślubowaniu, które złożyła na Politechnice Lwowskiej – Nie dla marnego zysku ani pustej sławy. W 1972 roku napisała autobiografię pt. Jeszcze jedno życie. Całe honorarium, które otrzymała za książkę przeznaczyła na ufundowanie tablicy na warszawskich Powązkach poświęconej pamięci chemików, którzy zginęli na Wschodzie.Uczona cieszyła się uznaniem i szacunkiem. Została odznaczona Krzyżem Niepodległości, Krzyżem Kawalerskim Orderu Odrodzenia Polski, Krzyżem Oficerskim Orderu Odrodzenia Polski, Krzyżem Komandorskim Orderu Odrodzenia Polski. Otrzymała także nagrodę pisma naukowego „Problemy” za szczególną popularyzację wiedzy chemicznej.Zmarła 7 sierpnia 1975 roku w wieku siedemdziesięciu ośmiu lat. Została pochowana obok siostry i rodziców na warszawskich Powązkach. Na jej pomniku wyryto napis: Ja nie umarłam – ja żyję z wami. Zalecana Literatura.

  1. A. Dorabialska, Jeszcze jedno życie, Fundacja Badań Radiacyjnych, Łódź, 1998.
  2. H. Bem, Profesor Alicja Dorabialska (1897–1978), Chemik, nr 12, tom 69, 2015, ss 873–874.
  3. J. Puchalska, Polki, które zadziwiły świat, Wydawnictwo Muza, Warszawa 2016, ss 176–207.
  4. S. Weinsberg-Tekel, Alicja Dorabialska: Polish Chemist, [w]: A Devotion to Their Science: Pioneer Women of Radioactivity, red.: M. F. Rayner-Cnaham, G. W. Rayner-Canham, McGill-Queen’s University Press, Québec, 1997, ss 92-96.

 

Jadwiga Szmidt — poliglotka zakochana w nauce

 

Jadwiga Szmidt jest kobietą, która jak inne opisane w felietonach na łamach Piękniejszej Strony Nauki, poświęciły swoje życie dla nauki. Jak wiele z nich musiała opuścić dom rodzinny, aby móc poznawać tajniki najpiękniejszej tajemnicy Matki Przyrody – tajemnice fizyki i chemii. Szmidt miała możliwość uczyć się od najlepszych. Pracowała zarówno z Marią Skłodowską-Curie jak i Ernestem Rutherfordem.

Jadwiga Szmidt przyszła na świat 8 września 1889 roku w Łodzi w polskiej rodzinie. Wiadomo, że jej ojciec miał na imię Ryszard. Co dość istotne była wychowana w wierze ewangelickiej. Jej ścieżka edukacyjna była dość typowa dla czasów, w których przyszło jej żyć. Początkowe nauki pobierała w Warszawie, a następnie w 1905 roku rozpoczęła studia nauczycielskie w Żeńskim Instytucie Pedagogicznym w Petersburgu. Nauczanie było wtedy jedną z niewielu opcji dostępnych dla kobiet zainteresowanych nauką.

Jadwiga Schmidt, b.d., [za:] N. Pigeard-Micault, Les femmes du laboratoire de Marie Curie, Paris 2013, s. 269
Paul Ehrenfest (1880–1933), ok. 1911 roku, domena publiczna

Po ukończeniu studiów w 1909 roku (inne źródła podają 1911 rok) Szmidt przyjęła etat w Żeńskim Gimnazjum Tagantsewa w Sankt Petersburgu, gdzie przez dwa lata uczyła fizyki. To właśnie tutaj Jadwiga poznała i zaprzyjaźniła się między innymi z Paulem Ehrenfestem i jego żoną Tatianą Afanasjewą [felieton Tomasza Pospiesznego o Tatianie], Abramem Joffem czy Dmitrijem Roschdestwenskim. Warto odnotować, że poza zwykłymi zajęciami prowadziła także zajęcie laboratoryjne. W 1911 roku wyjechała do Paryża na półroczne szkolenie nauczycieli na Sorbonie. Dzięki wstawiennictwu Jana Danysza, Szmidt, pomimo braku licencjatu, otrzymała zgodę na odbycie stażu w semestrze wiosennym w laboratorium Marii Skłodowskiej-Curie. Jak się później okazało był to dość wyjątkowy czas dla laboratorium Curie, gdyż w tym samym czasie co ona pracowały tam również May Sybil Leslie (angielska chemiczka; zajmowała się chemią toru i aktynu), Ellen Gleditsch (norweska radiochemiczka; ustaliła okres półtrwania radu i pomogła udowodnić istnienie izotopów) i Eva Ramstedt (szwedka chemiczka; specjalistka z zakresu radiologii). Szmidt zaprzyjaźniła się szczególnie z Leslie i Gleditsch, a ich znajomość przetrwała przez długie lata.

Po powrocie do Petersburga Jadwiga ponownie zaczęła nauczać fizyki, ale jak sie wydaje jej pobyt w laboratorium Marii Curie obudził w niej chęć do pracy naukowej. Po rozmowie z profesorem Aleksandrem Lwowiczem Grishunem, który uczył ją Żeńskim Instytucie Pedagogicznym w Petersburgu, i jego aprobacie, zaczęła badania związane z optotechniką w kierowanym przez niego laboratorium.

Fizycy z Petersburga; pierwszy rząd: D. S. Roschdestwenski; drugi rząd od lewej: P. Ehrenfest, G. Weihardt, G. P. Perlitz, T. Afanasjewa-Ehrenfest; trzeci rząd: W. Bursian, A. Ioffe, J. Krutkov, W. Chulanowski, L. Isakow, A. Dobiasz, J. Schmidt, C. Baumgart, 1912, domena publiczna

 

Członkowie kręgu fizyków w Petersburgu; siedzą od lewej: P. Ehrenfest, A. Ioffe, D. Rozchdeswenski, T. Afanasjewa-Ehrenfest; stoją: W. Chulanowski, G. Weihardt, L. Isakow, G. Perlitz, W. Bursian i J. Schmidt, 1912, domena publiczna

May Sybil Leslie (1887–1937), b.d., [za:] N. Pigeard-Micault, Les femmes du laboratoire de Marie Curie, Paris 2013, s. 159
W 1913 roku Szmidt odbyła podróż do laboratorium Ernesta Rutherforda w University of Manchester. Rok pobytu w Wielkiej Brytanii był dla niej niezwykle produktywny, zwłaszcza że nie posiadała formalnego dyplomu z fizyki i chemii. Prawdopodobnie wynikało to w dużej mierze ze sposobu w jaki Rutherford prowadził laboratorium. Wiadomo, że pomimo ukrytych bezwzględnych założeń kulturowych tamtych czasów, szczery i entuzjastyczny Rutherford wspierał kobiety zajmujące się nauką. Wiele kobiet prowadziło badania w jego laboratoriach w McGill i Manchesterze. [Rutherford] Przebywając jeszcze w Cambridge, zawsze wspomagał sprawę kobiet na uniwersytecie. Zaraz po tym, jak objął tam profesurę, sytuacja kobiet uległa radykalnej zmianie. Upierał się, aby były pełnoprawnymi członkiniami uniwersytetu. W przeciwieństwie do Thomsona, który był konserwatystą i obstawał przy pewnych ograniczeniach, Rutherford uważał, że kobiety mogą pracować na równi z mężczyznami. Fotografie grupowe badaczy z Laboratorium Cavendisha z lat 1921 i 1923 pokazują po jednej kobiecie na 29 i 25 osób, w 1932 roku – 2 na 39 osób. Jak widać, była to trudna walka. Szmidt rozpoczęła badania związane z porównaniem promieniowania gamma emitowanego przez różne pierwiastki promieniotwórcze, a następnie jego absorpcji przez różne gazy. Ta z pozoru prosta praca okazała się niemal ostatnią dla uczonej. Okoliczności wypadku, który omal nie uśmiercił badaczki podaje jeden z pracowników laboratorium Rutherforda: […] wypadek miał miejsce, gdy [Szmidt] sama w laboratorium próbowała otworzyć zamkniętą butelkę toksycznego gazu – dwutlenku siarki. Ulatniający sie gaz prawie ją udusił i miała wiele szczęście, że przeżyła.

Ellen Gleditsch (1879–1968), ok. 1935, Oslo Museum, sygn. OB.F05906c

Poza pracą, której Szmidt oddawała się bez reszty w Manchesterze miała okazję spotkać się ze swoją przyjaciółką Ellen Gleditsch. Uczona w drodze powrotnej ze Stanów Zjednoczonych do Norwegii chciała się zatrzymać w Anglii. Wzmiankę o tym znajdujemy w jednym z listów Ritherforda do Boltwooda, który pisał: Dowiedziałem się od panny Schmidt, że panna Gleditsch przyjedzie z tutaj w przyszłym tygodniu. Jadwiga z wielką radością oczekiwała przyjaciółki. Wyznała jej, że pomimo sukcesów naukowych i wspaniałej pracy nie mogłaby zdecydować się na życie w Manchesterze. Ellen w liście Boltwooda pisała: Wydaje się, że pannie Szmidt niełatwo było się przystosować do angielskiego trybu życia. Często kusiło mnie, by śmiać się z jej historii. Moja obecność [w laboratorium] dodała jej odwagi, aby pójść na popołudniową herbatę, co robiła bardzo rzadko. Jak się jednak wydaje z późniejszej korespondencji uczonej, była ona bardzo zadowolona z pobytu w Anglii i wykazywała wyraźną chęć powrotu do laboratorium Rutherforda. Przez kilka następnych lat korespondowała z Rutherfordem. W jednym z listów pisała: Właśnie widziałam sierpniowy [numer] Phil.[osophical] Mag.[azine], gdzie został opublikowany mój artykuł. […] Ten artykuł nie był tego warty, ale bardzo dziękuję… Mam wielką nadzieję, że kiedyś wrócę do badań. Pod koniec jej pobytu w Manchesterze odwiedziła ją Leslie, która pracowała w tym czasie w fabryce w Liverpoolu. Natomiast w drodze powrotnej do Petersburga Szmidt przez pewien czas przebywała u Gleditsch w Oslo.

Ernest Rutherford (1891–1934), b.d., domena publiczna

Podczas pierwszej wojny światowej także wymieniała listy z Rutherfordem. W jednym z nich dziękowała mu za artykułu dotyczący śmierci genialnego fizyka Henryʼego Moseleya, który zginął w bitwie pod Gallipoli. Pisała także, że jej zdrowie poprawiło się i że jej praca z uchodźcami wojennymi zajmowała jej cały czas i uniemożliwiła wznowienie badań. Co interesujące Szmidt w ramach opieki nad uchodźcami organizowała polskie szkoły. Można wnioskować, że Rutherford został jej wielkim mistrzem i naukowym wzorem. Zresztą uczony miał bardzo dobre podejście do współpracy z kobietami. Traktowała je na równi z mężczyznami, a czasami uważał, że w niektórych pracach laboratoryjnych są zdecydowanie lepsze. Przejmował się swoimi podopiecznymi, nawet jeśli już opuścili jego laboratorium. W liście do Ellen Gleditsch pisał: Od czasu do czasu czytam [w listach] od panny Szmidt zdawkowe informacje dotyczące jej zdrowie. Czuję się trochę zaniepokojony tymi uwagami. Myślę, że nie ma pojęcia, jak dbać o siebie. Pomimo odległości Szmidt nadal interesowała się radioaktywnością. W grudniu 1915 roku pisała do Rutherforda: Panna Gleditsch poinformowała mnie, że okres półtrwania radu jest bliski 1660 lat. W innym liście informowała, ze zdała z powodzeniem egzaminy końcowe i będzie mogła starać się o dyplom jeśli przedstawi oryginalny problem badawczy z zakresu matematyki, fizyki lub astronomii. W 1916 roku Jadwiga powróciła do badań naukowych w Instytucie Politechnicznym w Sankt Petersburgu pod kierunkiem Abrama Ioffego. Uczony w liście do żony chwalił nową pracownicę pisząc: Jestem bardzo zadowolony z Jadwigi […]. Ma szeroką wiedzę, dobre rozumowanie w rozwiązywaniu problemów, wykazuje także szczególne umiejętności laboratoryjne.

Seminarium Abrama Joffego w Instytucie Politechnicznym w Petersburgu: czwarty z lewej Joffe, obok niego prawdopodobnie Jadwiga Schmidt, 1915, domena publiczna

W 1923 roku Szmidt poślubiła Aleksandra Czernyszewa, wybitnego rosyjskiego elektrofizyka. Małżeństwo dawało jej wiele radości nie tylko na gruncie życia codziennego, ale także (a może przede wszystkim) pracy naukowej. Jak podają niektórzy historycy nauki Szmidt-Czernyszew była jedną z niewielu kobiet w dziedzinie fizyki atomowej, która wyszła za mąż i kontynuowała badania [naukowe]. W tym czasie kontynuowanie pracy na ogół oznaczało pozostanie samotnym lub poślubienie wspierającego naukowca; normalnym oczekiwaniem było to, że kobieta porzuci naukę po ślubie. Wspólnie zostali prekursorami technologii telewizyjnej i uzyskali patent na oscyloskop. W 1923 roku małżonkowie chcieli wyjechać do Paryża na Zjazd Elektrotechników. Jadwiga potrzebowała rekomendacji znanej osobistości, napisała więc list do Marii Skłodowskiej-Curie, w którym czytamy między innymi: Dla osiągnięcia wizy francuskiej należy się powołać na osoby we Francji, które mogłyby poręczyć za mnie. Czy Szan. Pani pozwoli powołać się na Nią? Byłabym Jej niewypowiedziane wdzięczną, nie mam bowiem znajomych we Francji, a zaś powołanie się na imię tak chlubnie znane w nauce wszechświatowej bezwarunkowo przyśpieszy formalności. Jednocześnie proszę o pozwolenie wręczenia Szan. Pani w Paryżu mych skromnych prac, z których dwie wykonane u prof. Rutherforda. Od kilku lat pracuję z mężem, pomagając mu w pracach w dziedzinie prądów elektronowych. Maria doskonale pamiętała Jadwigę i wspomniane pozwolenie wydała.

Od 1924 roku Szmidt została dyrektorem laboratorium elektropróżniowego. Jej kariera kwitła. W 1929 roku małżonkowie odbyli owocną podróż do Stanów Zjednoczonych, gdzie dali serię wykładów. Oprócz działalności naukowej Jadwiga Szmidt miała olbrzymie zdolności językowe. Biegle posługiwała się językami polskim, niemieckim, angielskim, francuskim, rosyjskim i włoskim. Tłumaczyła wiele prac na rosyjski, w tym książkę Michaela Faradaya „Eksperymentalne badania elektrycznościˮ. Niestety nie doczekała jej rosyjskiego wydania.

M. Faraday, Eksperymentalne badania elektryczności, tłum. A. Czernyszew i J. Szmidt-Czernyszew, Moskwa 1947; strona tytułowa tomu pierwszego, [za:] Rosyjska Biblioteka Narodowa
Pod koniec 1930 roku życie uczonej uległo pogorszeniu. Terror wprowadzany przez Stalina zmuszał uczonych, aby przeprowadzili badania pod dyktando programu partii komunistycznej i zerwali kontakty z zachodnimi badaczami. Jadwiga znalazła się na liście podejrzanych, gdyż współpracowała i korespondowała z uczonymi z zachodu. Niestety z późnych lat trzydziestych nie zachowały się żadne informacje dotyczące życia uczonej. Prawdopodobnie cierpiała podczas czystek stalinowskich i być może dzięki protekcji Ioffego ocaliła życie. W 1938 roku Aleksander przeniósł się do Moskwy, a Jadwiga pozostała w Leningradzie. Małżeństwo zostało zmuszone do kontaktów korespondencyjnych. W jednym z listów do męża pisała: Dlaczego wcześniej nie skontaktowałem się z mądrym lekarzem […]; mój stan pogorszył się również dlatego, że do mnie nie napisałeś. Czego nie przypuszczałam! Można zatem wnioskować, że zaczęła poważnie chorować. Niestety nie wiemy co spowodowało chorobę.

Dokładna data i przyczyna śmierci uczonej nie jest znana. Jadwiga Szmidt-Czernyszew zmarła w kwietniu 1940 roku w Leningradzie. Jej mąż Aleksander umarł 18 kwietnia tego samego roku w Moskwie. Wielu historyków nauki uważa, że śmierć obu małżonków w tym samym miesiącu, to coś więcej niż przypadek i mało prawdopodobne, by nastąpiła z przyczyn naturalnych. Przyczyna śmieci małżonków do dziś pozostaje owiana tajemnicą.

Literatura:

[1] M. Cieślak-Golonka, J. Róziewicz, J. Starosta, K. G. Tokhadze, Jadwiga Szmidt (1889–1940), a pioneer woman in nuclear and electrotechnicalsciences, American Journal of Physics, 62 (10) 1994, s. 947–948.

[2] M. F. Rayner-Canham, G. W. Rayner-Canham, Jadwiga Szmidt:A Passion for Science, [w]: A Devotion to Their Science: Pioneer Women of Radioactivity, red.: M. F. Rayner-Canham, G. W. Rayner-Canham, McGill-Queen’s University Press, Québec, 1997.

[3] K. Kabzińska, M.H. Malewicz, J. Piskurewicz, J. Róziewicz, Korespondencja polska Marii Skłodowskiej-Curie. 1881–1934, Instytut Historii Nauki PAN, Polskie Towarzystwo Chemiczne, Warszawa 1994, s. 217–219.

[4] M. F. Rayner-Canham, G. W. Rayner-Canham, Pioneer Women in Nuclear Science, American Journal of Physics, 58 (11) 1990, s. 1036–1043.

 

 

„Róża” — w 88. rocznicę śmierci Marii Skłodowskiej-Curie

Rok 1934 był ostatnim w życiu Marii Skłodowskiej-Curie. Kilka lat wcześniej – być może kierowana dziwnym przeczuciem nadchodzącego kresu – uczona napisała:

Kiedy mi mówią o »moich wspaniałych pracach«, wydaje mi się, jakbym już umarła, jak gdybym siebie samą widziała na marach i wydaje mi się, iż usługi, które im mogę jeszcze oddać, nic ich nie obchodzą. Że byłoby im znaczne wygodniej mnie chwalić, gdybym nie żyła.

 

Maria Skłodowska-Curie. Był to ulubiony portret Maniusi Skłodowskiej, córki Józefa Skłodowskiego, brata Marii. Dzięki uprzejmości dr. inż. Piotra Chrząstowskiego.

Jednak jak zawsze starała się żyć intensywnie. Intensywnie na ile mogła. Wstawała przed ósmą rano, zjadała w śniadanie, zakładała kapelusz, płaszcz, brała swoją starą teczkę wychodziła przed kamienicę i czekała na samochód. Nadal pracowała eksperymentalnie, chociaż z coraz większą trudnością, prowadziła wykłady z fizyki i kierowała katedrą fizyki na Sorbonie. Przygotowywała materiały do książki i publikacji. Stan zdrowia zaczynał jednak się pogarszać. Doskwierało jej permanentne zmęczenie, reumatyzm nękający ramię, bezustanne szumy w uszach, kłopoty ze wzrokiem. Już w 1920 roku w liście do siostry Bronisławy Dłuskiej pisała:

Osobiste moje kłopoty przedstawiają się tak przede wszystkim, że źle jest z moimi oczami. Oczy są bardzo osłabione i radziłam się co do nich lekarza, prawdopodobnie nie wiele można im dopomóc. Co do uszu, to dokucza mi szum prawie nieustanny, a przynajmniej bardzo częsty – nieraz bardzo silny. Bardzo mnie niepokoją te objawy, bo mi to może prace utrudnić, a może i uniemożliwić. Może być, że jest jaki związek z radem, ale niepodobna mieć o tym opinię. Tylko proszę Cię, nie mów o tym nikomu.

Prawdopodobnie przez kłopoty ze wzrokiem poślizgnęła się i upadła w laboratorium w wyniku czego złamała nadgarstek. W grudniu 1933 roku zaczęła narzekać na bóle brzucha. Szczegółowe badania wykazały, że ma duży kamień w woreczku żółciowym. Maria nie zgodziła się jednak na operację lecz zastosowała drakońską dietę. Wkrótce jednak poczuła się na tyle dobrze, że pojechała do Ireny i Fryderyka Joliot-Curie przebywających w Sabaudii. Po latach Irena wspominała:

W 1934 r. kilka miesięcy przed śmiercią matka pojechała z nami na sporty zimowe do Notre Dame de Bellecombe. Mój mąż, nasza siedmioletnia wówczas córeczka i ja jeździliśmy na nartach. Matka ślizgała się ze mną i z moją córeczką i chodziła na rakietach śnieżnych. Pamiętam, że pewnego wieczoru z niepokojem oczekiwałam jej powrotu. Wróciła już po zmroku z dalekiego spaceru do miejsca, z którego widać było Mont Blanc w zachodzącym słońcu.

Maria Skłodowska-Curie w towarzystwie Ireny, Fryderyka, Piotra Augera Georges’a Gricouroff’a i jego siostry, Notre-Dame de Bellecombe, 1934, [za:] „Korespondencja Marii Skłodowskiej-Curie z córką Ireną. 1905–1934 wybór”, PIW, Warszawa 1978.
19 lutego 1934 roku w liście do Ewy Maria pisała, że miała piękną pogodę w Notre-Dame de Bellecombe, ale nie mogła jeździć na nartach z powodu nieustannie bolącego nadgarstka. Na Wielkanoc przyjechała do Paryża Bronisława. Siostry razem spędziły wspólne pięć tygodni. Pojechały do Montpellier, aby odwiedzić Jakuba Curie. Kiedy się żegnały na dworcu nie sądziły, że widzą się po raz ostatni. 26 marca 1934 roku w liście do Ireny, Maria pisała o swojej ostatniej woli:

Sporządziłam tymczasowe oświadczenie na piśmie, mające ważność testamentu, co do grama radu, zapakowałam to razem z dokumentami z Ameryki i czerwonym atramentem napisałam na wierzchu pakiecika, co zawiera. Wszystko razem znajduje się w szafce w pokoju bawialnym, pod szufladkami zamykanymi na klucz, tam gdzie jest teczka z ważnymi listami, którą wręczył mi Fred.

Cztery dni później, Irena odpisała matce w nieco żartobliwym tonie:

Mimo dokumentu sporządzonego w odniesieniu do radu mam nadzieję, że nie będziesz się czuła zwolniona z obowiązku zachowania ostrożności i jeździła samochodem po drogach wijących się zbyt dużymi zygzakami, pod pretekstem, że przejeżdżasz przez Masyw Centralny, Pireneje lub Alpy Nadmorskie.

Rękopis „Testamentu Radowego” Marii Skłodowskiej-Curie, [za:] „Marie Curie. Une femme dans son siecle”, Paris 2017, s. 228
Maria nie zwalniała tempa pracy. Miała plany zawodowe i osobiste. 8 maja napisała do Broni, że odczuwa potrzebę posiadania domu z ogrodem i gorąco pragnę, aby ten projekt doszedł do skutku. Kosztorys udało się obniżyć, odpowiednio do moich środków materialnych, wkrótce więc będzie można kłaść fundamenty. Nie doczekała jednak budowy nowego domu.

W maju 1934 roku Maria była ostatni raz w laboratorium. Mam gorączkę, wrócę do domu powiedziała. Przechodząc przez ogród, który sama zaprojektowała i o który od lat dbała zobaczyła chorą różę. Jerzy ten krzak jest wyraźnie chory, trzeba się nim teraz zająć! […] Jerzy, proszę zaopiekować się tą różą… – poprosiła ogrodnika.

Niestety sama Maria również była już poważnie chora. Temperatura ciała była podwyższona i wciąż się utrzymywała. Miała nieustanne dreszcze. Lekarze zdiagnozowali grypę, później bronchit. Zaproponowali, aby wyjechała do sanatorium. Wraz z Ewą Maria odbyła długą, ostatnią podróż do Sancellemoz. Podczas podróży snuła plany związane z Instytutem Radowym w Paryżu i w Warszawie. Mówiła, że ostatnie odkrycie Ireny i Freda zapewne przyniesie im Nagrodę Nobla. W Sancellemoz została jeszcze raz gruntownie przebadana. Zalecono nowe terapie, zaaplikowano leki. Z nikłym uśmiechem mówiła – Może być, że się trudzimy całkiem niepotrzebnie… W końcu lekarze znaleźli prawdziwą przyczynę osłabienia Madame Curie – anemia złośliwa o przebiegu piorunującym. Ewa nigdy nie okazała słabości przy matce i nie dała poznać po sobie, że wie iż to koniec. Płakała na korytarzu. W listach do rodziny w Polsce regularnie opisywała stan zdrowia matki. 6 czerwca informowała Józefa Skłodowskiego, że jest źle, że matka cierpi na jakąś chorobę z gorączką, dreszczami i bólem głowy. Brat chciał przyjechać do siostry w kolejnym tygodniu i rozpoczął starania o paszport i bilety. Jednakże w liście z 11 czerwca Ewa prosiła, aby jednak nie przyjeżdżał. Obawiała się, że obecność rodzeństwa uzmysłowi Marii, że odchodzi. Dziesięć dni później, 21 czerwca, prosiła Józefa i Bronkę, żeby przyjechali do Marii. Dłuska wyjechała 3 lipca, Skłodowski chciał wyjechać między 10 a 15 lipca. W ostatniej niemal chwili 2 lipca do sanatorium przyjechała Irena i Fred. Zawsze opanowana i spokojna starsza córka uczonej nie miała siły by patrzeć jak odchodzi jej ukochana matka.

Ewa wspominała, że Maria Skłodowska-Curie sama sprawdzała termometr i nie było możliwości, aby ją oszukać. 3 lipca 1934 roku temperatura nagle spadła. To nie lekarstwa mi pomogły, ale te góry – ta przestrzeń – powietrze – powiedziała do Ewy. Czasami szeptała: Paragrafy… tytuły rozdziałów… Wszystkie jednakowymi czcionkami… Myślałam nad tą książką. Kilka godzin przed śmiercią próbowała resztkami sił zamieszać herbatę i patrząc na łyżeczkę i pytała – Czy to jest z radu, czy z mezotoru? Później zdoła jeszcze zaprotestować przed zrobieniem zastrzyku – Nie chcę. Chcę, żeby zostawiono mnie w spokoju. Szeptem powiedziała kilka niezrozumiałych słów. W końcu o świcie, kiedy słońce wzeszło i rozświetliło pokój, znalazło cichutką postać na łóżku i rzuciło jasne błyski na jej głowę i twarz. Po raz ostatni słońce oświetliło twarz Wielkiej Uczonej. Maria Skłodowska-Curie odeszła o godzinie czwartej rano 4 lipca 1934 roku.

Ewa napisała:

Biało ubrana, z białymi włosami, z twarzą zastygłą w wyrazie powagi i męstwa, jak twarz bojownika z odkrytym wyniosłym czołem – jest w tej chwili najwyższym symbolem piękna i szlachetności.

Jej szorstkie, stwardniałe ręce, głęboko poparzone przez rad, straciły wreszcie zwykły tick nerwowy. Leżą, sztywno wyciągnięte na prześcieradle, w straszliwym bezruchu. Ręce, które tak pracowały.

Nazajutrz, 5 lipca świat dowiedział się o śmierci Madame Curie. Oficjalny komunikat głosił: Maria Curie zmarła w Sancellemoz dnia 4 lipca r. 1934, na skutek anemii złośliwej aplastycznej o przebiegu gwałtownym, gorączkowym. Szpik kostny nie zareagował prawdopodobnie dlatego, że zaszły w nim zmiany, spowodowane długoletnim wpływem promieni.

Hołd Jej pamięci składali naukowcy, pisarze, politycy, studenci.

Zjazd fizyków w Rzymie, od lewej: Robert Millikan, Maria Skłodowska-Curie, Arthur Compton, Guglielmo Marconi, Jean Perrin i Niels Bohr, 1931, [za:] https://www.insidescience.org/file/mariecurieotherscientistsjpg
Niels Bohr w liście do Ireny napisał:

Musi dla Pani być wielkim ukojeniem myśl o radości, jaką sprawiły Pani Curie wspaniałe odkrycia, których dokonaliście Państwo w ostatnich latach. Były one ukoronowaniem wielkiego dzieła jej życia.

Maria Skłodowska-Curie i Albert Einstein nad Jeziorem Genewskim, lipiec 1924, Domena publiczna

Albert Einstein powiedział:

Miałem to szczęście, że przez dwadzieścia lat łączyły mnie z panią Curie więzy wzniosłej i niczym niezmąconej przyjaźni. Podziwiałem coraz bardziej jej wielkość jako człowieka. Jej siła, czystość charakteru, surowość wymagań wobec siebie samej, obiektywizm, nieskazitelne poglądy, wszystkie te cechy były tak wysokiego gatunku, że rzadko spotyka się je razem, połączone u jednej osoby. Stale uważała, że jest w służbie społeczeństwa, a jej wyjątkowa skromność nie dopuszczała pochlebstw.

 

Prezydent RP Ignacy Mościcki sadzi pamiątkowe drzewo w ogrodzie Instytutu Radowego w Warszawie, 29 maja 1932, Narodowe Archiwum Cyfrowe sygn. 1–N–818–5

Prezydent RP Ignacy Mościcki w kondolencjach wysłanych Irenie Joliot-Curie napisał:

Polska traci w ś.p. Pani Curie-Skłodowskiej nie tylko uczoną, która imię swej ojczyzny wsławiła w całym świecie, ale i wielką obywatelkę, zawsze przez całe życie czujnie stojącą na straży interesów swojego narodu.

André Broca – jeden z studentów Marii – napisał: Myśl o tym, że wejdę do jej gabinetu i nie znajdę jej za stertą starannie poukładanych papierów, sprawiła, że płakałem jak dziecko. Inny student dodał: Jak wyobrazić sobie Instytut bez niej? I tę słynną klatkę schodową, gdzie tak rozmawiała z nami oparta o poręcz, z nieco pochylonym szerokim czołem i rękoma w ustawicznym ruchu. To w tym Instytucie […] pani Curie pierwszy raz odezwała się do mnie, z takim ciepłem i zrozumieniem […] Wydaje mi się, że nadal ją widzę w piwnicy, kiedy rozważa zalety kalorymetru; […] albo w czasie ostatniej Wigilii w laboratorium […], kiedy tak dużo rozmawialiśmy o przyszłości fizyki teoretycznej we Francji. Im więcej wspomnień ożywa w mej pamięci […], tym trudniej jest mi wyobrazić sobie bez niej ten budynek, w którym nadwerężała swe siły i zdrowie. I wydaje mi się, że kamienie i cegły się rozpadną.

Grób rodziny Curie na cmentarzu w Sceaux pod Paryżem, b.d., [za:] E. Curie, „Maria Curie”, Wydawnictwo J. Przeworskiego, Warszawa 1938.
W piątek, 6 lipca 1934 roku, w gronie najbliższej rodziny i przyjaciół trumnę z ciałem Marii Skłodowskiej-Curie złożono w grobie na cmentarzu w Sceaux. Spoczęła obok Piotra Curie. Podczas ceremonii pogrzebowej nie przemawiano. Pochowano Ją tak jak żyła – cicho i skromnie. Bronia i Józef nie uzgadniając tego z sobą przywieźli z Polski garść ziemi, którą rzucili na trumnę siostry.

Maria Skłodowska-Curie na tarasie Instytutu Radowego w Paryżu, 1923, [za:] S. Quinn, „Życie Marii Curie”, Prószyński i S-ka., Warszawa 1997.
Pomnik Marii Skłodowskiej-Curie na Skarpie Warszawskiej, 2019, fot. Ewelina Wajs-Baryła

 

Róża posadzona przez Marię Skłodowską-Curie po dziś dzień rośnie przy Instytucie Radowym w Paryżu pod balkonem Laboratorium Curie…

Tomasz Pospieszny

Florence Nigthingale — Dama z lampą

/   Tomasz Pospieszny   /

Zaktualizowano 12 maja 2022 r.

 

Trudno sobie wyobrazić szpitale bez pielęgniarek. Personelu stojącego zazwyczaj za lekarzem, a mającego ogromną wiedzę, doświadczenie i oddanie względem pacjenta. To one wykonują zastrzyki, podają leki, zmieniają kroplówki. Znają imiona pacjentów, słuchając ich opowiadań często też wiedzą czym się zajmowali, kto ich odwiedza. Pielęgniarki były i są niezwykle ważne w przywracaniu do zdrowia i życia tych, którzy z całkowitą ufnością oddają się ich opiece. Trudno sobie wyobrazić, że współczesne pielęgniarstwo stworzyła właściwie jedna kobieta – Florence Nightingle. Oto jej niezwykła historia, która w dobie epidemii staje się żywą i wciąż aktualną.

 

Kopia akwareli Wiliama White’a z 1836 roku przedstawiającej siostry Florence i Parthenope Nightingale, National Gallery of Portraits, [za:] U.S. National Library of Medicine
Florence Nightingale przyszła na świat 12 maja 1820 roku w dobrze sytuowanej angielskiej rodzinie we Florencji w Toskanii we Włoszech. Rodzice nadali jej imię właśnie na cześć miasta, w którym się urodziła. Zresztą był to chyba niepisany zwyczaj, bowiem jej starsza o rok siostra Frances Parthenope otrzymała imię dla uczczenia Parthenope, greckiej osady będącej dziś częścią Neapolu. Obie dziewczynki były owocem długiej podróży poślubnej rodziców po Europie. Rok po urodzeniu Florence rodzina powróciła do Anglii. Można śmiało stwierdzić, że jej pochodzenie nie zapowiadało, a nawet powodowało nieprawdopodobnym, żeby w przyszłości miała oddać swoje życie ubogim i cierpiącym.

Florence Nightingale, fot. J. C. Schaarwachter, Wellcome Library, London, CC BY 4.0

Jej rodzicami byli Frances („Fanny”) Nightingale z domu Smith i William Edward Nightingale, urodzony jako William Edward Shore. Jego matka, Mary z domu Evans, była siostrzenicą Petera Nightingaleʼa, dzięki czemu William odziedziczył posiadłość w Lea Hurst i przyjął nazwisko oraz herb Nightingale. Rodzice nigdy nie żałowali czasu i pieniędzy na edukację córek. Warto zauważyć, że William sam kształcił córki. Uczył je języków obcych, historii i matematyki. Latem, które cała rodzina spędzała w Londynie dziewczynki często towarzyszyły rodzicom podczas najważniejszych wydarzeń towarzyskich. Jednak to, co Florence pociągało najbardziej, była nauka – zwłaszcza matematyka. Nie powinno też dziwić, że po ojcu odziedziczyła poglądy liberalno-humanitarne.

 

Lata 1837–1839 były bardzo intensywne w życiu rodziny Florence. Cała rodzina udała się w podróż po Europie. Był to wówczas bardzo popularny element kształcenia kulturowego młodych dam. Florence ta podróż otworzyła umysł i serce na potrzeby innych. Odwiedzając różne kraje notowała w swoim dzienniku statystyki dotyczące populacji czy liczby szpitali. To właśnie wtedy zdała sobie sprawę, że chce poświęcić życie pielęgniarstwu. Jako doskonała partia – bogata dziewczyna z wyższej sfery i bywalczyni balów – szybko znalazła się w kręgu zainteresowań młodych kawalerów. Zdała sobie jednak sprawę, że życie nie powinno być zwieńczone zamążpójściem i ciągłym bywaniem na salonach. W wieku siedemnastu lat poczuła silne pragnienie poświęcenia życia służbie innym. W pamiętniku napisała: Przemówił do mnie Bóg i powołał do swojej służby. Kiedy powiedziała o swoim powołaniu rodzicom wprawiła ich nie tyle w osłupienie, co w przerażenie! Szczególnie źle tą informację zniosły jej matka i siostra, które nie mogły pojąć, jak Florence mogła się zbuntować przeciwko przewidywanej dla kobiety roli żony i matki.

 

W XIX wieku pielęgniarstwem trudniły się głównie zakonnice, które raczej niosły ukojenie duchowe. Poza tym do tego zawodu rekrutowały się kobiety z nizin społecznych, najczęściej prostytutki – bez przygotowania zawodowego i z problemem alkoholowym. Równie często skazanym zamieniano karę więzienia na pracę na oddziałach szpitalnych. Szpitale zaś były obskurne, brudne i stanowiły raczej poczekalnię na cmentarz. Rodzina Florence uważała, że ich córka w żadnym razie nie powinna wykonywać tak haniebnego zajęcia. Zabroniono jej publicznie mówić o niedorzecznych pomysłach.

 

Florence ok. 1854 roku, fot. Kilburn, domena publiczna

 

Florence była wytrwała i uparcie trwała przy swoim – ciągle czytała publikacje na temat zdrowia i szpitali. W końcu w 1850 roku udało jej się osiągnąć zgodę matki na czteromiesięcznego kursu pielęgniarskiego w Instytucie Diakonis Protestanckich w Kaiserswerth nad Renem, prowadzonym przez pastora Teodora Fliednera. To właśnie w Niemczech nauczyła się podstaw pielęgniarstwa oraz obserwacji pacjenta i zasad dobrej organizacji szpitala. Swe umiejętności doskonaliła później również w szpitalach paryskich. Wreszcie w 1852 roku mogła sama decydować o sobie. Zrezygnowała z małżeństwa z ukochanym mężczyzną (według biografów ostatni list od niego nosiła przy sobie do końca życia) i została przełożoną zakładu dla chorych kobiet z towarzystwa na Harley Street w Londynie. Ojciec dał jej roczny stały dochód w wysokości 500 funtów, co pozwoliło Florence na prowadzenie wygodnego życia i kontynuowanie kariery. Nie trzeba było długo czekać, aby dała się poznać jako doskonała organizatorka i administratorka. W pierwszej kolejności poprawiła opiekę nad chorymi. Później zajęła się podnoszeniem wydajność szpitala i poprawiła warunki pracy zarówno pielęgniarek jak i lekarzy. Poleciła między innymi zamontować dzwonki przy łóżkach chorych, aby mogli w razie potrzeby wezwać pielęgniarkę. Dzięki jej staraniom zaprojektowano i zainstalowano windy ręczne, dzięki którym szybko i sprawnie dostarczano posiłki na oddziały. Wreszcie to właśnie Florence Nightingle zawdzięczamy doprowadzenie do szpitali instalacji wodnokanalizacyjnej. Szkoliła także pielęgniarki, wciąż dbała o ich wysokie morale, dzięki czemu zawód pielęgniarki stał się synonimem kobiety o nieposzlakowanej reputacji. Jej wielkim marzeniem było stworzenie i otwarcie szkoły dla pielęgniarek. Niestety na przeszkodzie stanął konflikt polityczny – wojna krymska.

 

Florence Nightingale w szpitalu polowym na Krymie, ilustracja [za:] https://www.historyextra.com/period/victorian/project-nightingale-who-was-florence-influence-legacy-big-data/

Armia brytyjska z ogromnym entuzjazmem wyruszyła na Krym. Nikt nie nie zdawał sobie sprawy, że była nie przygotowana do walki z potęgą Rosji. W szpitalach polowych żołnierze przebywali w okropnych warunkach: spali na ziemi na sianie pośród szczurów, brakowało bandaży, leków, środków znieczulających. Szybko wybuchły epidemie cholery, tyfusu i czerwonki, które zbierały ogromne żniwo. Brakowało także personelu medycznego. Śmiertelność wynosiła 42%. Wpływowy przyjaciel Florence, sekretarz w Ministerstwie Wojny, Sidney Herbert zwrócił się do niej z prośbą o zorganizowanie grupy wykwalifikowanych pielęgniarek. Na odzew nie musiał długo czekać. Za własne pieniądze zakupiła potrzebne leki i środki opatrunkowe i 21 października 1854 roku wraz z 38 pielęgniarkami, które sama przeszkoliła wyjechała w samo centrum piekła. W przepełnionym szpitalu w Scutari zastała chaos organizacyjny, brud oraz epidemię tyfusu, dyzenterii oraz szkorbut. Florence potrafiła pracować po dwadzieścia godzin bez przerwy. Często samotnie w nocnej służbie, chodziła z lampą naftową w ręku od jednego żołnierza do drugiego. Podawała im leki i posiłek. Trzymała za rękę i pocieszała. Uważała, że rany fizyczne goją się szybciej, gdy pacjenci mają zapewniony komfort psychiczny. Był to początek legendy „Damy z Lampą” lub „Anioła z Krymuˮ jak o niej mówiono. W ciągu zaledwie dwóch miesięcy Nightingale poprawiła warunki sanitarne, zorganizowała kuchnię oraz pralnię szpitalną. Codziennie osobiście obchodziła każdą salę. Na efekty jej pracy nie trzeba było długo czekać – śmiertelność zmniejszyła się do 2% (chociaż podobno był to chwyt propagandowy). Nightingale zwracała uwagę nie tylko na potrzeby sanitarne i medyczne, ale również psychologiczne. Pielęgniarki podtrzymywały na duchu żołnierzy, pomagały im w pisaniu listów do bliskich, organizowały zajęcia rekreacyjne. Sama Florence zapadła prawie na wszystkie choroby jakie niosła wojna. W wyniku jednej z nich straciła wszystkie włosy.

Florence Nightingale, fot. Goodman, Wellcome Library, London, CC BY 4.0

 

W 1856 roku powróciła do Anglii jako bohaterka narodowa. Jeden z jej biografów napisał:

Na Krymie rangę bohaterów uzyskały dwie postacie – żołnierz i pielęgniarka. W obu wypadkach dokonało się przewartościowanie w ich publicznej ocenie i w obu wypadkach przewartościowanie to miało miejsce za sprawą panny Nightingale… To ona nauczyła oficerów i urzędników traktować prostych żołnierzy po chrześcijańsku. Już nigdy pielęgniarka nie będzie kojarzyć się nam z obrazem podpitej, rozpustnej wiedźmy… W samym środku wojennego brudu, męki i porażek panna Nightingale dokonała prawdziwej rewolucji.

 

Florence Nightingale and Sir Harry Verney z grupą uczennic pielęgniarstwa w Claydon House, Wellcome Library, London, CC BY 4.0

 

Florence Nightingale zdawała sobie sprawę, że potrzebne były całościowe zmiany w metodach dokształcenia pielęgniarek oraz uzmysłowienie brytyjskiemu społeczeństwu jak wygląda wojna. Z pomocą przyjaciół z „The Times” opisała jak brytyjski rząd i armia traktują swoich żołnierzy. Po powrocie do Anglii występowała ostro przeciw dowództwu wojskowemu. Stoję przy ołtarzu zabitych ludzi i, póki żyję, będę za nich walczyć – napisała w 1856 roku. Mając poparcie premiera i królowej Wiktorii, oskarżała wysokich rangą sekretarzy Ministerstwa Wojny o fatalne przygotowanie wyprawy wojennej. Zaproponowała wiele daleko idących zmian, jednak ministerstwo większość z nich odrzuciło. Wdzięczność i pamięć okazywali jej żołnierze, którzy przy wsparciu społeczeństwa, zebrali fundusze, dzięki którym w 1860 roku Florence mogła założyć pierwszą świecką szkołę pielęgniarek The Nightingale Training School przy Szpitalu św. Tomasza w Londynie. Wkrótce podobne placówki otwarto w USA, Kanadzie i Australii. Dzięki jej staraniom kandydatki do zawodu pielęgniarki mieszkały w szkolnych internatach. Swoją olbrzymią wiedzą dzieliła się w licznych podręcznikach, publikacjach naukowych i wystąpieniach. Napisała pierwszy podręcznik pielęgniarstwa w historii: Uwagi o pielęgniarstwie. Mało kto dziś pamięta, że matka współczesnego pielęgniarstwa była także zafascynowana matematyką i analizą statystyczną. Została pierwszą członkinią Królewskiego Towarzystwa Statystycznego. Wykorzystywała metody statystyczne między innymi do analizy przyczyn zgonów żołnierzy podczas wojny krymskiej.

 

Florence Nightingale, fot. Millbourn, Wellcome Library, London, CC BY 4.0
Florence Nightingale, fot. Millbourn, Wellcome Library, London, CC BY 4.0

 

Z czasem zaczęła coraz bardziej niedomagać. W Turcji nabawiła się najprawdopodobniej zakaźnej, przewlekłej choroby bakteryjnej – brucelozy. Nigdy w pełni nie wyzdrowiała. Z czasem zaczynała tracić wzrok, miała też poważne kłopoty z poruszaniem się, sporo przybrała na wadze. W 1896 roku na stałe pozostawała już w łóżku. Florence Nightingale zmarła spokojnie we śnie w swoim pokoju przy 10 South Street w Londynie, 13 sierpnia 1910 roku, w wieku dziewięćdziesięciu lat. Została pochowana na cmentarzu w kościele św. Małgorzaty w East Wellow, Hampshire.

Pomnik Florence Nightingale we Florencji, 2017 fot. Manuelarosi, domena publiczna

W 1913 roku w krużganku bazyliki Santa Croce we Florencji we Włoszech odsłonięto pomnik tej, która uczyniła z pielęgniarstwa zawód szlachetny i wzniosły. Zawód, który dziś podziwiamy i za który dziękujemy.

Zalecana literatura:

[1] F. Nightingale, Notes on Nursing: Commemorative Edition, Wolters Kluwer, London 2019.

[2] C. Reef, Florence Nightingale: The Courageous Life of the Legendary Nurse, Clarion Books, New York 2016.

[3] M. Bostridge, Florence Nightingale: The Making of an Icon, Farrar, Straus and Giroux, New York 2008.

[4] L. McDonald, Florence Nightingale At First Hand, Continuum, London 2010.

[5] F. Nightingale, Uwagi o pielęgniarstwie. Profesjonalne towarzyszenie choremu, Esteri Edra Urban & Partner, Wrocław 2011.

O pierwiastkach chemicznych odkrytych przez kobiety

/    Tomasz Pospieszny   /

Zaktualizowano 28 sierpnia 2021 r.

W układzie okresowym pierwiastków chemicznych jest dzisiaj 118 pierwiastków (sierpień 2021 roku). Spośród tych podstawowych cegiełek Wszechświata tylko kilka zostało odkrytych przez kobiety. Jednak historia tych odkryć jest nader fascynująca.

Maria Skłodowskiej-Curie i polon oraz rad (1898)

Pierwszą kobietą, której nazwisko na trwałe wpisało się w historię odkryć pierwiastków chemicznych jest Maria Skłodowska-Curie. Badając fascynujące promieniowanie uranu odkryte przez Becquerela stwierdziła, że niektóre minerały zawierające ten pierwiastek np. blenda smolista, chalkolit czy autunit wysyłają znacznie silniejsze promieniowanie niż wynikało to z zawartości w ich składzie uranu. Uczona dokonała fenomelnego zabiegu – przeprowadziła syntezę chalkolitu i stwierdziła, że wykazuje on normalną promieniotwórczość, czyli taką jakiej należy się spodziewać ze względu na zawartość uranu w próbce. W związku z powyższym w naturalnym minerale musiała istnieć domieszka nowego, nieznanego nauce pierwiastka. Maria zanotowała: Obie rudy uranu: blenda smolista (tlenek uranu) i chalkolit (fosfat miedzi i uranylu) są o wiele bardziej aktywne niż sam uran. Fakt ów jest godny uwagi i pozwala sądzić, że te minerały mogą zawierać pierwiastek o wiele bardziej aktywny niż uran. Niestety Maria i Piotr nie byli w stanie wyodrębnić potencjalnych pierwiastków chemicznych znanymi wówczas metodami. Ich córka Irena Joliot-Curie wyjaśniała po latach:

Irena Joliot-Curie, b.d., Musée Curie, col. ACJC

Ze względu na to, że jedyną znaną właściwością hipotetycznego ciała [nowego pierwiastka] była jego promieniotwórczość, Piotr i Maria Curie wprowadzili nową metodę pracy, która stała się podstawową w całej radiochemii. Przeprowadzali oni chemiczne rozdzielanie różnych ciał zawartych w minerale i mierzyli promieniotwórczość każdej frakcji. Wkrótce stwierdzili, że promieniotwórczość koncentruje się z jednej strony w siarczkach strącanych z kwaśnych roztworów, z drugiej – w pierwiastkach ziem alkalicznych i niebawem przekonali się o istnieniu dwóch nowych pierwiastków promieniotwórczych: polonu i radu […], wyższych homologów telluru i baru.

Upór Madame Curie doprowadził ją do odkrycia, które zrewolucjonizowała spojrzenie na teorię materii. 18 lipca 1898 roku małżonkowie Curie ogłosili, że odkryli nowy pierwiastek chemiczny, który nazywali polonem (symbol Po, liczba atomowa 84). Donosili:

Przypuszczamy, że ciało, które wyodrębniliśmy ze smółki uranowej, zawiera nieznany jeszcze metal, zbliżony do bizmutu ze swoich właściwości chemicznych. Jeśli istnienie tego metalu się potwierdzi, proponujemy dla niego nazwę polon – od imienia ojczyzny jednego z nas.

Maria i Piotr Curie w laboratorium przy ulicy Cuvier, 1904, Musée Curie, col. ACJC

Jednak na tym nie koniec. W połowie listopada przeprowadzili eksperymenty, dzięki którym otrzymali bardzo promieniotwórczy produkt. Wraz z Gustawem Bémontem otrzymali próbkę zawierającą bar, która była dziewięćset razy bardziej promieniotwórcza niż uran. 26 grudnia 1898 roku ogłosili, że odkryli drugi pierwiastek chemiczny, który nazwali radem (symbol Ra, liczba atomowa 88). W pracy pt. „O nowej silnie radioaktywnej substancji zawartej w blendzie smolistej” napisali:

Wyżej wyszczególnione fakty każą nam przypuszczać, że w tym nowym związku promieniotwórczym znajduje się nowy pierwiastek, który proponujemy nazwać radem. Nowy ten związek zawiera na pewno znaczną ilość baru, mimo to jednak jest on silnie promieniotwórczy. Promieniotwórczość radu musi być, zatem ogromna.

Tak zrodziła się legenda godna najwybitniejszej uczonej.

 

Harriet Brooks i radon (1901)

Harriet Brooks, 1898, McCord Museum, Montreal, Quebec

Ernest Rutherford zauważył, że związki toru nieustannie emitują radioaktywny gaz, który zachowuje właściwości promieniotwórcze przez kilka minut. Nazwał to zjawisko emanacją gazu, a później emanacją torową (ThEm). Uczony pisał: promieniowanie z tlenku toru nie było stałe, ale zmieniało się w najbardziej kapryśny sposób, podczas gdy wszystkie związki uranu emitują promieniowanie w sposób niezwykle stały. Pod kierunkiem Rutherforda ( a właściwie na jego prośbę) Harriet Brooks przeprowadziła serię eksperymentów mających na celu określenie charakteru radioaktywnych emisji toru. Wykazała także, że emanację wysyła również rad. Jej prace dowiodły, że emanacja była gazem o specyficznych właściwościach fizycznych, takich jak na przykład mniejsza masa cząsteczkowa niż masa radu. Brooks wspólnie z Rutherfordem zmierzyła szybkość dyfuzji cząsteczek gazu w powietrza. W 1901 roku uczeni ogłosili pracę pt. „Nowy gaz z raduˮ (Trans. R. Soc. Can., 7, str. 21–25), w której pisali: termin „emanacjaˮ został zastosowany do substancji emitowanej w ten sposób, ponieważ w tamtym czasie nie było dowodów, czy emisja materii była parą substancji, radioaktywnym gazem (nasze podkreślenie) czyli cząstkami materii, z których każda zawiera dużą liczbę cząsteczek. […] Musimy zatem stwierdzić, że emanacja jest w rzeczywistości ciężkimi radioaktywnymi oparami lub gazem. […] specjalne eksperymenty pokazują, że szybko się rozprasza, a także ma charakter gazowy.

Ernest Rutherford, 1908, domena publiczna

Nie ulega wątpliwości, że w 1901 roku Harriet Brooks i Ernest Rutherford udowodnili, że emanacja (dziś zwana radonem, pierwiastek 86) jest radioaktywnym gazem. Należy zauważyć, że Rutherford i Brooks […] opisali swoje wysiłki, aby określić naturę emanacji. Nie można było wyizolować znacznej objętości gazu ani zidentyfikować żadnych nowych linii widmowych. W rezultacie doszli do wniosku, że objętość jakiegokolwiek gazu była niewielka. Wykorzystali urządzenie do dyfuzji gazów jako środek nie tylko potwierdzający, że emanacja jest gazem, ale także w celu uzyskania przybliżonej wartości jego masy cząsteczkowej. Podali (błędnie), że gaz miał masę atomową między 40 a 100. Niemniej jednak fakt, że wartość była znacznie mniejsza niż wartość toru, przekonał ich, że emanacja była wcześniej nieznanym gazem. Nie twierdzili wówczas, że jest to nowy pierwiastek, choć wydaje się, że tę implikację pozostawili czytelnikowi. Jak podkreślają małżonkowie Reyner-Canhamowie (badacze historii odkrycia radonu, biografowie Brooks) Rutherford został przekonany o gazowej naturze emanacji w 1901 roku w wyniku badań przeprowadzonych przez jego pierwszą studentkę, Harriet Brooks.

 

Lise Meitner i protaktyn (1918)

W 1899 roku André-Louis Debierne odkrył pierwiastek, który nazwał aktynem (89Ac). Był to niezwykle tajemniczy pierwiastek, bowiem charakteryzował się dość krótkim czasem połowicznego zaniku, wynoszący zaledwie trzynaście i pół lat. Powinien zatem już dawno zniknąć z powierzchni Ziemi. Ponieważ jednak wciąż zdradza swoją obecność musiał powstawać w wyniku przemiany promieniotwórczej z innego nieznanego dotąd pierwiastka chemicznego. Pierwiastek ten powinien znajdować się w układzie okresowym pomiędzy torem i uranem (90Th  9192U).

Lise Meitner i Otto Hahn w laboratorium, Beriln 1912, domena publiczna

W 1900 roku William Crookes wyizolował nowy pierwiastek jako materiał o wysokim stopniu radioaktywności z uranu. Nie potrafił jednak scharakteryzować go jako nowego pierwiastka chemicznego. Nadał mu nazwę uran X (UX). Nie odniósł on sukcesu bowiem rozpuszczał azotan uranu w eterze, zaś pozostałość roztworu wodnego zawierała w większości mieszaninę dwóch pierwiastków: toru-234 i szukanego protaktynu-234.

W 1909 roku Frederick Soddy z 50 kg uwodnionego azotanu(V) uranylowego otrzymał osad, który wykazywał radioaktywność i emitował cząstki alfa. Według dedukcji uczonego z osadu powstawał w niewielkiej ilości produkt, którego ilość stale i regularnie rosła. Soddy zidentyfikował go jako aktyn (jego obserwacje trwały cztery lata!). Jednak nie potrafił on wyizolować szukanego pierwiastka i podać jego właściwości fizycznych i chemicznych. Warto zauważyć, że cztery lata później Soddy (i niezależnie od niego Polak Kazimierz Fajans) odkrył prawo przesunięć, na podstawie, którego stało się jasne, że pierwiastkiem, z którego powstawał obserwowany przez niego aktyn był poszukiwany pierwiastek 91.

Kazimierz Fajans, 1931, Narodowe Archiwum Cyfrowe, sygn. 1–Z–830

W 1913 roku wspomniany Kazimierz Fajans zaczął prace nad uranem X. Wraz ze swoim doktorantem Osvaldem H. Göhringiem doszedł do wniosku, że jest to mieszanina pierwiastków. Nazwał je uranem X1 i uranem X2. Pierwszy z nich zidentyfikowali jako izotop toru-234, natomiast drugi izotop wchodził w skład szeregu uranowo-radowego i powstaje w wyniku przemiany beta z zidentyfikowanego izotopu toru-234. W związku z tym uran X2 powinien znajdować się dokładnie za torem, a przed uranem, czyli powinien być nowym pierwiastkiem 91. Za pomocą metod analitycznych Fajansowi udało się rozdzielić i wyizolować oba izotopy. Pierwiastek 91 charakteryzował się krótkim czasem połowicznego zaniku, wynoszącym około 1,1 minuty, dlatego uczeni nazwali go brewium (ang. Brevium) od łacińskiej nazwy brevis czyli krótki.

Otto Hahn, 1933, Archiv der Max-Planck_Gesellschaft, Berlin-Dahlem

Wszystkie te zagadki zaczęły w szczególności interesować Lise Meitner, która wspólnie z Ottonem Hahnem rozpoczęła poszukiwania pierwiastka 91. Nadała mu nawet nazwę – Abrakadabra. Meitner i Hahn udoskonalili technikę rozdziału oraz założyli, że nowy pierwiastek powinien mieć właściwości zbliżone do tantalu (pierwiastek 73). Zaczęli – wzorem Marii Skłodowskiej-Curie – badać pechblendę, w której pokładali dużą nadzieję. Hahn i Meitner odkryli nową metodę analityczną umożliwiającą oddzielanie wyizolowanych z pechblendy pierwiastków należących do grupy tantalu z minimalnymi ilościami innych substancji promieniotwórczych.

Lise Meitner, 1912, Archiv der Max-Planck-Gesellschaft, Berlin-Dahlem

Kiedy wybuchła pierwsza wojna światowa Hahn pojechał na front, zaś główne prace nad pierwiastkiem Abrakadabra wykonywała Lise Meitner. W listach do Hahna donosiła o postępach pracy. Pisała między innymi, że otrzymała wystarczającą ilość materiału do badań, że zamówiła specjalne platynowe naczynia odporne na działanie fluorowodoru, że jedna z próbek wykazuje znaczną aktywność, której nie można przypisać żadnemu znanemu pierwiastkowi. Praca, którą wykonała Lise Meitner polegała na izolacji oraz zbadaniu właściwości fizycznych i chemicznych nowego pierwiastka chemicznego, a także wykazaniu, że jest on pierwiastkiem macierzystym aktynu. Uczona długo i bardzo skrupulatnie mierzyła wysyłane promieniowanie przez protaktyn. Na podstawie pomiarów doszła do wniosku, że w wyniku przemiany alfa nowy pierwiastek przekształca się w izotop aktynu. Po żmudnych i bardzo trudnych eksperymentach chemicznych Meitner 19 czerwca 1917 roku napisała do Hahna: Mam dobre wiadomości dotyczące naszej pracy. Preparat nr 9 naprawdę wydaje się istotny, aktywność alfa jest najwidoczniej już stała. Myślę, że mamy tę substancję w ręku. 17 stycznia 1918 roku donosiła: […] aktywność [pierwiastka] jest bardzo słaba, ale można ją zmierzyć z całkowitą pewnością i może być zweryfikowana przez prędkość zaniku… W każdym razie teraz możemy myśleć o bardzo szybkiej publikacji. 16 marca 1918 roku w prestiżowym niemieckim czasopiśmie naukowym, Physikalische Zeitschrift, Lise Meitner i Otto Hahn przedstawili artykuł pt. Macierzysta substancja aktynu, nowy pierwiastek radioaktywny o długim okresie półtrwania. Napisali między innymi: Przypuszczenie, że pechblenda była odpowiednim materiałem wyjściowym okazało się w pełni uzasadnione. Udało nam się odkryć nowy pierwiastek radioaktywny, wykazując jednocześnie, że jest to substancja macierzysta aktynu. Dlatego też proponujemy dla niego nazwę protaktyn. Później nazwę zmienili na protaktyn. Chociaż nie od razu była ona oczywista.

Stefan Meyer, b.d., Archiv der Uniwersitat Wien

Stefan Meyer w liście do Lise pisał: Z Twojego listu wynikają strasznie trudne pytania o protaktyn. Wolałbym nazwy Lisonium, Lisottonium, etc. W związku z tym proponuję symbol Lo, ale niestety one się nie nadają, jeśli ktoś pragnie ogólnej akceptacji… Chociaż mimo iż nadal wolę Lisotto, to wiele bardziej znaczące jest, że został odkryty Pa lub Pn, niż pojawiające się najpiękniejszej nazwy. Otto Hahn wspominał: Z powodu wybuchu wojny nie znaliśmy publikacji Soddy’ego i J. A. Cranstona, która ukazała się w tym samym czasie co nasza i donosiła o substancji macierzystej aktynu. Soddy i Cranston próbowali otrzymać tą substancję z pechblendy poprzez sublimację. Preparaty otrzymywali w wyniku zwiększenia ilości emanacji aktynowej, wykazując wzrastające stężenie aktynu. Przy pewnych założeniach, Soddy i Cranston wyliczyli w przybliżeniu czas półtrwania dla aktynu na 3500 lat. […] Nie mogli jednak określić żadnych informacji o charakterystycznych właściwościach nowej substancji. […] Oryginalnymi odkrywcami pierwiastka byli Fajans i Göhring, dlatego mieli prawo do nadania mu nazwy brewium, ze względu na krótki czas półtrwania. Ale Międzynarodowa Komisja Atomowa nie mogła stosować tej nazwy dla pierwiastka, który my odkryliśmy, ponieważ miał on czas półtrwania wielu tysięcy lat. W związku z tym, w pełni uzasadnione okazało się nazwanie długowiecznego izotopu brewium protaktynem (Pa).

Lise Meitner w laboratorium, Berlin, 1912, Archiv der Max-Planck-Gesellschaft, Berlin-Dahlem

Po długich i trudnych dyskusjach z Fajansem ustalono, że nowy pierwiastek będzie nazywał się protaktyn. A dziś, chociaż doskonale wiadomo, że całą pracę wykonała Lise Meitner, tylko dzięki jej uprzejmości i lojalności wraz z nią za odkrywcę pierwiastka 91 uważa się Ottona Hahna.

 

Ida Tacke-Noddack oraz mazur i ren (1925/1926)

György von Hevesy, b.d., domena publiczna
Dirk Coster, b.d., domena publiczna

W 1913 roku brytyjski uczony Henry Moseley przeprowadził systematyczne badania widma promieniowania rentgenowskiego emitowanego przez uprzednio wzbudzone pierwiastki chemiczne. W oparciu o otrzymane wyniki przewidział istnienie brakujących w układzie okresowym pierwiastków o liczbach atomowych 42, 43, 72 i 75. Dzięki jego badaniom Holender Dirk Coster oraz Węgier György von Hevesy pracujący w instytucie Bohra w Kopenhadze odkryli hafn (Hf, liczba atomowa72).

 

Ida i Walter Noddackowie w laboratorium Physikalisch-Technische Reichsamstalt, Berlin, lata dwudzieste XX wieku, Stadtarchiv Wesel

Ida Tacke-Noddack i jej mąż Walter skupili się na pierwiastkach chemicznych o numerach 43 i 75. Szczególnie ciekawym pierwiastkiem był pierwiastek 43. Na przestrzeni lat wielokrotnie donoszono o jego odkryciu i proponowano różne nazwy: w 1818 roku Polinium (gr. szary), w 1844 roku Pelopium (na cześć Pelopsa syna Tantala), w 1846 roku Ilmenium (od gór Ilmensky), w 1877 roku Davyum (na cześć wybitnego chemika Humphrey’a Davy’ego), w 1896 roku lucium (łac. lux, świato) czy w 1908 roku nipponium (jap. Japonia). Ida przystąpiła do pracy analizując dostępną literaturę naukową. Wspominała – Od wiosny 1923 r. spędziłam dziesięć miesięcy, od wczesnego rana do późnej nocy w Państwowej Bibliotece w Berlinie przeszukując prawie sto lat literatury dotyczącej chemii nieorganicznej. Niemieckie małżeństwo uczonych zaczęło badać rudy manganu i platyny. Ida i Walter najpierw mozolnie rozpuszczali, następnie wytrącali, ekstrahowali i zatężali roztwory zawierające nowe pierwiastki. Później wytrącali je w postaci osadów (siarczków), które redukowali gazowym wodorem, następnie ogrzewali w tlenie otrzymując sublimaty bogate w ren, ale nie mazur. Przy udziale Ottona Berga zastosowali analizę opartą na spektroskopii rentgenowskiej. Otrzymane wyniki wskazywały na obecność obu pierwiastków 43 i 75 w badanych rudach. 11 czerwca 1925 roku Walther Nernst przedstawił wyniki pracy w Pruskiej Akademii Nauk. Komunikat donosił o odkryciu w niobicie i tantalicie nowych pierwiastków 43 i 75, których ilości były rzędu 10–6 do 10–7 grama. Pierwiastek 43 uczeni nazwali Masurium (mazur, symbol Ma) dla uczczenia Mazur ojczystego kraju przodków W. Noddacka, zaś pierwiastek 75 Rhenium (ren, symbol Re) od rzeki Ren (łac. Rhenus) w Nadrenii miejsca urodzenia I. Tacke.

Ida Noddack, b.d., Stadtarchiv Wesel

Warto zauważyć, że równolegle z odkryciem Idy i Waltera nowy pierwiastek znaleźli Anglicy i Czesi. Podczas, gdy ci pierwsi uznali odkrycie Niemców, Czesi byli uparci i zaproponowali dla pierwiastka 75 nazwę pragium (na cześć Pragi). Musieli jednak w końcu ulec, gdyż Ida wysłała im swoje próbki, w których potwierdzono obecność pierwiastka Noddacków. W 1926 roku Ida i Walter wydzielili 2 miligramy czystego renu. Roku później Ida wydzieliła 120 miligramów tego metalu z molibdenitu, a w1928 roku z 660 kg molibdenitu gram renu. Noddackowie określili właściwości pierwiastka i zbadali jego związki. Nie zdołali jednak wydzielić czystego mazuru, ani – co gorsze –odtworzyć jego widma. Ernest O. Lawrence nazwał prawa Noddacków do odkrycia mazuru widocznymi urojeniami i dodawał, że najwyraźniej sobie ten fakt wmówili. Jednakże mazur figurował jako pierwiastek chemiczny w tablicy Mendelejewa i podręcznikach do chemii aż do 1949 roku, kiedy to w Amsterdamie podczas ustaleń konferencji Międzynarodowej Unii Chemii Czystej i Stosowanej (IUPAC) skreślono go z listy pierwiastków. W 1937 roku Carlo Perrier i Emilio Segrè otrzymali pierwiastek 43 w wyniku reakcji syntezy jądrowej, poprzez bombardowanie metalicznego molibdenu (pierwiastek 42) deuteronami (izotopami wodoru) lub neutronami. Nazwali go technetem (symbol Tc, z gr. technetos – sztuczny). W 1967 roku Segrè twierdził, że Noddackowie w kwestii mazuru byli zwyczajnie nieuczciwi.

Ida Noddack w laboratorium, b.d., Stadtarchiv Wesel

Historyk nauki William H. Brock wyjaśnił konkretnie, dlaczego Ida i Walter powinni zostać uznanymi odkrywcami mazuru. W książce Historia chemii napisał:

Ren został łatwo uznany i niezależnie odkryty w tym samym roku przez innych badaczy, natomiast odkrycie mazuru okazało się wątpliwe. Małżonkowie Noddack zdołali wydzielić miligramowe próbki renu z setek kilogramów rud, nie udało się to jednak w przypadku mazuru. W latach trzydziestych, mimo wzmianek o mazurze w podręcznikach i umieszczaniu go w zestawieniach pierwiastków, na ogół uważano, że dane rentgenowskie nie stanowią dostatecznego dowodu istnienia tego pierwiastka. Sądzono, że Noddackowie pośpieszyli się z ogłoszeniem swego odkrycia. Jak dziś wiadomo, pierwiastek 43 (technet) jest produktem rozszczepienia uranu i wykazano, że rudy badane przez Noddacków zawierały uran w ilości umożliwiającej pojawienie się linii mazuru (technetu) w widmach rentgenowskich.

Z perspektywy czasu wydaje się więc słusznym przywrócić mazur do układu okresowego i przypisać pierwszeństwo odkrycia pierwiastka 43 Idzie i Walterowi Noddackom. Czy jest to jednak możliwe?

 

Marguerite Perey i frans (1939)

Pracownicy Instytutu Radowego w Paryżu w bibliotece, 1930. Siedzą, od lewej: Marguerite Perey, Leonie Razet, Marie-Isabelle Archinard i Sonia Cotelle. Stojący od lewej: Andre Régnier, Alexis Yakimach, Raymond Grégoire, Renée Galabert, Tcheng-Da-Tchang i Frederic Joliot-Curie, Musée Curie, coll. ACJC

Poszukiwania fransu nazywanego eka-cezem były równie długie jak poszukiwanie pierwiastków Noddacków. W 1925 roku Radziecki chemik D. K. Dobroserdov twierdził, że znalazł eka-cez w próbce potasu (radioaktywność z próbki pochodziła z naturalnie występującego radioizotopu potasu-40). Opublikował wyniki pracy, a pierwiastek nazwał russium. Rok później angielscy chemicy Gerald J. F. Druce i Frederick H. Loring analizowali zdjęcia rentgenowskie siarczanu manganu(II). Zaobserwowali linie spektralne, które uważali za eka-cez. Zapowiedzieli odkrycie pierwiastka 87 i zaproponowali nazwę alkalium, gdyż byłby to najcięższy metal alkaliczny. W 1930 roku Fred Allison z Alabama Polytechnic Institute twierdził, że odkrył pierwiastek 87 podczas analizy minerałów polucytu i lepidolitu i zaproponował nazwę virginium. Cztery lata później H. G. MacPherson z UC Berkeley podważył i obalił odkrycie Allisona, co doprowadziło do otwartego sporu uczonych. W 1936 roku rumuński fizyk Horia Hulubei i jego koleżanka Yvette Cauchois przeanalizowali polucyt używając aparat rentgenowski o wysokiej rozdzielczości. Zauważyli kilka słabych linii emisyjnych, które przypuszczalnie należały do pierwiastka 87. Zgłosili swoje odkrycie i zaproponowali nazwę moldavium. Rok później prace Hulubeia zostały skrytykowane przez amerykańskiego fizyka F. H. Hirsha Jr., który odrzucił metody badawcze Hulubeja i Cauchois twierdząc, że analizowali oni linie rtęci lub bizmutu.

Marguerite Perey, 1940, Musée Curie, col. ACJC

W 1935 roku Marguerite Perey uczennica Marii Skłodowskiej-Curie przeczytała artykuł amerykańskich naukowców, którzy donosili, że odkryli promieniowanie beta wysyłane przez aktyn. Perey była sceptyczna względem ich doniesień, bowiem energia cząstek beta nie pasowała do cząstek emitowanych przez aktyn. Miała ona spore doświadczenie z aktynem, gdyż pracowała z nim już ponad siedem lat. Domyślała się, że amerykanie muszą dysponować zanieczyszczoną próbką, w której cząstki beta emituje atom potomny tj. taki, który powstaje z aktynu i pozostaje w badanej przez nich próbce. Chcąc udowodnić swoją hipotezę przystąpiła do pracy przygotowując niezwykle czystą próbkę aktynu-227. Zadanie było czasochłonne i bardzo precyzyjne. Uczona musiała działać szybko, aby w próbce nie powstawały atomy potomne. Jej finezyjne badanie polegało na spostrzeżeniu, że niewielka część – około 1,2% – całkowitej radioaktywności aktynu pochodziła z emisji cząstek alfa. Nikt nie podejrzewał, że aktyn-227 emituje cząstki alfa przekształcając się w pierwiastek 87 o czasie połowicznego zaniku 22 minuty i jednocześnie cząstki beta (98,8%) przechodząc w izotop toru-227 (chociaż pierwsze doniesienia na ten temat pojawiły się już w 1914 roku). Jest to tzw. rozgałęzienie. Powstający w ten sposób izotop pierwiastka 227 Perey nazwała aktynem K (Ac-K).

Andre Debierne, 1940, Musée Curie, col. ACJC

Jej bezpośrednim przełożonym był Debierne, chociaż pracowała w laboratorium kierowanym przez Irène Joliot-Curie. Dlatego też o swoim zaskakującym odkryciu poinformowała najpierw Irène. Zaproponowała nawet nazwę catium, ale Joliot-Curie odradziła jej ją, gdyż mylnie by się mogła kojarzyć z kationem. Idąc wzorem Marii Skłodowskiej-Curie Perey zaproponowała więc nazwę dla nowego pierwiastka frans. W tym samy czasie o odkryciu dowiedział się Debierne. Uważał, że jego pracownica powinna najpierw poinformować o odkryciu jego i poczuł się urażony. Jego złość była tak potężna, że nie chciał uznać odkrycia Perey. Nie trafiały do niego żadne argumenty. Konflikt trwał kilka miesięcy. Ostatecznie zgodził się, aby uznać Perey za odkrywczynię pierwiastka i zaakceptował proponowaną przez nią nazwę frans (87Fr). Uczona w jednym z listów pisała: Mam wielką nadzieję, że frans przyda się do leczenia wcześnie rozpoznanego raka. Moim największym życzeniem jest, aby wykonać to zadanie w przyszłości. Niestety sama padła ofiarą radioaktywności – zmarła na nowotwór 15 maja 1975 roku…

 

Zalecana literatura:

  1. T. Pospieszny, Pasja i geniusz. Kobiety, które zasłużyły na Nagrodę Nobla, Wydawnictwo Po Godzinach, Warszawa, 2019.
  2. M. Fontani, M. Costa, M. V. Orna, The lost elements. The periodic table’s shadow side, Oxford University Press, New York, 2014.
  3. I. Eichstaedt, Księga pierwiastków, Wiedza Powszechna, Warszawa 1970.
  4. S. Kean, Znikająca łyżeczka. Dziwne opowieści chemicznej treści, Ferria Science, Łódź, 2017.

Podróż po życie — fragment książki Tomasza Pospiesznego o Lise Meitner

 

 

 

 

 

 

 

 

/   Tomasz Pospieszny   /

Opublikowano  25  sierpnia 2021 r.

W związku z premierą najnowszej biografii Lise Meitner w języku angielskim autorstwa Andrew Normana: The Amazing Story of Lise Meitner: Escaping the Nazis and Becoming the World’s Greatest Physicist (Pen and Sword History, London 2021), która ukazała się w lipcu bieżącego roku, przypominamy fragment zatytułowany — Podróż po życie — jedynej polskiej biografii Uczonej autorstwa Tomasza Pospiesznego pt. Zapomniany geniusz. Lise Meitner — pierwsza dama fizyki jądrowej (Novae Res, Gdynia 2016).

 

***

 

Max von Laue pozyskał bardzo niepokojące informacje. Dowiedział się mianowicie, że Heinrich Himmler wydał zakaz emigracji uczonych z Niemiec. Otto Robert Frisch wspominał: Okupacja „technicznie” zmieniła mnie z Austriaka w Niemca. Moja ciotka, […] która uzyskała sławę poprzez wiele lat pracy, teraz również mogła obawiać się zwolnienia i nie było również plotką, że naukowcy nie będą mogli opuszczać Niemiec[1]. Teraz Meitner groziła nie tylko utrata stanowiska, ale przede wszystkim utrata życia. Zagrożenie było bardzo realne. Dla bezpieczeństwa Lise opuściła swoje mieszkanie i przeniosła się do hotelu Adlon. Pomimo że mogła czuć się samotna i w beznadziejnej sytuacji, była otoczona przez przyjaciół. W maju Bohr wysłał jej oficjalne zaproszenie do Kopenhagi. Niestety nie mogła otrzymać wizy, gdyż jej austriacki paszport stracił ważność. Carl Bosch (1874–1940), który w 1937 roku zastąpił Maxa Plancka na stanowisku Prezesa Towarzystwa Cesarza Wilhelma, za namową Hahna podpisał prośbę do ministra spraw wewnętrznych na wyrażenie zgody dotyczącej legalnej emigracji Meitner. W liście podkreślał jej oddanie dla nauki niemieckiej, międzynarodową sławę i uznanie oraz fakt, że może dokonać wiele ważnych odkryć w fizyce jądrowej. Niestety odpowiedź była jednoznaczna: nie ma możliwości wydania Lise Meitner niemieckiego paszportu. Musi pozostać. Musi równa się zagładzie. Argumentacja była następująca:

 

[…] Pozwolę sobie zakomunikować Panu, że istnieją polityczne przeciwwskazania w sprawie wystawienia paszportu dla pani profesor Meitner. Uważa się za niepożądane, aby słynni Żydzi wyjeżdżali z Niemiec za granicę, gdzie mogliby działać jako reprezentanci niemieckiej nauki czy wręcz swoim nazwiskiem i doświadczeniem zgodnie ze swoją wewnętrzną postawą szkodzić Niemcom […][2].

Niels Bohr w swoim gabinecie, 1935, domena publiczna

 

Do Berlina przyjechał z żoną Niels Bohr. Zdawał sobie w pełni sprawę z powagi sytuacji i zaprowadził Meitner do kierownika Instytutu Fizyki, Holendra Petera Debye’a (1884–1966), przebywającego i pracującego w Niemczech od 1909 roku[3]. Lise dowiedziała się od Debye’a, że jeszcze jest czas na ucieczkę i nie ma bezpośredniego pośpiechu. Jednak Bohr był innego zdania. Interweniował wcześniej u holenderskiego fizyka Dirka Costera, który rozpoczął natychmiastową akcję ratunkową. Meitner znała Costera i jego żonę od wczesnych lat dwudziestych, kiedy spędziła u nich kilka tygodni zaraz po wojnie światowej. Coster wspólnie z Hendrikiem A. Kramersem (1894–1952) z Leiden rozpoczął kampanię informowania innych fizyków w całej Holandii, że Lise Meitner potrzebuje pilnej pomocy. W liście do swojego kolegi, Adriaana Fokkera (1887–1972) z Haarlem, napisał:

 

Lise Meitner prawdopodobnie wkrótce zostanie wyrzucona z Berlin-Dahlem… Byłoby wspaniale, gdyby mogła pracować przez jakiś czas w Holandii… Być może uda nam się poprosić kolegów do regularnych wpłat dla Lise Meitner… Jeśli mógłby pracować w Groningen, można by również przyznać jej roczny grant f. 500 poza funduszami [Uniwersytetu] Groningen… Chciałbym ją mieć tutaj, ale nie zależy to od mojego osobistego zaangażowania…[4]

 

Lise Meitner i Otto Hahn na krótko przed ucieczką uczonej z Berlina, lato 1938, Archiv der Max Planck-Gesselschaft, Berlin-Dahlem

 

 

Do akcji przyłączył się Debye i Paul Rosbaud, który był od lat zatrudniony na stanowisku redaktora naukowego „Naturwissenschaften”. Znał Lise i Ottona osobiście i widział, że jeśli uczona nie opuści Berlina, zginie. Powiadomił swojego przyjaciela w Szwajcarii, który natychmiast wysłał telegram do Meitner: Przyjedziesz na weekend fizyków od 29 czerwca do 1 lipca?[5] W ten sposób fizycy z Danii, Holandii, Szwajcarii i Niemiec robili wszystko, by pomóc pierwszej damie fizyki jądrowej. Wydaje się, że poza świadomością Meitner rozpoczęła się kampania umożliwiająca jej ucieczkę z hitlerowskich Niemiec. Działalność przyjaciół była imponująca. Tymczasem Coster coraz bardziej niecierpliwił się brakiem decyzji rządu w sprawie wizy dla Meitner. 27 czerwca 1938 roku napisał do Fokkera, że podjął decyzję i nie będzie dłużej czekał na działania rządu holenderskiego. Postanowił udać się do Berlina osobiście, poinformować Meitner o możliwości rocznej pomocy finansowej i przywieść ją do Holandii. Fokker z większym dystansem i spokojem napisał do Costera: Nie panikuj! […]Musisz pozwolić jej spokojnie podjąć samodzielną decyzję[6]. Coster jednak sam podjął decyzję. W tym samym czasie rząd holenderski wydał zgodę, żeby Lise bez wizy mogła przekroczyć granicę, o czym powiadomił bezpośrednio zainteresowanych Coster, który 28 czerwca 1938 roku przyjechał do Berlina. Jednak decyzja o wyjeździe – tak jak przewidywał Fokker – należała do Meitner. Uczona wiedziała już, że nie może dłużej czekać. Należało działać. Plan był prosty: Lise musi wyjechać na wakacje, żeby odpocząć od codziennej pracy i zmartwień. Nic nie mogło wzbudzać podejrzeń. Lise nadal więc chodziła codziennie do instytutu, prowadziła badania, rozmawiała z Hahnem i Strassmannem. Musiała mieć nerwy ze stali. Plan ucieczki znali tylko Hahn, von Laue, Debye i Rosbaud. Tajemnica zwiększała i tak olbrzymie napięcie. Meitner powiedziała żonie Plancka i Elisabeth Schiemann o liście Boscha. Nic więcej. Nie mogło być mowy o żadnych pożegnaniach. 4 lipca sytuacja nagle się pogorszyła. Bosch powiadomił Hahna, że restrykcje związane z wyjazdem za granicę uczonych – zwłaszcza Żydów lub politycznie podejrzanych – będą przestrzegane z najwyższą dokładnością. Lise nie mogła się czuć bezpiecznie nawet w hotelu! Debye spotkał się z Meitner i bez trudu przekonał ją, że natychmiast musi uciekać. Coster pozyskał ponownie zgodę ministerstwa na przyjazd uczonej do Holandii bez wizy. Z wydaną zgodą 11 lipca ruszył ponownie do Berlina. Nazajutrz Otto poinformował Lise, że musi wyjechać do Holandii, że wszystko jest załatwione, nie ma kłopotu z wizą i pieniędzmi, a wyjazd musi nastąpić możliwie najszybciej – następnego dnia! Trudno sobie wyobrazić, co działo się w głowie Lise. Musiała zrobić wszytko, aby rola, którą odgrywała, była do końca przekonywująca. Pozostała więc do godziny dwudziestej w instytucie, robiąc korektę pracy. W dzienniku napisała: wcześnie w Instytucie. Hahn powiedział mi, co zaproponowali Coster–Debye. Spotkanie rano Costera z Hahnem. Praca w Instytucie, aż do ósmej w nocy[7]. Następnie z pomocą Hahna i Rosbauda spakowała dwie małe walizki. Musiała zabrać tylko niezbędne rzeczy, które nie wzbudziłby podejrzeń. W końcu jechała tylko na wakacje. Po wojnie Meitner pisała: Tak, aby nie wzbudzać podejrzeń, spędziłam ostatni dzień mojego życia w Niemczech w Instytucie, aż do 8 w nocy robiąc korektę pracy przekazanej przez młodego współpracownika. Później miałam dokładnie 1,5 godziny, aby spakować kilka niezbędnych rzeczy do dwóch małych walizek[8]. Około godziny dwudziestej trzeciej poszła z Hahnem do jego mieszkania, gdzie spędziła ostatnią bezsenną noc w Niemczech. Następnego dnia rano, w środę 13 lipca, Hahn wraz z Rosbaudem udali się do hotelowego pokoju Lise, żeby zabrać jeszcze jedną małą walizkę. Otto wspominał:

 

Dirk Coster, 1930, domena publiczna

Coster pozostał w Berlinie na noc. Nie mówiąc nikomu, w godzinach wieczornych spakowaliśmy walizkę (tylko Rosbaud i ja byliśmy obecni). O ile dobrze pamiętam, [Lise] spędziła noc przed wyjazdem u nas na Altensteinstrasse; Coster spotkał ją w pociągu. […] Z bojaźnią i drżeniem zastanawialiśmy się, czy dotrze, czy też nie[9].

 

Wszystko miało wyglądać jak typowy letni wyjazd na wakacje. Rosbaud odwiózł ich na dworzec. Podczas podróży Lise ogarnęła panika i błagała przyjaciół, żeby zawrócili. Byli nieubłagani, spokojni i rzeczowi. Na stacji podczas pożegnania Otto wręczył Lise pierścionek. Dałem jej piękny pierścionek z diamentem, który odziedziczyłem po matce, nigdy go sam nie nosiłem, ale zawsze bardzo ceniłem. Chciałem, żeby miała jakieś zabezpieczenie w razie niebezpieczeństwa[10] – wspominał. Lise dodała: Opuszczałam Niemcy na zawsze z 10 markami w torebce[11]. W dzienniku zanotowała: 13 lipca. Wcześnie pożegnałam Hahna. Pierścień. Spotkałam Costera na stacji. W Nieuwe Schans celnik został poinformowany. Godzina osiemnasta Groningen[12]. Coster robił wszystko, żeby się z nimi nie spotkać, ale dyskretnie wsiadł do pociągu, by razem z nią odjechać ku przyszłości. Hahn pisał, że Lise Meitner była szczególnie narażona na niebezpieczeństwo wielokrotnych kontroli […] w pociągach wyjeżdżających za granicę. Od czasu do czasu ludzi, którzy próbowali wyjechać za granicę, aresztowano w pociągach i zawracano[13]. Drobna, przerażona i skupiona kobieta paląca mnóstwo papierosów i wyczekująca najgorszego. Możemy sobie ją wyobrazić siedzącą przy oknie, patrzącą na mijane krajobrazy i wyczekującą chwili aresztowania…

Pierścionek, należący do Charlotte Hahn, który Otto Hahn wręczył Lise Meitner, [za:] A. Norman, „The Amazing Story of Lise Meitner: Escaping the Nazis and Becoming the World’s Greatest Physicist”, Pen and Sword History, London 2021
Po długich siedmiu godzinach pociąg dotarł do granicy z Holandią. Teraz mogło wydarzyć się najgorsze: nazistowscy funkcjonariusze sprawdzali dokumenty, a ona nie miała ważnego paszportu i wizy. Jednak Coster zadbał o wszystko, poprosił wcześniej znajomych urzędników imigracyjnych, aby oficjalne zaproszenie do Hagi było wystarczającym dokumentem wyjazdu Lise zarówno dla nich, jak i dla drugiej strony. Obyło się bez dramatycznych scen – Lise Meitner przekroczyła granicę. Była bezpieczna. Nazajutrz Coster wysłał do Hahna telegram: Dziecko przyszło na świat. 15 lipca Hahn odpowiedział:

 

Droga Rodzino Costerów,

przede wszystkim chcę pogratulować szczęśliwego przybycia najmłodszego członka rodziny. Oczywiście, jestem bardzo zadowolony z nowin, ponieważ jeszcze do niedawna byliśmy nieco zaniepokojeni. Jak będzie nazywać się ukochana córka? Tutaj nie ma za dużo wiadomości. W laboratoriach wszystko idzie swoim zwykłym biegiem, a urlop zaczyna się jutro, dzięki Bogu…[14]

Lise Meitner, lata 30. XX wieku, domena publiczna

Meitner wspominała dramatyczną ucieczkę z nazistowskich Niemiec jako bardzo traumatyczne przeżycie. Właściwie trzeba sobie uświadomić, że niosła ona ze sobą ocalenie lub utratę życia. Zdecydowanie była to najdłuższa podróż w życiu Lise.

 

Pojechałam pociągiem do Holandii, rzekomo na tygodniowy urlop. Na granicy holenderskiej, gdy pięcioosobowy nazistowski patrol wojskowy przechodzący przez wagon wziął mój austriacki paszport, którego ważność dawno wygasła, zaczęłam bać się o życie. Byłam tak przerażona, że prawie zamarło mi serce. Wiedziałam, że naziści ogłosili sezon polowania na Żydów, że polowanie trwa. Siedziałam tam 10 minut i czekałam, 10 minut, które wydawały mi się godzinami. Potem wrócił jeden z nazistowskich funkcjonariuszy i bez słowa oddał mi paszport. 10 minut później wysiadłam na terytorium holenderskim, gdzie spotkałam kilku holenderskich kolegów[15].

 

Zorganizowanie ucieczki oraz sama podróż Lise Meitner na trwałe wryły się w pamięć jej przyjaciół. Nie bez znaczenia pozostaje wielka odwaga i determinacja Dirka Costera. Wolfgang Pauli w telegramie do niego pisał: Uczyniłeś się sławnym z uprowadzenia Lise Meitner jak [z odkrycia] hafnu[16]. Otto Hahn we wspomnieniach napisał: Nigdy nie zapomnę 17 lipca 1938 r.[17] Nigdy nie zapomniała go także Meitner. Ocaliła życie, lecz straciła pracę, dom, tożsamość narodową, niezależność. Została więźniem systemu. W Niemczech uznano, że profesor Lise Meitner, która była członkiem naukowym Instytutu od 1914 r. i od początku kierowała jego Wydziałem Fizyczno-Radioaktywnym, przeszła z dniem 1 października 1938 r. w stan spoczynku[18].

 

_________________________________

 

[1] P. Rife, „Lise Meitner…”, op. cit., str. 161.

[2] K. Hoffmann, „Wina i odpowiedzialność…”, op. cit., str. 133.

[3] Peter Debye sam niebawem musiał zatroszczyć się o swoją pozycję, otrzymał bowiem propozycję przyjęcia obywatelstwa niemieckiego lub napisania prohitlerowskiej książki. Miał to być akt lojalności wobec Hitlera. Debye odrzucił obie propozycje i pod pretekstem gościnnych wykładów wyjechał do USA.

[4] P. Rife, „Lise Meitner…”, op. cit., str. 166.

[5] Ibidem.

[6] Ibidem, str. 169.

[7] R. Sime, „Lise Meitner…”, op. cit., str. 204.

[8] Ibidem.

[9] F. Krafft, „Lise Meitner…”, op. cit., str. 836.

[10] R. Rhodes, „Jak powstała bomba atomowa”, op. cit., str. 210.

[11] R. Sime, „Lise Meitner…”, op. cit., str. 204.

[12] Ibidem.

[13] P. Rife, „Lise Meitner…”, op. cit., str. 172.

[14] F. Krafft, „Lise Meitner…”, op. cit., str. 836.

[15] R. Rhodes, „Jak powstała bomba atomowa”, op. cit., str. 210.

[16] R. Sime, „Lise Meitner…”, op. cit., str. 205.

[17] O. Hahn, „My Life”, op. cit., str. 149. Błąd Hahna. Musiało chodzić o 13 lipca [patrz:] K. Hoffmann, „Wina i odpowiedzialność…, op. cit., str. 133.

[18] K. Hoffmann, „Wina i odpowiedzialność…”, op. cit., str. 133.

Pani Einstein-Marity

/  Tomasz Pospieszny   /

Opublikowano 19 sierpnia 2021 r.

W sierpniu 2021 roku mija siedemdziesiąta trzecia rocznica śmierci Milevy Marič. Odeszła w zapomnieniu i taką też pozostała przez wiele lat. Pochowano ją w obrządku prawosławnym w jej ukochanym Zurychu na cmentarzu Nordheim. Nagrobek Milevy Marič został usunięty w latach siedemdziesiątych ubiegłego stulecia przez władze cmentarza, gdyż przez wiele lat po jej śmierci nie była uiszczana opłata za grób. Z inicjatywy dra Ljubo Vujevicia z The Tesla Memorial Society w Nowym Yorku odnaleziono grób Milevy w 2004 roku. Zainicjowano także ponowne wzniesienie nagrobka kobiety, która była towarzyszką życia Alberta Einsteina.

Proponujemy Państwu lekturę fragmentu książki Tomasza Pospiesznego pt. Pasja i geniusz. Kobiety, które zasłużyły na Nagrodę Nobla opisujący życie Milevy Marič.

 

Pani Einstein-Marity

Niezwykle uporządkowana Mileva wprowadziła ład w życie Einsteina. W dzieciństwie nauczyła się szyć, a później także gotować. Nie tylko szyła swoje sukienki, ale także reperowała ubrania Alberta. Umiała trafić do jego serca przez swój intelekt, ale także przez jego żołądek. Roztargnienie, brak organizacji, bałaganiarstwo i zapominalstwo Einsteina była zdolna okiełznać jak nikt inny. Tak doskonale nam idzie wspólne zgłębianie naszych mrocznych dusz, picie kawy, jedzenie kiełbasek itd. – pisał Albert[1]. Jeden z biografów Einsteina Peter Michelmore napisał, że Mileva:

 

[…] potrafiła szybciej niż [Albert] wyrobić sobie zdanie na temat ludzi i była bardzo stała w swoich wyborach. W każdej sprawie zajmowała zdecydowany punkt widzenia. Z góry planowała zarówno przebieg swoich studiów, jak i rozkład każdego dnia. Próbowała również wprowadzić porządek w życie Alberta. I matematyka była tylko częścią tego wszystkiego. Namawiała go do regularnego spożywania posiłków i uczyła oszczędności. Często wściekała się na jego roztargnienie. Wtedy spoglądał na nią ze spokojem, jak tupie nóżką niczym mała dziewczynka, a w jego oczach pojawiały się łobuzerskie ogniki. Potem robił śmieszne miny lub opowiadał żarcik i jej złość powoli ustępowała[2].

 

Mileva,Albert i ich pierwszy syn Hans Albert, Berno, 1904, Instytut Leo Baecka, [za:] http://einstein-virtuell.mpiwg-berlin.mpg.de/VEA/SC-1668110491_MOD-736752543_SEQ1883770543_SL-110908586_en.html
Niestety nie wszyscy byli przychylni ich związkowi. Przyjaciele Milevy uważali, że Albert nie jest dla niej odpowiednim partnerem. Z kolei jego znajomi nie potrafili zrozumieć, co widzi w utykającej, humorzastej Milevie. Albert jednak podziwiał jej inteligencję. I był zakochany. Kiedy jeden z jego kolegów powiedział: Wiesz, nigdy nie odważyłbym się poślubić kobiety, która nie byłaby zupełnie zdrowa, Albert odpowiedział: Ale ona ma taki cudowny głos[3].

Tymczasem zbliżał się czas egzaminów: międzykursowego i końcowego. Einstein zdał egzamin międzykursowy w październiku 1898 roku, Mileva zaś musiała przygotowywać się do niego dłużej z racji pobytu na uniwersytecie w Heidelbergu. Przystąpiła do niego w październiku następnego roku, zdając z piątą lokatą. Latem 1899 roku, gdy Mileva przygotowywała się do egzaminów, Einstein przebywał na wakacjach wraz z matką i siostrą. Pokazał wówczas matce zdjęcie Milevy. W liście do ukochanej pisał, że wywarło ono na Paulinie Einstein wrażenie – moja stara matka pozdrawia Cię jak najserdeczniej[4]. Niestety kiedy Frau Einstein zorientowała się, że nie jest to kolejny romans syna, lecz związek poważny, jej zachowanie względem Milevy uległo radykalnej zmianie. Przeszkadzało jej, że jest Serbką, że nie jest Żydówką, że pochodzi z pospolitej rodziny, że jest starsza od Alberta, że jest ułomna fizycznie. Jednym słowem, była najgorszą z możliwych partii dla jej ukochanego syna. Pierwsze niepokojące wieści nadesłała Helena Kaufler, która na własne oczy widziała niechęć Pauliny do Milevy. Zrozpaczona Mileva pisała do niej:

 

Sądzisz, że ona w ogóle mnie lubi? Naprawdę się ze mnie tak strasznie naśmiewała? Wiesz, poczułam się głęboko nieszczęśliwa, ale potem się pocieszyłam, że w końcu ten najważniejszy dla mnie człowiek jest innego zdania, a kiedy on roztacza nade mną wspaniałą wizję naszej przyszłości, nie myślę już o moim nieszczęściu[5].

Mileva Marič, 1896, domena publiczna

Niestety najgorsze miało dopiero nadejść. Latem 1900 roku przystąpili do egzaminów końcowych składających się z części pisemnej i ustnej. Einstein zdał, Mileva nie. Jako jedyna uzyskała średnią poniżej pięciu. Tym samym jako jedyna nie otrzymała dyplomu. Być może miał na to wpływ egzamin ustny, który Mitza zdawała przed profesorami mężczyznami, z góry przeświadczonymi o braku zdolności kobiet do nauk ścisłych. Możliwe też, że nie opanowała całego materiału, przecież w tym samym roku zdawała także egzamin międzykursowy. Załamana wróciła do rodziców z mocnym postanowieniem przystąpienia do egzaminów w roku następnym. Albert zaś udał się na wakacje z rodziną. Niestety sytuacja pomiędzy nim i matką była bardzo napięta. Kiedy Paulina dowiedziała się, że Mileva oblała egzaminy, zapytała: No, i kim teraz będzie ta twoja Laleczka?. Z pewnością i wyzwaniem w oczach Albert odpowiedział: Moją żoną. Ona jest takim samym molem książkowym jak ty, a tobie potrzebna jest żona. Gdy ty będziesz miał trzydziestkę, z niej będzie już stara krowa! – krzyczała Paulina[6]. Jej wściekłość zmieniła się w histerię i bezradność:

 

Mama rzuciła się na łóżko, ukryła głowę w poduszkach i rozpłakała jak dziecko. Gdy tylko się opanowała, natychmiast przystąpiła do gwałtownego ataku: „W ten sposób rujnujesz swoją przyszłość i grzebiesz swoje szanse! Żadna porządna rodzina by jej nie chciała. Jeśli zajdzie w ciążę, dopiero będziesz się miał z pyszna!” Przy tym ostatnim wybuchu, przed którym było jeszcze wiele innych, w końcu straciłem cierpliwość. Zaprzeczyłem ostro, abyśmy żyli w grzechu, po czym zrugałem ją, na czym świat stoi […][7].

Akademia Olimpijska: Albert Einstein z przyjaciółmi: Conradem Habichem i Maurice’m Solovine’em, ok. 1903, domena publiczna

Wydaje się, że młody Einstein był na tyle uparty, że dążył do celu za wszelką cenę. Dopiero teraz widzę jak szaleńczo Cię kocham – pisał do Milevy[8]. Żywiołowe wręcz wyznania uczuć mogą świadczyć o buncie Alberta przeciw rodzinie, chociaż na pewno kochał Milevę. Napisał do niej:

 

Co będzie, to będzie, ale i tak będziemy mieć najpiękniejsze życie pod słońcem. Przyjemna praca i bycie razem – czegóż można jeszcze chcieć? Jak uciułamy trochę pieniędzy, kupimy sobie rowery i będziemy co parę tygodni jeździć na wycieczki[9].

Państwo Einsteinowie w Kacu w Serbii, ok. 1912, domena publiczna

Czy ta romantyczna deklaracja nie nasuwa skojarzeń z francusko-polską parą uczonych pędzących na bicyklach?

Niestety sytuacja materialna Einsteina z dnia na dzień się pogorszyła: chcąc go ukarać, rodzina przestała przekazywać mu pieniądze. Udzielał korepetycji, ale był to skromny dochód, który nie pozwalał na finalizację planów Alberta i Milevy. A przecież mieli marzenia. Jakże cudnie będzie wyglądał świat, gdy będę już Twoją małą żoną – pisała Mileva[10]. Niestety rodzice Einsteina robili wszystko, co tylko mogli, by utrudnić im życie. Zwłaszcza Milevie. Do Heleny pisała:

 

Ta kobieta najwyraźniej obrała sobie za cel życia, by zatruć życie nie tylko moje. Ale i swojego syna […]. Posunęli się nawet do tego, by napisać list do moich rodziców, w którym oczerniają mnie w stopniu wręcz skandalicznym[11].

 

Brak stabilności finansowej nie ograniczył jednak pracy twórczej Alberta. Pierwszą pracą, której się poświęcił, było padanie efektu kapilarnego, czyli podnoszenie się słupa cieczy w bardzo cienkiej rurce. 3 października 1900 roku, na dwa miesiące przed wysłaniem artykułu do redakcji „Annalen der Physikˮ, w liście do Milevy pisał:

 

Wnioski na temat efektu kapilarnego, do jakich doszedłem niedawno w Zurychu, wydają mi się całkiem nowe, choć są takie proste. Kiedy oboje będziemy już w Zurychu, spróbujemy zdobyć jakieś dane empiryczne na ten temat […]. Jeśli ujawnia się tu jakieś prawo przyrody, poślemy rezultaty do „Annalenˮ[12].

 

Walter Isaacson, autor doskonałej biografii Einsteina, podaje, że był to początek sporów dotyczących udziału Milevy Marič w badaniach i teoriach Einsteina. W tym jednak przypadku wydaje się, że jej rola ograniczała się do słuchaczki i być może dyskutantki. W liście do Heleny Savić (od 15 listopada 1900 roku żony Milivojea Savića) pisała:

 

Albert napisał artykuł z fizyki, który prawdopodobnie wkrótce zostanie opublikowany w „Annalen der Physik”. Możesz sobie wyobrazić, jaka jestem dumna z mojego ukochanego. Nie jest to taki zwykły artykuł, tylko bardzo ważny – dotyczy teorii cieczy. Wysłaliśmy kopię do Boltzmanna, gdyż chcielibyśmy wiedzieć, co on o tym myśli. Mam nadzieję, że nam odpisze[13].

Boltzmann nie odpisał, a artykuł Einstein z czasem uznał za mało znaczący. Pomimo pierwszego osiągnięcia naukowego nadal pozostawał bez pracy. Zmuszony przez rodzinę pojechał do Mediolanu. Miało to służyć rozdzieleniu kochanków.

Z listów można wnioskować, że im dłużej Albert nie widział Mitzy, tym bardziej szalał z miłości:

 

Bez Ciebie brakuje mi pewności siebie, przyjemności z pracy, przyjemności z życia – krótko mówiąc, bez Ciebie moje życie straciło swój sens[14].

 

Jakże mogłem przedtem żyć. […] Bez myśli o Tobie wolałbym umrzeć. […] Spośród wszystkich ludzi, Ty kochasz mnie najmocniej i najlepiej rozumiesz. […] Wieczorami myślę o tym, że [Ty] myślisz o mnie i całujesz w łóżku poduszkę. Wiem, jak to jest! […]. Moim szczęściem jest Twoje szczęście. […] Moje życie zyskuje prawdziwy sens tylko dzięki myślom o Tobie. […] Jak cudownie było ostatnim razem, gdy mogłem Cię obejmować, tak jak natura stworzyła[15].

 

W innym liście dodawał: Na zawsze pozostaniemy studentami i gówno będzie nas obchodził cały świat[16]. Niestety nie dane było im pozostać wiecznymi studentami. Mileva rozpoczęła przygotowania do ponownego podejścia do egzaminów końcowych i miała nadzieję, że uzyskanie dyplomu umożliwi jej przygotowanie rozprawy doktorskiej. Promotorem miał być profesor Heinrich Martin Weber (1842–1913). W marcu 1900 roku w liście do Heleny pisała:

 

Profesor Weber przyjął moją propozycję pracy dyplomowej i był z niej całkiem zadowolony. Szukam tematów dalszych badań, które będę musiała wykonać. E. [Albert] wybrał dla siebie bardzo interesujący temat[17].

 

Albert z kolei pisał:

 

Ja również cieszę się bardzo, że będziemy nad tym razem pracowali. Nie wolno Ci teraz przerywać Twoich badań – jakiż będę dumny, gdy moje małe kochanie zostanie już panią doktor, a ja wciąż będę zupełnie zwykłym człowiekiem![18]

 

Niestety współpraca nie układała się idealnie. Weber był autorytatywny i z czasem coraz mniej lubił zuchwałego Einsteina. Milevie dostawało się także. Wiosną następnego roku pisała:

 

Miałam kilka kłótni z Weberem, ale jestem już do tego przyzwyczajona[19]. Dzięki obawom Webera nie udało mi się jeszcze zdobyć doktoratu [pomimo ukończenia kursu]. Znosiłam zbyt wiele i w żadnym wypadku nie wrócę do niego ponownie[20].

 

Można z dużą dozą prawdopodobieństwa przypuszczać, że Mileva nie uzyskała dyplomu, gdyż Albert nie potrafił ukrywać niechęci do profesora Webera. Tymczasem życie Milevy uległo radykalnej zmianie.

W maju 1900 roku spędziła z Albertem piękne, romantyczne i namiętne wakacje nad jeziorem Como. Niebawem okazało się, że jest w ciąży. 28 maja Einstein w liście do ukochanej pisał: Jak się czujesz, kochana? Jak tam chłopiec? […] Jak tam nasz mały synek?[21]. Pomimo dolegliwości ciążowych Mileva starała się przygotować do egzaminu, który miała zdawać w lipcu. Niestety i tym razem się nie udało. Abraham Pais podkreśla: teraz, gdy już wiemy, że w tym czasie była w odmiennym stanie, tym bardziej winniśmy podziwiać jej odwagę i upór, by zdawać raz jeszcze[22]. Bez dyplomu, w ciąży, bez ukochanego przy sobie wróciła do Nowego Sadu. Musiała zmierzyć się sama z trudami ciąży i porzuconymi marzeniami o karierze naukowej. Co jednak najgorsze, była przekonana, że na zachodzie zostanie uznana za ladacznicę, która zrujnowała Albertowi życie, na wschodzie zaś za idiotkę[23]. Jesienią 1901 roku Einstein został prywatnym nauczycielem w Szafuzie nad Renem. Jednocześnie wiązał nadzieje z otrzymaniem posady w urzędzie patentowym w Bernie. Mileva czuła się osamotniona. W liście do Alberta pisała:

 

Gdybyś tylko wiedział, jak bardzo samotna i opuszczona się czuję, na pewno byś przyjechał. […] Żebyś wiedział, jak bardzo chcę Cię znowu zobaczyć! Myślę o tobie całymi dniami, a jeszcze bardziej nocami[24].

 

W grudniu 1901 roku Albert pisał:

 

Wyczekuję naszej drogiej Lieserl [córeczki], ale po kryjomu (tak aby Doxerl się nie dowiedziała) wyobrażam sobie, że jest to Hanserl […]. Istnieje tylko kwestia, jak moglibyśmy przyjąć naszą Lieserl; nie chciałbym jej oddawać […][25].

 

Kiedy kilka dni później dowiedział się, że otrzymał pracę w Bernie, przyszło ukojenie i spokój. W listach do Mitzy pisał:

 

Zurych, 30 kwietnia 1901 roku

Mój kochany kotku,

[…] Sama się przekonasz, jaki pogodny i radosny się stałem. Dawno zapomniałem o wszystkich moich troskach. I tak bardzo Cię znowu kocham! To tylko z nerwów byłem tak niedobry dla Ciebie […] i tęsknię bardzo do chwili, kiedy znowu Cię ujrzę. […]

Całuję Cię z dna mojego serca.

Twoje kochanie[26]

 

Winterthur, 9 maja 1901 roku

Kochany kotku,

[…] Gdybym tylko mógł przekazać Ci chociaż cząstkę własnego szczęścia, abyś już na zawsze była wolna od smutku i melancholii. […]

Najlepsze życzenia i całusy dla Ciebie.

Albert[27]

 

W styczniu 1902 roku otrzymał wiadomość, że został ojcem. Poród był długi i ciężki. Córeczce Mileva nadała imię Lieserl. Einstein pisał do ukochanej:

 

Berno, 4 lutego 1902 roku

Moje najdroższe kochanie,

Biedne, najdroższe kochanie; co musiałaś wycierpieć, jeśli nie możesz nawet samodzielnie do mnie napisać! Szkoda, że nasza droga Lieserl musi zostać przedstawiona światu w ten sposób! Mam nadzieję, że do czasu nadejścia mojego listu będziesz zdrowsza i weselsza. […] Więc faktycznie jest dziewczynka. Czy jest zdrowa i płacze jak trzeba? Jakiego koloru ma oczka? Skąd bierzesz mleko? Czy dużo je? Musi być kompletnie łysa. Kocham ją bardzo, a przecież nawet nie wiem, jak wygląda. […] Chętnie sam zmajstrowałbym taką Lieserl, to musi być fascynujące! Z pewnością umie już płakać, lecz śmiać nauczy się dopiero później. Jest w tym pewna głęboka prawda. […]

Dla Ciebie tysiące pocałunków od Twojej miłości,

Johnnie[28]

Albert Einstein na rok przed otrzymaniem Nagrody Nobla, 1920, domena publiczna

Niestety nie ma żadnych listów świadczących o tym, że Einstein widział swoją córkę. Trudno domniemywać, czy o istnieniu dziecka wiedziała także rodzina i najbliżsi przyjaciele Einsteina. Wprawdzie jego matka 20 lutego 1902 roku pisała: tej Marič zawdzięczam najgorsze chwile mojego życia; gdyby to leżało w mojej mocy, zrobiłabym wszystko, aby zniknęła z naszego horyzontu[29], ale nie ma pewności, że odnosi się tym samym do narodzin wnuczki. Nie wiadomo też nic pewnego o losie dziecka. Michele Zackheim w swojej książce o Lieserl twierdzi, że była niepełnosprawna fizycznie i zamieszkała z rodziną Milevy. Według niej prawdopodobnie zmarła na szkarlatynę we wrześniu 1903 roku[30]. Z kolei wieloletni badacz życia Einsteina Robert Schulmann wysunął hipotezę, że Lieserl adoptowała Helena Savić. Nadano jej imię Zorka i miała żyć aż do lat dziewięćdziesiątych ubiegłego wieku. W rzeczywistości Saviciowie mieli niewidomą od wczesnego dzieciństwa córkę o takim imieniu, która zmarła w 1992 roku. Jednakże wnuk Heleny, a siostrzeniec Zorki doktor Milan Popović, odrzucił możliwość, że była to Lieserl, i twierdził, że to dziecko zmarło we wrześniu 1903 roku. W swojej książce napisał: wysunięta teoria, jakoby moja babcia adoptowała Lieserl, jest pozbawiona jakichkolwiek podstaw, gdyż zostało to dokładnie sprawdzone w historii mojej rodziny[31]. Znajduje to potwierdzenie w korespondencji Milevy i Alberta. W sierpniu 1903 roku Mileva pojechała do Nowego Sadu, gdyż została poinformowana, że Lieserl zachorowała na szkarlatynę. Z podróży wysłała kartę Albertowi: Podróż upływa szybko, ale jest ciężka. Nie czuję się dobrze. Co porabiasz, mój Jonzile? Napisz do mnie prędko. Twoja biedna Laleczka[32]. Złe samopoczucie Milevy wynikało z tego, że była ponownie w ciąży. Albert odpisał:

 

Bardzo mi przykro z powodu tego, co się stało z Lieserl. Szkarlatyna pozostawia często trwałe ślady. Jak Lieserl została zarejestrowana urzędowo? Musimy bardzo uważać, bo inaczej dziecko będzie miało problemy w przyszłości[33].

Mileva i Albert Einsteinowie, ok. 1905, domena publiczna

10 października 1902 roku zmarł ojciec Alberta. Krótko przed śmiercią wyraził zgodę na ślub syna z Milevą[34]. 6 stycznia 1903 roku Einstein dotrzymał słowa i ożenił się z Mitzą. Ślub cywilny odbył się w Bernie w towarzystwie najbliższych przyjaciół. Rok później, 14 maja 1904 roku, Mileva urodziła syna Hansa Alberta. W liście do Heleny pisała, żeby przyjechała do Berna, gdyż chciała jej pokazać moje małe kochanie, które też ma na imię Albert. Nie umiem wyrazić, ile daje mi radości, gdy śmieje się po przebudzeniu albo fika nóżkami w kąpieli[35]. Ojciec Milevy przyjechał zobaczyć wnuka i zaoferował zięciowi pokaźną sumę pieniędzy. Einstein jednak ich nie przyjął, argumentując:

 

Nie poślubiłem twojej córki dla pieniędzy, ale dlatego, że ją kocham, potrzebuję jej, ponieważ oboje jesteśmy jednością. Wszystko, co zrobiłem i osiągnąłem, zawdzięczam Milevie. Jest moim genialnym źródłem inspiracji, moim aniołem ochronnym przeciwko pokusom w życiu, a tym bardziej w nauce. Bez niej nie rozpocząłbym pracy, nie mówiąc już o jej zakończeniu[36].

_______

[1] R. Highfield, P. Carter, Prywatne życie Alberta Einsteina, op. cit., s. 67.

[2] P. Michelmore, Einstein: Profile of the Man, Dodd, Mead and Company, New York 1962, s. 36.

[3] W. Isaacson, Einstein, op. cit., s. 59.

[4] R. Highfield, P. Carter, Prywatne życie Alberta Einsteina, op. cit., s. 76.

[5] Ibidem, s. 77.

[6] Ibidem, s. 79.

[7] Ibidem, s. 80.

[8] W. Isaacson, Einstein, op. cit., s. 67.

[9] Ibidem, s. 69.

[10] A. Pais, Tu żył Albert Einstein, Prószyński i S-ka, Warszawa 2005, s. 24.

[11] Ibidem, s. 24.

[12] W. Isaacson, Einstein, op. cit., s. 71.

[13] M. Popović, In Albertʼs Shadow, op. cit., s. 70.

[14] J. Renn, R. Schulmann, Albert Einstein/Mileva Marić, op. cit., s. 26.

[15] A. Pais, Tu żył Albert Einstein, op. cit., s. 24.

[16] D. Overbye, Zakochany Einstein, op. cit., s. 72.

[17] M. Popović, In Albertʼs Shadow, op. cit., s. 60.

[18] J. Renn, R. Schulmann, Albert Einstein/Mileva Marić, op. cit., s. 32.

[19] M. Popović, In Albertʼs Shadow, op. cit., s. 76.

[20] Ibidem, s. 78.

[21] J. Renn, R. Schulmann, Albert Einstein/Mileva Marić, op. cit., s. 54.

[22] A. Pais, Tu żył Albert Einstein, op. cit., s. 25.

[23] D. Overbye, Zakochany Einstein, op. cit., s. 127.

[24] W. Isaacson, Einstein, op. cit., s. 86.

[25] A. Pais, Tu żył Albert Einstein, op. cit., s. 25.

[26] J. Renn, R. Schulmann, Albert Einstein/Mileva Marić, op. cit., s. 46.

[27] Ibidem, s. 51.

[28] J. Renn, R. Schulmann, Albert Einstein/Mileva Marić, op. cit., s. 73.

[29] A. Pais, Tu żył Albert Einstein, op. cit., s. 25.

[30] M. Zackheim, Einsteinʼs Daughter: The Search for Lieserl, Riverhead Hardcover, New York 1999.

[31] M. Popović, In Albertʼs Shadow, op. cit., s. 11.

[32] W. Isaacson, Einstein, op. cit., s. 98.

[33] Ibidem, s. 98.

[34] A. Pais, Pan Bóg jest wyrafinowany… Nauka i życie Alberta Einsteina, Prószyński i S-ka, Warszawa 2001, s. 61.

[35] W. Isaacson, Einstein, op. cit., s. 100.

[36] D. Trbuhović-Gjurić, Im Schatten Albert Einsteins, op. cit., s. 76.