Kiedy dowiedziałem się, że prestiżowe i profesjonalne Wydawnictwo Copernicus Center Press planuje przetłumaczenie i wydanie książki profesora Piergiorgio Odifreddiego pt. Geniusz Kobiet. Historie kobiet, które zmieniły świat nauki bardzo się ucieszyłem. Temat książki jest niezwykle interesujący i aktualny, a dodatkowo wpisuje się w moje zainteresowania naukowe. Należy podkreślić, że na polskim rynku księgarskim nie mamy wielkiego wyboru jeśli chodzi o literaturę traktującą o kobietach w nauce (jest ich zaledwie kilka), a niewątpliwie jest to niezwykle interesujący temat. Wreszcie Autor książki jest znanym popularyzatorem nauki, który z równą wirtuozerią opowiada o filozofii i religii, co o matematyce i logice. Wszystko to sprawiło, że z dużą przyjemnością podjąłem się przeczytania książki i na prośbę wydawnictwa napisania recenzji.
Książka została przetłumaczona przez Agnieszkę Liszkę-Drążkiewicz, liczy 224 strony, jest wydana w twardej oprawie, została podzielona na: wstęp, 24 rozdziały, podsumowanie, bibliografię, indeks. Partnerem wydania książki jest Piękniejsza Strona Nauki, co bardzo mnie ucieszyło.
Niestety jednym z największych mankamentów książki jest brak fotografii przedstawionych bohaterek. Oczywiście wszyscy wiedzą, jak wyglądała Maria Skłodowska-Curie, ale czy każdy rozpozna Henriettę Leavitt czy Emmy Noether? Nie sądzę.
Najczęstsze pytanie zadawane przy tego typu publikacjach brzmi: w jaki sposób autor dokonał selekcji nazwisk. Profesor Odifreddi we wstępie wyjaśnia:
Niektóre nazwiska na liście były naturalnie obowiązkowe, jak w przypadku najbardziej oczywistych i bezdyskusyjnych bohaterek: przede wszystkim madame Skłodowskiej-Curie, największej uczonej w historii, należącej też do największych naukowców XX wieku w ogóle. W innych przypadkach wybór był dyktowany osobistymi pobudkami, począwszy od przedmiotu opisywanych badań, a skończywszy na walorach literackich opowiadanych historii. Wynikiem jest, mam nadzieję, krótka historia nauki kobiecej, ale do użytku i spożycia przez szeroką publiczność, bez rozróżnienia na płcie. Jeśli już, to z pewnym rozróżnieniem na mózgi.
Wyjaśnienie to, jest przynajmniej dla mnie, całkowicie satysfakcjonujące. Każdy autor kieruje się własnymi zainteresowaniami, badaniami, a czasami nawet sympatiami i antypatiami względem opisywanych bohaterek czy bohaterów. Sam fakt, że spróbował wziąć na warsztat badawczy dany temat i próbował czytelnikowi przybliżyć te czy inne postaci powinien być zadawalający. Chociaż muszę przyznać, że bardzo mi brakuje na liście astronomki Cecilii Payne-Gaposchkin, fizyczki Marii Goeppert-Mayer, badaczek naczelnych Dian Fossey czy Jane Goodall. Ale to oczywiście moje propozycje (na marginesie może warto samemu zrobić własną listę?).
W 24 rozdziałach poznajemy życie 27 kobiet, które były związane z nauką (Autor trochę mylnie we wstępie podaje, że książka przedstawia dwadzieścia cztery wariacje, w tyluż tonacjach, na temat wielkich kobiecych umysłów. […] Bohaterki to pięć matematyczek, pięć chemiczek, cztery fizyczki, trzy astronomki, trzy biolożki, dwie astronautki, jedna informatyczka, jedna wynalazczyni (wbrew sobie – aktorka) i jedna eklektyczka (wbrew sobie – święta). Z prostego rachunku wynika, że wymienił 25 postaci z 27 faktycznie przedstawionych). Trzy rozdziały opowiadają o losach dwóch kobiet: Sześć Nobli w rodzinie: Maria Skłodowska-Curie (1867–1934) i Irène Joliot-Curie (1897–1956); Kobiety z kryształu i żelaza: Dorothy Hodgkin (1910–1994) i Margaret Thatcher (1925–2013); Requiem w przestworzach: Christa McAuliffe (1948–1986) i Judith Resnik (1949–1986). Kogoś może zdziwić obecność na liście Margaret Thatcher, ale należy podkreślić, że była ona chemikiem (raczej przeciętnym jak sama twierdziła) i studentką Dorothy Crowfoot Hodgkin – jednej z najwybitniejszych uczonych zajmujących się krystalografią, laureatki Nagrody Nobla z chemii w 1964 roku.
Odifreddi rozpoczyna swoją opowieść chronologicznie od opisu życia i działalności Hypatii z Aleksandrii. Później prowadzi nas przez historie między innymi Hildegardy z Bingen, Émilie du Châtalet, Zofii Kowalewskiej, Marii Skłodowskiej-Curie i jej córki Irène Joliot-Curie, Henrietty Leavitt, Milevy Marić, Lise Meitner, Emmy Noether, Rosalind Franklin, czy współczesnych nam uczonych takich jak Jocelyn Bell, Ilariy Capua oraz Marjam Mirzachani (pierwszej kobiety, która otrzymała medal Fieldsa). Każda z historii jest przedstawiona wnikliwie i zajmująco. Język narracji jest prosty i rzeczowy, a jednocześnie na tyle płynny, że nie nudzi. Jest to niezwykle istotna kwestia, bowiem książka traktuje o nie zawsze łatwych zagadnieniach. Nie znajdziemy tutaj często przerażających równań i wzorów charakteryzujących nauki ścisłe.
Ostatni rozdział Kobiety i nauka poświęcony jest tym uczonym, które nie znalazły się na głównej liście. Autor krótko przypomina Marię Goeppert-Mayer (Nagroda Nobla z fizyki 1963), Gertrude Belle Elion (Nagroda Nobla z fizjologii lub medycyny 1988) i Frances Arnold (Nagroda Nobla z chemii 2018) oraz przedstawia argumenty związane z udziałem kobiet w nauce. W moim odczuciu jest to jedna z ważniejszych części książki.
Warto podkreślić, że książkę można czytać chronologicznie lub według własnych upodobań biograficznych. Z obowiązku muszę nadmienić o pewnych drobnych błędach, które nie wpływają na jakość książki. I tak np. małżonkowie Joliot-Curie otrzymali Nagrodę Nobla w 1935 roku, a nie w 1936 (s. 64), Frédéric zmarł w 1958, a nie w 1957 (s. 65–66), błąd w nazwie hipotetycznego pierwiastka hesperium (esperium, s. 86). W bibliografii brakuje też polskiego przekładu autobiografii Marii Skłodowskiej-Curie (2004). Szkoda, że Autor nie stosował przypisów, które ułatwiłyby dalsze, bardziej wnikliwe studia.
Bibliografia została uzupełniona o polskie przekłady książek, z których korzystał Autor, jednak brakuje w niej kilku istotnych książek w języku polskim dopełniających książkę Odifreddiego np. Hypatia z Aleksandrii (2010), Kobiety w matematyce (2012), Algorytm Ady (2020), Upór i przekora (2017), Pasja i geniusz (2019), Zapomniany geniusz (2017) czy doskonałej książki dla dzieci (ale czy tylko dla dzieci?) Kobiety i nauka (2018).
Reasumując mogę z pełnym przekonaniem i wielką przyjemnością polecić lekturę książki wszystkim zainteresowanym historią nauki. A Autorowi i Wydawnictwu pogratulować dobrze wykonanej pracy. Wierzę głęboko, że recenzowana książka przyczyni się w znaczny sposób do poznania tych, które stworzyły fundament nauki, a które często, niestety, pozostają wciąż zapomniane.
Jest tylko jedna rzecz gorsza niż powrót z laboratorium do domu, w którym zlew jest pełen brudnych naczyń, dzień bez laboratorium! – wyznała kiedyś Chien-Shiung Wu jedna z najwybitniejszych uczonych wszechczasów. Przyszła na świat 31 maja 1912 roku. Przeszła do historii jako Madame Wu, Pierwsza Dama Fizyki lub chińska Madame Curie. Wu słynęła z pracowitości i poświęceniu dla idei, dlatego nikogo nie powinien dziwić inny przydomek jakim nazywali ją współpracownicy – Smocza Dama. Dziś istnieje pogląd, że Chien-Shiung Wu była jedynym urodzonym w Chinach naukowcem pracującym przy projekcie Manhattan.
Za radą ojca – Ignoruj przeszkody i zawsze idź przed siebie – dążyła do wyznaczonego celu wiedząc, że tylko w USA może ziścić swoje największe marzenie – zostać fizyczką. Uczyła się i współpracowała z najlepszymi Ernestem O. Lawrencem czy Robertem Millikanem. W pracy doktorskiej wykazała, że ksenon-135, który ma krótki czas życia ma ogromne powinowactwo do wychwytywania neutronów. Powstaje on w reakcji rozszczepienia jądra uranu i natychmiast pochłania wolne neutrony wyhamowując tym samym reakcję łańcuchową, przez co reaktor jądrowy krótko bo rozpoczęciu pracy wygasa. Bardzo szybko zyskała sławę ekspertki od badania radioaktywności – w szczególności pasjonowało ją promieniowanie beta.
W 1956 roku dwóch amerykańskich fizyków Tsung-Dao Lee i Chen Ning Yang przewidziało teoretycznie, że w rozpadzie beta łamana jest parzystość (uczeni podejrzewali, że cząstki w jądrze atomowym mogą czasem faworyzować jeden lub drugi kierunek – krótko mówiąc, czasami mogą być „praworęczneˮ, a czasami „leworęczneˮ). Zasugerowali także eksperyment, który mógłby potwierdzić ich teorię. Wydawał się on jednak tak skomplikowany, że właściwie niewykonalny. W 1957 roku Wu wykonała w kooperacji z National Institute of Standards and Technology eksperyment pokazujący to zjawisko w rozpadzie beta. Jej eksperyment jest dziś uważany za jeden z najdonioślejszych w dziejach współczesnej fizyki. Dziesięć miesięcy po ogłoszeniu wyników spektakularnego eksperymentu, świat dowiedział się, że Nagrodę Nobla z fizyki za wnikliwe badanie tak zwanych praw parzystości, które doprowadziły do ważnych odkryć dotyczących cząstek elementarnych, jako pierwsi Chińczycy otrzymali Tsung-Dao Lee i Chen Ning Franklin Yang. Chien-Shiung Wu została pominięta! Według opinii wielu badaczy historii nauki nieprzyznanie jej Nagrody Nobla było nie tylko niesprawiedliwe, ale zakrawało o skandal. Otrzymała wiele różnych innych nagród i wyróżnień, w tym słynną Nagrodę Wolfa z fizyki w 1978 roku.
Jej zainteresowania naukowe wiązały się także z badaniami nowych, krótkożyciowych rodzajów egzotycznych atomów oraz anemii sierpowatej.
W jednym z wywiadów powiedziała – Szczerze wątpię, by jakakolwiek osoba o otwartym umyśle naprawdę wierzyła w błędne wyobrażenie, że kobiety nie mają intelektualnej zdolności do nauki i technologii. Nie uważam też, że czynniki społeczne i ekonomiczne są faktycznymi przeszkodami, które uniemożliwiają uczestnictwo kobiet w nauce i technice.
Uczona zmarła w Nowym Yorku na udar mózgu 16 lutego 1997 roku w drodze do szpitala. Zgodnie z jej wolą prochy zostały rozsypane na dziedzińcu szkoły Ming De School, którą założył jej ojciec i w której rozpoczęła się jej życiowa przygoda – miłość do nauki.
11 lutego 2021 roku Poczta USA wyemitowała znaczek upamiętniający Chien-Shiung Wu. Tego dnia przypada Międzynarodowy Dzień Kobiet i Dziewcząt w Nauce. Znaczek z wizerunkiem Madame Wu ma być hołdem złożonym nie tylko Uczonej, ale także wszystkim kobietom zaangażowanym w tworzenie Nauki.
Wielu, którzy mieli okazję dowiedzieć się czegoś więcej o matematyce, myli ją z arytmetyką i uważali ją za jałową naukę.W rzeczywistości jednak jest to nauka wymagająca ogromnej ilości wyobraźni.
(Zofia Kowalewska)
Zofia Kowalewska, b.d., domena publiczna.
Jedna z najwybitniejszych matematyczek świata urodziła się 15 stycznia (3 stycznia) 1850 w Moskwie. Jej ojciec Wasilij Wasiljewicz Krukowski był oficerem pochodzenia polskiego (pochodził z rodu Korwin-Krukowskich), natomiast matka Jelizawieta Fiodorowna Schubert wywodziła się z rodziny niemieckich imigrantów. Na uwagę zasługuje fakt, że pradziadkiem przyszłej uczonej był astronom i geograf Theodor von Schubert, zaś dziadkiem generał i kartograf Friedrich von Schubert. Z kolei jej starszą siostrą była Anna Jaclard (1843–1887) socjalistka i rewolucjonistka, która nieśmiertelność zyskała na kartach powieści F. Dostojewskiego Idiota jako Anna. Wczesne lata życia spędziła w posiadłości Palibino w gubernii Witebskiej. Sonia – jak ją nazywała rodzina oraz przyjaciele – wspominała, że dom był niezwykle piękny i nowoczesny. Na krótko przed zamieszkaniem w nowej posiadłości została ona całkowicie poddana modernizacji. Niestety jej pokój z prozaicznej przyczyny – niewystarczającej ilości tapety – został wyklejony papierem znalezionym na strychu. Jak się okazało papier zawierał litografie wykładów z zakresu rachunku różniczkowego i całkowego, na które uczęszczał Wasilij jako młody oficer. Był to niewątpliwe pierwszy wielki bodziec matematyczny, który zaczął działać na wyobraźnię przyszłej uczonej. Zwykłam całymi godzinami ślęczeć przed tymi ścianami, raz po raz na nowo odczytując spisane tam symbole – wspominała po latach Sofija. Niestety nie zawsze miała możliwość pełnego pochłaniania wiedzy, tym bardziej, że jej ojciec niespecjalnie była zadowolony z kształcenia kobiet. Trwałam w chronicznym stanie głodu książek – wspominała. W dużej mierze Sonia uczyła się samodzielnie – czytała książki, próbowała poznawać świat nauki. Jeden z zaprzyjaźnionych przyjaciół ojca, profesor fizyki Nikolai Nikanorowicz Tyrtov podarował mu swój nowy podręcznik. Dziewczynka bez wiedzy ojca przeczytała książkę i przy następnej wizycie profesora zaczęła z nim rozmawiać o optyce. Niewątpliwie był bardzo zdziwiony, gdy kilkuletnia dziewczynka dokładnie mu wyjaśniła czego nie rozumie, ale co wydaje jej się logiczne i powinno mieć takie a nie inne rozwiązanie. Tyrtov nazwał ją nowym Pascalem i zasugerował, aby dać jej szansę kontynuowania studiów matematycznych. Nie ulega wątpliwości, że dziewczynka była bardzo zdolna. Znała doskonale język angielski, francuski i niemiecki. W latach 1866-67 spędzała większość zimy z rodziną w Petersburgu, gdzie otrzymywała prywatne lekcje rachunku różniczkowego.
Zofia Kowalewska, ok. 1880, Institut Mittag-Leffler, domena publiczna.
Jednak rozbudziło to tylko głód wiedzy dziewczyny. Jej marzeniem były studia, ale było to dość trudne, gdyż w carskiej Rosji kobiety nie mogły studiować, a wyjazd samotnej kobiety do innego kraju nie wchodził w grę. Salomonowym rozwiązaniem było zatem zawarcie w 1868 roku fikcyjnego małżeństwa ze starszym o osiem lat paleontologiem Włodzimierzem Kowalewskim. Należał on do radykalnego ugrupowania politycznego walczącego o równouprawnienie kobiet i zapewnienie im dostępu do edukacji. Sonia z mężem i siostrą wyjechała do Heidelbergu, gdzie studiowała między innymi u Hermanna von Helmholtza, Gustava Kirchhoffa i Roberta Bunsena. Później odbyła także podróż do Anglii, a następnie powróciła do Berlina, gdzie uczył ją Karl Weierstrass – jeden z najwybitniejszych matematyków niemieckich.
W 1874 roku Sofja Kowalewska przesłała z Berlina na uniwersytet w Getyndze rozprawę doktorską opartą o trzy prace związane z teorią równań różniczkowych cząstkowych, redukcji całek abelowych oraz postaci pierścieni Saturna. Dzięki staraniom Weierstrassa nie musiała zdawać egzaminów doktorskich i przyznano jej doktorat… in absentia. Została tym samym pierwszą Europejką posiadającą doktorat z matematyki!
Zofia Kowalewska, po 1880, domena publiczna
Sukcesy zawodowe szły w parze z prywatnymi. Pomiędzy Sonią i Włodzimierzem zaczęło rodzić się autentyczne uczucie. W 1874 roku powrócili do Rosji, a cztery lata później przyszła na świat ich córka Zofia nazywana Fufą. Po prawie dwóch latach poświęconych wychowaniu córki Kowalewska pozostawiła ją pod opieką krewnych oraz przyjaciół i chcąc wznowić pracę w dziedzinie matematyki opuściła Włodzimierza po raz ostatni. W wyniku namowy Weierstrassa w 1881 roku powróciła do Berlina, gdzie natychmiast powróciła do pracy naukowej. Zaowocowała ona opublikowaniem prac związanych z refrakcją światła w kryształach. Kiedy w 1883 roku przebywała w Paryżu otrzymała wstrząsającą wiadomość o śmierci męża. Włodzimierz zapadł na głęboką depresję związaną z poważnymi kłopotami finansowymi, w wyniku czego odebrał sobie życie.
W tym samym czasie uczona otrzymała propozycję pracy na uniwersytecie w Sztokholmie. Jej zdolnościami matematycznymi zachwycił się jeden z nielicznych w tamtych czasach zwolenników kobiet w nauce Magnus Mittag-Leffler. Po sześciu miesiącach pracy w Sztokholmie przyznano jej tytuł profesorski oraz etat redaktora w prestiżowym czasopiśmie matematycznym „Acta Mathematicaˮ. Co ciekawe w tym czasie biegle władała już językiem szwedzkim. W 1885 roku Kowalewska objęła funkcję dziekana Wydziału Matematyki. Początkowo zaproszono mnie w charakterze docenta. Przed upływem roku jednak mianowano mnie profesorem zwyczajnym, którym jestem od roku 1884. Poza wykładami spoczywa na mnie także obowiązek uczestniczenia w posiedzeniach rady i mam prawo głosu na równi z pozostałymi profesorami – wspominała uczona. Trzy lata później, w 1888 roku wygrała konkurs paryskiej Akademii Nauk – w temacie ścisłego rozwiązania równań ruchu bryły sztywnej, za co otrzymała Nagrodę Bordina. W 1889 roku wybrano ją na członkinią Petersburskiej Akademii Nauk. Poza matematyką była także zdolną pisarką. Napisała między innymi Uniwersytet chłopski w Szwecji, Wspomnienia z dzieciństwa, Nihilistka, Docent prywatny, Siostry Rejewskie i Rodzina Woroncowych, stąd nazywano ją nie tylko „Królową Matematyki” ale także „Michałem Aniołem Konwersacji”.
W 1889 roku uczona zakochała się w Maxie Kowalewskim dalekim krewnym zmarłego męża. Nie nalegała jednak na małżeństwo, gdyż wiedziała, że nie byłaby w stanie osiąść i zamieszkać z Maxem.
Sofja Kowalewska zmarła w kwiecie wieku, licząc zaledwie czterdzieści jeden lat, w Sztokholmie w lutym 1891 roku w wyniku powikłań po zapaleniu płuc. Została pochowana w mieście Solna na Cmentarzu Północnym, gdzie spoczywa wiele wybitnych i znanych ludzi.
Jeden z badaczy jej życia, Roger Cooke napisał: […] im bardziej zastanawiam się nad jej życiem i biorę pod uwagę ogrom jej osiągnięć, przeciwstawiając się ciężarowi przeszkód, które musiała przezwyciężyć, tym bardziej ją podziwiam. Dla mnie przyjęła bohaterską postawę osiągniętą przez niewielu innych ludzi w historii. Aby wejść, tak jak ona, do świata akademickiego, świata, którego prawie żadna kobieta jeszcze nie zbadała, i być konsekwentnie obiektem ciekawskiej analizy, podczas gdy wątpiące społeczeństwo patrzyło, na wpół oczekując, że je zawiedzie, zebrała ogromną odwagę i determinację. Aby osiągnąć, tak jak ona, co najmniej dwa główne wyniki o trwałej wartości stypendium, jest dowodem znacznego talentu, rozwiniętego dzięki żelaznej dyscyplinie […].
Zalecana Literatura:
Z. Kowalewska, Wspomnienia z dzieciństwa, PIW, Warszawa, 1978.
J. Navarro, Kobiety w matematyce: od Hypatii do Emmy Noether, RBA, Toruń, 2012, ss 84-91.
R. L. Cooke, The life of S. V. Kovalevskaya, [w]: V. B. Kuznetsov, ed., The Kowalevski Property, American Mathematical Society, 2002, ss 1–19.
P. Połubarinowa-Koczina: Zofia Kowalewska: Wielki matematyk rosyjski, Czytelnik, Warszawa, 1951.
J. Spicci, Beyond the Limit: The Dream of Sofya Kovalevskaya, Forge Books, New York, 2002.
Życie i praca Marii Skłodowskiej-Curie splatała się nieustannie z życiem i pracą Ernesta Rutherforda. Oboje uchodzili za twórców nauki o radioaktywności i oboje wnieśli do niej wiele. I mimo, że byli naukowymi konkurentami bardzo się szanowali i podziwiali.
Łączyło ich wiele. Ernest był zaledwie cztery lata młodszy od Marii (urodził się 30 sierpnia 1871 roku), pochodził podobnie jak ona z zubożałej rodziny. Był czwartym z dwanaściorga dzieci Jamesa i Marthy z domu Thompson. Matka Erna (jak go nazywano), podobnie jak rodzice Marii była nauczycielką. W domu państwa Rutherfordów, tak jak w domu państwa Skłodowskich, robiono wszystko, żeby dzieci miały dostęp do nauki. Ernest uwielbiał czytać, od wczesnego dzieciństwa wykazywał zainteresowanie otaczającym go światem. Tak jak Maria był niezwykle uzdolniony w kierunku nauk ścisłych. Przyszli nobliści byli prymusami, a nauka nie stanowiła dla nich żadnego kłopotu, a wszystko co osiągnęli zawdzięczali własnej ciężkiej pracy i wyrzeczeniom. Nauka jednak była dla nich pasją, a ciekawość odkrywania i podążania w nieznanych kierunkach wiedzy stanowiło sens ich życia. Warto dodać, że oboje mieli ciekawe pochodzenie: Maria urodziła się w „nieistniejącejˮ Polsce, a Ernest pochodził z odległej i zapomnianej Nowej Zelandii.
Obie rodziny dotknęły też wielkie tragedie. W 1876 roku na tyfus zmarła najstarsza siostra Marii Zofia, a dwa lata później na gruźlicę umarła matka uczonej Bronisława. Na początku 1886 roku dwaj młodsi bracia Ernesta, Herbert i Charles, utonęli po wypadnięciu za burtę łodzi. Również w dojrzałym wieku uczonych dotknęła wielka strata: w 1906 roku Maria straciła ukochanego męża Pierreʼa, zaś Ernest w 1930 roku jedyną córkę Eileen, która zmarła w wyniku powikłań poporodowych.
Maria Skłodowska-Curie, 1903, archiwum rodzinne Piotra Chrząstowskiego
Maria pierwszy raz spotkał się z Ernestem po jej obronie doktoratu, 25 czerwca 1903 roku, kiedy to uczony wraz z żoną przebywał w Paryżu. Rutherford wspominał:
W lecie odwiedziłem profesora i Madame Curie w Paryżu i okazało się, że ta ostatnia otrzymała w dniu mojego przybycia stopień naukowy doktora. Wieczorem mój stary przyjaciel, profesor Langevin, zaprosił moją żonę, mnie, [państwo] Curie i Perrina na kolację. Po bardzo żywym wieczorze przeszliśmy spontanicznie około godziny 11 do ogrodu, gdzie profesor Curie wyjął probówkę pokrytą częściowo siarczkiem cynku i zawierającą dużą ilość radu w roztworze. W ciemnościach jasność była olśniewająca i była wspaniałym finałem niezapomnianego dnia. W tym czasie nie mogliśmy nie zauważyć, że ręce profesora Curie miały stan bardzo zapalny i bolesny z powodu ekspozycji na promienie radu. To był pierwszy i ostatni raz, kiedy zobaczyłem [Piotra] Curie. Jego przedwczesna śmierć w wypadku ulicznym w 1906 roku była wielką stratą dla nauki, a szczególnie dla szybko rozwijającej się nauki o radioaktywności. [T. Pospieszny, Maria Skłodowska-Curie. Zakochana w nauce, Warszawa, 2020, s. 142.]
IV Konferencja Solvaya , Bruksela 1924, fot. Benjamin Couprie. W pierwszym rzędzie od lewej siedzą: Ernest Rutherford i Maria Skłodowska-Curie, [za:] http://www.solvayinstitutes.be Wzajemne docenianie pracy było niezwykłe. Maria była jedną z pierwszych uczonych uważających koncepcję jądra atomowego odkrytego przez Rutherforda za wyjątkowo ważną i słuszną. Pisała:
Pan Rutherford, wykorzystując badania nad rozpraszaniem promieni α, wywnioskował, iż owo dodatnio naładowane jądro musi mieć niezwykle ograniczone wymiary, tak że prezentuje się niemal jak wyizolowany, dodatni ładunek, otoczony pozostającymi w pewnej od niego odległości, rozproszonymi elektronami, które określają wielkość średnicy atomu. [T. Pospieszny, Maria Skłodowska-Curie. Zakochana w nauce, Warszawa, 2020, s. 188.]
Kiedy w 1913 roku William Ramsay opublikował pracę, w której twierdził, że jako pierwszy prawidłowo określił ciężar atomowy radu, robiąc przy tym złośliwe uwagi dotyczące kunsztu naukowego Marii, uczona napisała do Ernesta:
Wie Pan już, być może, że pan Ramsay opublikował pracę na temat ciężaru atomowego radu. Doszedł on do dokładnie takich samych wyników jak ja, a jego pomiary są mniej spójne od moich. Pomimo to w podsumowaniu napisał, że jego dokonanie jest pierwszą poprawną pracą z tej dziedziny!!! Muszę przyznać, że byłam zdumiona. [T. Pospieszny, Maria Skłodowska-Curie. Zakochana w nauce, Warszawa, 2020, s. 188.]
Ernest Rutherford, b.d., kolekcja Tomasza Pospiesznego
Rutherford rozumiał jej oburzenie. „Wiedział, że [Maria] podchodzi, podobnie jak on, do swoich badań naukowych bardzo osobiście i emocjonalnie. Wiedział też, jak trudno było jej się wybić w zdominowanym przez mężczyzn świecie nauk ścisłych. Mimo że czasami z zazdrości lub zwykłej konkurencji krytykował jej opinie, nigdy nie podzielał poglądu Ramsaya czy Boltwooda w kwestii jej warsztatu naukowego. Zawsze traktował ją jak równą sobie badaczkę.ˮ [T. Pospieszny, Maria Skłodowska-Curie. Zakochana w nauce, Warszawa, 2020, s. 188.]
Oboje byli laureatami Nagrody Nobla z chemii – Ernest został wyróżniony w 1908 roku, Maria otrzymała ją w 1911 roku. Co ciekawe, że część pieniędzy z pierwszej Nagrody Nobla z 1903 roku Maria przeznaczyła na wyremontowanie i zmodernizowanie łazienki, Ernest zaś kupił sobie wymarzony samochód. Uczeni wielokrotnie spotykali się na konferencjach Solvaya, gdzie wymieniali poglądy dotyczące współczesnego im stanu wiedzy o atomie. Po śmierci Marii Ernest Rutherford w opublikowanym w „Nature” obszernym wspomnieniu poświęconym jej pamięci napisał:
[…] wielu przyjaciół Marii Curie na całym świecie, którzy podziwiają nie tylko jej naukowe talenty, ale także jej wspaniały charakter i osobowość, opłakują przedwczesne odejście osoby, która wniosła tak wielki wkład do nauki, a poprzez swoje odkrycia przyczyniła się do pomyślności całej ludzkości. [T. Pospieszny, Maria Skłodowska-Curie. Zakochana w nauce, Warszawa, 2020, s. 344.]
Uczeni odeszli w podobnym wieku: Maria miała zaledwie sześćdziesiąt siedem lat (zmarła 4 lipca 1934 roku), Rutherford w wieku sześćdziesiąt sześć (zmarł 19 października 1937 roku).
Książki z kolekcji Tomasza Pospiesznego
Po śmierci uczonych ich bliscy napisali kanonicze już dziś biografie. Córka Marii, Ève Curie, poświeciła matce piękną biografię pt. Madame Curie (wyd. 1937, pierwsze polskie wyd. 1938). Kiedy ją zapytano, dlaczego tak szybko ukazała się książka, Ève odpowiedziała, że pośpiech był uzasadniony, bowiem nie chciała, aby ktoś napisał o jej matce niewłaściwie. W książce niektóre wątki zostały pominięte lub przemilczane, co nie zmienia faktu, że jest to najważniejsza biografia uczonej.
Pierwsze polskie wydanie książki Ewy Curie w języku polskim z 1938 roku, kolekcja Tomasza Pospiesznego
Z kolei biografię Rutherforda napisał bliski przyjaciel uczonego Arthur Eve. Jego książka pt. Rutherford. Being the Life and Letters of the Rt Hon. Lord Rutherford, O. M. ukazała się w 1939 roku. Większość materiałów dostarczyła rodzina uczonego. Lady Rutherford udostępniła wiele materiałów, ale jednocześnie ingerowała w jej treść i na jej prośbę niektóre sprawy przemilczano. Kiedy więc przed oficjalną biografią Eve’a ukazała się pośpiesznie napisana biografia jej męża pt. Power. The life story of Lord Rutherford, O. M. autorstwa Ivora B. N. Evansa — Lady Rutherford była dość zła i krytyczna.
Biografia autorstwa Arthura Eve’a z 1939 roku, kolekcja Tomasza Pospiesznego
Marię Skłodowską-Curie i Ernesta Rutherforda uznajemy dziś za jednych za najwybitniejszych uczonych wszechczasów. Ich osiągnięcia naukowe są wspaniałą pamiątką świadczącą o ich niebywałym geniuszu. Wszystkich, których interesuje ich życie i osiągnięcia odsyłam do książek, które napisali ci, którzy ich znali i widzieli jak uczeni pracowali, żyli, cieszyli się i smucili. Książki Ève Curie i Arthura Eve pokazują uczonych jako ludzi pełnych pasji, wpatrzonych w naukę niczym w baśń czarodziejską.
Ostatnie dni grudnia 1939 roku należały do Lise Meitner i Ottona Hahna, którzy wymieniając niezwykle intensywnie korespondencję rozpisywali się o jednym z najważniejszych wydarzeń w historii nauki. O rozszczepieniu jądra atomowego.
Zapraszamy do lektury fragmentu książki Tomasza Pospiesznego pt. Zapomniany geniusz. Pierwsza dama fizyki jądrowej, Novae Res, Gdynia 2016.
***
Teraz Hahn musiał się spieszyć. Wyniki były może do końca niezrozumiałe, a wyjaśnienie dalekie, ale trzeba było się spieszyć. W Paryżu ta „przeklęta baba”, Irène Joliot-Curie, mogła mieć rację z lantanem i dreptała tuż za Hahnem. Kto wie, może równo z nim. Na gotowy maszynopis Hahn naniósł szybkie poprawki. W ostatnim momencie, uzgadniając to z Fritzem, zmienił tytuł na „Odkrycie izotopów metali alkalicznych powstających przy napromieniowaniu uranu neutronami i ich zachowanieˮ. W tej subtelnej zmianie – izotopów metali alkalicznych – ujął rad i bar, bowiem oba pierwiastki należą do metali alkalicznych. 22 grudnia oryginalny maszynopis odebrał Paul Rosbaud (redaktor „Naturwissenschaften”), a Hahn wrzucił do skrzynki pocztowej kopię zaadresowaną do Lise Meitner. W ciągu doby tekst pracy Hahna i Strassmanna przeczytały tylko te dwie osoby:
[…]Gdy wykonaliśmy odpowiednie badania promieniotwórczych próbek baru, które nie zawierały żadnych produktów późniejszych rozpadów, wyniki były zawsze negatywne. Substancja promieniotwórcza rozłożona była równomiernie we wszystkich frakcjach baru. […]Doszliśmy do wniosku, że nasze „izotopy radu” mają właściwości baru. Jako chemicy właściwie powinniśmy stwierdzić, że nowe produkty nie są radem, lecz barem. Żadne inne pierwiastki oprócz radu i baru nie wchodzą w rachubę.[…]
[…]Jako chemicy powinniśmy w istocie zmienić podany wyżej schemat rozpadu i wstawić symbole Ba [bar] , La [lantan] , Ce [cer] na miejsce Ra [rad] , Ac [aktyn] , Th [tor]. Jednakże jako „chemicy jądrowi”, pracujący w dziedzinie bardzo zbliżonej do fizyki, nie możemy zdobyć się na podjęcie tak drastycznego kroku, który byłby sprzeczny z wszystkimi dotychczas obowiązującymi prawami fizyki jądrowej. Być może wskutek szeregu niezwykłych zbiegów okoliczności otrzymaliśmy fałszywe wskazania[1].
Artykuł autorstwa niemieckich uczonych musiał wzbudzać kontrowersje. Po pierwsze, praca ta potwierdzała przypuszczenia Idy Noddack, która głośno i samotnie kwestionowała wcześniejsze prace Fermiego oraz zespołu Hahn–Meitner–Strassmann. Po drugie, ostatecznie przyznawała rację trudnej i zawiłej interpretacji doświadczeń przeprowadzonych przez Irène Joliot-Curie i Pavlé Savića. Po trzecie, podważała wcześniejsze badania nad transuranowcami, które zaowocowały przecież wieloma publikacjami grupy berlińskiej. Wreszcie nikt nie miał pewności, a wręcz przeciwnie: całą masę wątpliwości, że atom uranu jakimś sposobem przekształca się w atom baru. Hahn cały czas rozmyślał o wynikach ostatnich doświadczeń. 27 grudnia zatelefonował do Rosbauda z zapytaniem, czy można jeszcze dodać krótki akapit uzupełniający wnioski.
Jeśli chodzi o „grupę transuranowców”, to pierwiastki te są chemicznie powiązane, ale nie identyczne z ich niższymi homologami renu, osmu, irydu i platyny.Nie zostały jeszcze wykonane eksperymenty, które by potwierdzały, że mogą one być chemicznie identyczne z jeszcze niższymi homologami mazurem [obecnie technet] , rutenem, rodem, palladem. […]Suma mas atomowych Ba + Ma [mazur] , na przykład, 138+101 wynosi 239![2]
I ponownie Hahn szukał poparcia dla swoich pomysłów u Lise Meitner. Dzień później napisał do niej i Frischa list[3] dotyczący dołączonego akapitu. Korespondencja była dynamiczna (skoro tak intensywnie pracowali na odległość, co mogłoby się wydarzyć, gdyby Lise nie musiała emigrować?).
28 grudnia 1938 roku
Chcę Ci jeszcze szybko napisać parę słów o moich fantazjach dotyczących Ba, etc. Może w Kungälv jest z Tobą Otto Robert i może omówicie ten problem przez chwilę. Wysłaliśmy Tobie rękopis naszej pracy*. […]Czy byłoby możliwe, aby uran 239 rozpadł się na 1 Ba i 1 Ma? Ba 138 i Ma 101 dają razem 239. Nie musi być akurat taka liczba masowa. Mogłoby też być 136 + 103, czy coś podobnego. Oczywiście nie zgadzają się liczby atomowe. Kilka neutronów musiałby się przemienić w protony, aby uzyskać takie ładunki. Czy to energetycznie jest możliwe? Wszystko inne jest udowodnione,[…]wówczas transuranowce „ausenium” i „hesperium” [pierwiastki 93 i 94] znikną. Nie wiem, czy to by mnie bardzo smuciło, czy nie*[4].
Było to intrygujące stwierdzenie. Jeśli Hahn miał rację, to odkrył zupełnie nowe zjawisko i jednocześnie przekreślił lata wspólnych badań z Meitner. Swoimi badaniami podważył istnienie transuranowców! Powodowało to znaczne zamieszanie w fizyce i chemii jądrowej. Przekreślało prace Fermiego i jego rzymskiej grupy, przekreślało prace Meitner i Hahna. Nieco oszołomiona Lise wyznała:
Nie mogliśmy tego zauważyć. To jest zupełnie niespodziewane. Hahn jest dobrym chemikiem i ufałam, że jeśli zidentyfikował jakieś pierwiastki, to miał rację. Kto mógłby pomyśleć, że chodzi o coś znacznie lżejszego?[5]
Kiedy Hahn i Strassmann przeprowadzali pierwsze doświadczenia z neutronami i uranem, Lise Meitner obchodziła pierwsze Boże Narodzenie na emigracji. Z dala od rodziny, przyjaciół. Z dala od domu. Jedyną bliską osobą, która mieszkała w Szwecji, była Eva von Bahr-Bergius, z którą Meitner zaprzyjaźniła się jeszcze w latach dwudziestych. Eva wspólnie z mężem Niklasem Bergiusem (1871–1947) wybudowała piękny dom w Kungälv, oddalonym około dwadzieścia kilometrów od Göteborga, do którego zaprosiła na święta bożonarodzeniowe Meitner. Uczona chyba z radością przyjęła zaproszenie, tym bardziej że miała się tam spotkać z ukochanym siostrzeńcem Ottonem Robertem. Frisch – podobnie jak ciotka – był uchodźcą pracującym w Kopenhadze pod opieką Nielsa Bohra. Niestety święta 1938 roku były dla nich obojga bardzo przykre i smutne. Spędzali je z dala od rodziny i nie wiedzieli, czy osoby bliskie ich sercom nadal żyją. Od czasu aresztowania ojca Frischa nie było także kontaktu z jego matką.
Meitner zatrzymała się w przytulnym pensjonacie i z niecierpliwością oczekiwała na swojego siostrzeńca. Pojawił się wieczorem, zmęczony podróżą. Nazajutrz podekscytowana Meitner zaczęła relacjonować siostrzeńcowi doświadczenia Hahna. Frisch początkowo był bardzo sceptyczny wobec opowieści ciotki. W tym czasie zajmował go problem magnetycznych właściwości neutronów i miał nadzieję, że przedyskutuje go z Lise. Ta jednak nie dawała za wygraną. Zmusiła siostrzeńca, by przeczytał list Hahna z 19 grudnia. Po pierwszej lekturze listu Frisch nie był nastawiony przychylnie:
– Nie, Hahn był zbyt dobrym chemikiem. Ale jak bar może tworzyć się z uranu?[7]
– Ale to niemożliwe! Nie można jednym uderzeniem odłupać od jądra stu cząsteczek. Nie można go nawet przeciąć. Wystarczy oszacować siły jądrowe, wszystkie te wiązania, które musisz naraz zerwać – to fantazja. To zupełnie niemożliwe, by coś takiego mogło się z jądrem zdarzyć[8].
Uczona była przekonana, że nie może być mowy o błędzie. Błędy mogła popełniać Irène Joliot-Curie, ale nie współpracownicy jej, Lise Meitner. Wybrali się na wspólny spacer. Frisch założył narty, a ciotka towarzyszyła mu pieszo. Kiedy siostrzeniec wyraził obawę, że Lise za nim nie nadąży, odpowiedziała, że szybkie chodzenie ją odmładza i utrzymuje w ruchu[9]. Po latach Frisch wspominał:
[…]Usiedliśmy oboje na pniu drzewa (wszystkie dyskusje miały miejsce, gdy szliśmy przez las w śniegu, ja na moich biegówkach, a Lise Meitner (zgodnie z wcześniejszym zapewnieniem, szła równie szybko bez nart) i zaczęliśmy wykonywać obliczenia na skrawkach papieru[10].
Jak może z uranu powstać bar? Nikomu nigdy nie udało się oderwać od jądra żadnych fragmentów większych niż protony czy jądra helu (cząstki alfa) i należało odrzucić myśl, że możliwe jest oddzielenie naraz wielu takich cząstek.[…]Wykluczone również, by jądro uranu po prostu pękło. Naprawdę, jądro to nie krucha bryłka, którą można rozłupać lub przełamać. Bohr podkreślał, że jądro bardziej przypomina kroplę cieczy[11].
Rzeczywiście model kroplowy jądra atomowego zaproponowany przez Bohra umożliwił wyjaśnienie zagadki Lise i Robertowi. Frisch podsumowywał:
Powoli zdaliśmy sobie sprawę z tego, że rozszczepienie uranu na dwie w przybliżeniu równe części… należy ująć z innej strony. Obraz byłby taki… jądro atomu zmienia stopniowo pierwotny kształt, wydłuża się, zwęża pośrodku, po czym dzieli się na dwie połowy[12].
Im większy ładunek w jądrze atomowym, tym większa jego niestabilność. Uran ma aż 92 protony, zatem jest niestabilny (protony odpychają się, przez co niestabilność jądra wzrasta). Dlatego w przyrodzie nie ma naturalnie występujących pierwiastków o liczbie protonów większej niż 92. Wystarczył jeden jedyny neutron, który powodował zwiększenie energii jądra, wskutek czego jądro zaczęło drgać i w efekcie pękać. Powstające dwa nowe jądra oddalają się od siebie z dużą prędkością. Ich masa było nieco mniejsza niż jądro macierzyste, a ów ubytek masy zgodnie z równaniem Einsteina E = mc2 przekształcał się w energię wynoszącą 200 MeV![13] Frisch wspominał:
Lise Meitner obliczyła, że dwa jądra powstałe w wyniku podziału jądra uranu będą lżejsze niż pierwotne jądro uranu o około jednej piątej masy protonu… Zgodnie z formułą Einsteina E = mc2… jedna piąta masy protonu jest równoważna 200 MeV[14].
24 grudnia 1938 roku w przepięknie zaśnieżonym lesie w odległej Szwecji Meitner wspólnie ze swoim siostrzeńcem wyjaśniła jedną z zagadek Matki Natury. Wszystko stało się jasne. Lise napisała do Hahna, ale jeszcze nie wyznała mu, że wspólnie z Frischem odkryła rozwiązanie.
29 grudnia 1938
Drogo Otto,
bardzo dziękuję za Twój list z 28… Wyniki Ra-Ba są bardzo ekscytujące. Otto R. i ja łamiemy sobie głowy; niestety nie dostałam jeszcze maszynopisu, ale właśnie posłałam po niego i mam nadzieję otrzymać go jutro. Wtedy będziemy mogli o tym lepiej pomyśleć.
1 stycznia 1939, godz. 12:30
Drogi Otto,
rok zaczynam listem do Ciebie. Może to być dobry rok dla nas wszystkich. Przeczytaliśmy i przemyśleliśmy bardzo dokładnie Twoją pracę, ale czy energetycznie byłoby możliwe, żeby takie ciężkie jądro pękało. Wprawdzie Twoja hipoteza o powstawaniu Ba i Ma jest niemożliwa z kilku powodów[15].
[10] O. R. Frisch, „What Little I Remember”, op. cit., str. 116.
[11] R. Rhodes, „Jak powstała bomba atomowa”, op. cit., str. 230.
[12] R. Jungk, „Jaśniej niż tysiąc słońc”, op. cit., str. 62.
[13] 200 milionów eV (elektronovoltów). Energia z jednego atomu nie oszałamia, ale z jednego grama uranu już tak. Znajduje się w nim bowiem 2,53 x 1022 atomów!
[14] N.-T. H. Kim-Ngan, „Niedoceniony przez komitet Nagrody Nobla…”, op. cit., str. 20.
[15] R. L. Sime, „Lise Meitner…”, op. cit., str. 240.
Z okazji 122. rocznicy odkrycia radu zapraszamy do lektury fragmentu rozdziału Robaczki świętojańskie z książki Tomasza Pospiesznego pt. Maria Skłodowska-Curie. Zakochana w nauce, Wydawnictwo Po Godzinach, Warszawa 2020.
***
Na kolejny sukces małżonkowie Curie nie musieli zbyt długo czekać. Po spędzonych wakacjach w Owernii na południu Francji z większym zapałem zabrali się do pracy. Ich wnuczka Hélène Langevin-Joliot uważa, że
[…] po ślubie Maria i Piotr oczywiście pracowali wspólnie. Tak urządzili swoje życie by móc dużo czasu poświęcić pracy. To badaniom naukowym podporządkowali wszystko. Ale chciałabym wspomnieć, że pomimo tak intensywnej pracy mieli czas na rozrywkę np. spędzali razem wakacje. Między odkryciem polonu i radu wyjeżdżają z rodziną Piotra do Owernii, a więc przerywają badania naukowe na całe dwa miesiące. Dziś to może się wydawać absolutnie niesamowite.[1]
W połowie listopada przeprowadzili serię doświadczeń, dzięki którym otrzymali bardzo promieniotwórczy produkt. Przy udziale Gustave Bémonta udało im się pozyskać próbkę zawierającą pierwiastek bar (symbol Ba, liczba atomowa 56) o promieniotwórczości dziewięćset razy większej niż uran! 26 grudnia 1898 roku wspólnie z asystentem Bémontem ogłosili, że odkryli drugi pierwiastek chemiczny – rad (symbol Ra, liczba atomowa 88)[2]. W komunikacie zatytułowanym O nowej silnie radioaktywnej substancji zawartej w blendzie smolistej[3] napisali:
Wyżej wyszczególnione fakty każą nam przypuszczać, że w tym nowym związku promieniotwórczym znajduje się nowy pierwiastek, który proponujemy nazwać radem. Nowy ten związek zawiera na pewno znaczną ilość baru, mimo to jednak jest on silnie promieniotwórczy. Promieniotwórczość radu musi być, zatem ogromna.[4]
Małżonkowie Curie na okładce czasopisma „Le Petit Parisien” z 10 stycznia 1904, archiwum Tomasza Pospiesznego
Maria będzie później żałowała, że rad przyćmił swą międzynarodową sławą polon. Poza tym polon bardziej strzegł swoich tajemnic. Jeden z pierwszych polskich współpracowników Marii, Mirosław Kernbaum, po latach powiedział o polonie – Dziwnym więc trafem dzieli on los narodu, ku czci którego otrzymał imię: egzystuje de facto, jako pierwiastek chemiczny, de iure jednak przez międzynarodową komisję chemików nie jest za taki uznawany.[5] Polska jeszcze długo nie będzie miała szczęścia…
Jaką rolę w odkryciu radu odegrał Bémont nie wiadomo do końca. Znakomita biografka Marii, Françoise Giroud, podaje, że uczestniczył w badaniach, ponieważ w zeszycie laboratoryjnym z maja 1898 roku istnieją notatki wykonane jego ręką.[6] Jego badania mogły jednak ograniczać się do drobnych prac laboratoryjnych. Nie mniej jednak jest współautorem komunikatu donoszącym o istnieniu radu.
Maria i Piotr Curie oraz ich asystent Petit w szopie przy ul. Lhomond 42, ok. 1898, domena publiczna
Polon i rad zostały zaobserwowane przez małżonków Curie dzięki dużej aktywności promieniotwórczej. Teraz uczeni potrzebowali dodatkowego dowodu, aby potwierdzić, że oba pierwiastki istnieją. Eugène Demarçay specjalista z zakresu spektroskopii emisyjnej wykonał widma nowo odkrytych pierwiastków. Demarçay rozgrzewał w płomieniu palnika substancje zawierające polon i rad do stanu gazowego, a następnie przeanalizował widma, które powstały w wyniku rozszczepienia światła przez nie emitowanego. Curie mieli dowód istnienia radu w postaci widma emisyjnego, na którym było widać słabą, ale wyraźną linię fioletową przy 381,48 nm odpowiadającą temu pierwiastkowi.[7] Niestety stężenie polonu w badanej próbce było zbyt słabe, żeby zaobserwować linię emisyjną. Dlaczego? Otóż trzy pierwiastki promieniotwórcze uran, tor i rad należą do pierwiastków długożyciowych, przez co uczeni prawie w ogóle nie obserwowali spadku ich promieniotwórczości. Z kolei polon należy do pierwiastków krótkożyciowych, dla których aktywność promieniotwórcza maleje wraz z upływem czasu. Ponadto jest też pierwiastkiem rzadkim. W jednej tonie blendy uranowej (w zależności od jej pochodzenia) znajduje się około 1,4 grama radu i tylko 0,1 miligrama polonu. Maria wysunęła hipotezę, że aktywność promieniotwórcza jest stała dla danego pierwiastka. Pojawiła się więc wątpliwość czy polon nie jest bizmutem, którego aktywność została wzbudzona przez rad. Dodatkowo przemawiała za tym faktem obecność w widmie emisyjnym tylko linii bizmutu. Z drugiej strony Maria wnioskowała, że ilość polonu w badanej próbce może być tak mała, że nie zauważono jego linii. Jedynym sposobem na potwierdzenie tej teorii było otrzymanie próbki o większym stężeniu polonu, przez co byłoby można dokładnie zbadać jego właściwości chemiczne. Niestety to zadanie przez długie lata było nieosiągalne. Dopiero w czerwcu 1902 roku niemiecki chemik pracujący w Berlinie, Willy Marckwald wydzielił wolny polon. Zanurzył on czysty bizmut w roztworze otrzymanym przez roztworzenie[8] bizmutu otrzymanego z odpadów po przerobie blendy uranowej w kwasie solnym. Bizmut jako aktywniejszy pierwiastek wyparł z soli polon, który osadził się na jego powierzchni[9]. W ten sposób roztwór stawał się nieaktywny, a powierzchnia bizmutu stawała się promieniotwórcza poprzez obecność cienkiej warstewki nowego ciała. Uczony sądząc, że odkrył nowy pierwiastek, który właściwościami zbliżony był do telluru, nazwał go radiotellurem. Maria Curie udowodniła, że radiotellur i polon mają te same właściwości fizyczne i chemiczne – są więc tą samą substancją. Koronnym argumentem było porównanie czasów połowicznego zaniku obu pierwiastków. Kiedy okazało się, że wynosi on w obu przypadkach 140 dni, Maria nie miała wątpliwości. W sprawozdaniu pt. O zmniejszeniu się radioaktywności polonu wraz z upływem czasu pisała: Polon Marckwalda wydaje się identyczny z naszym oraz nie ma wątpliwości […] że substancja przygotowana przez Marckwalda jest po prostu tą samą, którą odkryłam wcześniej i opisałam jako polon.[10] Maria zadbała, aby jej wyniki badań, wnioski i eksperymenty ukazały się także po niemiecku. Kiedy jest pewna swych racji potrafi być bezwzględna. W świecie mężczyzn to trudna sztuka, ale za to jak bardzo imponująca. Marckwald, uznając rację Marii, powołując się na Szekspira, napisał: Jeśliwonną różę nazwać inaczej, czyż przestanie pachnieć?* Proponuję w przyszłości zastąpić nazwę radiotellurprzez polon.[11]
Widmo emisyjne było wystarczającym dowodem istnienia radu dla fizyków, nie przekonywało jednak chemików. Chemicy żądali właściwości chemicznych nowych pierwiastków, chcieli znać masę radu. Irena Joliot-Curie wspominała:
W tym czasie oznaczenie widma i ciężaru atomowego radu miało wielkie znaczenie dla przekonania chemików, że nowe radiopierwiastki były takimi samymi substancjami, jak inne, różniąc się jedynie posiadaniem właściwości promieniotwórczych.[12]
Maria i Piotr Curie w szopie przy ulicy Lhomond 42, ok. 1898, domena publiczna
Ażeby Maria mogła określić masę atomową radu potrzebowała dziesiątek ton smółki uranowej, a ta niestety po pierwsze zawierała bardzo małe ilości radu, a po drugie kosztowała fortunę. Z pomocą przyszła fabryka uranu z Czech, znajdująca się w Jachymowie. Wspaniałomyślnie rząd austriacki po namowach Franza Exnera – późniejszego nauczyciela fizyki eksperymentalnej Erwina Schrödingera i Mariana Smoluchowskiego – podarował małżonkom Curie najpierw sto kilogramów, a potem całą tonę ziemi, stanowiącą odpady po wydzieleniu uranu. W rozprawie doktorskiej Maria napisała:
To ta pozostałość zawiera substancje radioaktywne; jej czynność promieniotwórcza jest cztery i pół razy większa od aktywności uranu metalicznego. Rząd austriacki, do którego należą kopalnie blendy, uprzejmie zaoferował nam na cele naszych poszukiwań jedną tonę tych odpadków i upoważnił kopalnie do dostarczania nam większej ilości ton tego materiału.[13]
Odpady te zawierały drogocenny rad i polon. Wreszcie, fundacja barona Rothschilda za bardzo niską cenę odkupiła od rządu Austrii kilka ton ziemi. Maria rozpoczęła swoją przygodę z radem. Zaczęła rodzić się legenda.
Wnętrze laboratorium państwa Curie przy ul. Lhomond 42, 1898, Bibliotheque numerique du Cirad en agronomie tropicale, domena publiczna
W 1902 roku po serii bardzo żmudnych i ciężkich prac laboratoryjnych, udało się Marii pozyskać 1 decygram[14] chlorku radu (RaCl2) i wyznaczyć masę radu na 225±1 (dziś wiemy, że wynosi ona 226,025 u). Wszystkie prace małżonkowie Curie wykonywali w legendarnej, drewnianej szopie przy ulicy Lhomond 42 niedaleko Wyższej Szkoły Fizyki i Chemii Przemysłowej Miasta Paryża, gdzie wykładał Piotr. Nie było tam wentylacji, zimą było bardzo zimno, podczas deszczu przeciekał dach, a latem panował niewyobrażalny ukrop. Maria pisała:
Była to pozbawiona wszelkich sprzętów szopa z desek, o cementowej podłodze i oszklonym dachu, przez który miejscami przeciekał deszcz. Całe wyposażenie składało się ze zniszczonych drewnianych stołów, żelaznego pieca, dającego bardzo niedostateczne ciepło i z tablicy, na której Piotr chętnie pisał i rysował. Nie było tam wyciągu do robót, przy których wydzielają się szkodliwe gazy, trzeba było zatem wykonywać takie prace na podwórzu, gdy pogoda na to pozwalała. Podczas deszczu musieliśmy je prowadzić w szopie, przy otwartych drzwiach.[15]
[2] Rad leży w układzie okresowym pod barem. Oba pierwiastki należą do tej samej grupy berylowców.
[3] M. P. Curie, Mme. P. Curie, M. G. Bémont, Sur une nouvelle substance fortement radio-active, contenue dans la pechblende, CR 127, 1898, str. 1215–1217.
[5] M. Skłodowska-Curie, Badanie ciał radioaktywnych, dz. cyt., str. <4>.
[6] F. Giroud, Maria Skłodowska-Curie, dz. cyt., str. 88.
[7] Linie w widmie emisyjnym są swoistymi odciskami palców pierwiastków chemicznych. Każdy z nich ma swoją własną, charakterystyczną dla siebie linię.
[8] Roztworzenie to zjawisko chemiczne, które polega na rozpuszczaniu ciała stałego przy jednoczesnej jego reakcji z rozpuszczalnikiem lub składnikiem roztworu. Po odparowaniu rozpuszczalnika nie powstanie substancja wyjściowa, ale produkt reakcji.
[9] Maria pisała: Można wydzielić radiopierwiastki z roztworu drogą elektrolizy lub osadzania na odpowiednio dobranym metalu, zanurzonym w roztworze. […] Tak np. w celu oddzielenia lub oczyszczenia polonu osadza się go zazwyczaj na miedzilub srebrze. Zob. M. Skłodowska-Curie, Promieniotwórczość, reprint wydania z 1939, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa 2011, str. 340.
[10] S. Quinn, Życie Marii Curie, dz. cyt., str. 249–250.
[11] M. Fontani, M. Costa, M.V. Orna, The lost elements. The periodic table’s shadow side, Oxford University Press, New York, 2014, str. 472.
*W. Szekspir, Romeo i Julia, akt II, scena 3, przekład J. Iwaszkiewicz, Świat Książki, Warszawa 1999.
[12] I. Joliot-Curie, Naturalne pierwiastki, dz. cyt., str. 8.
[13] M. Skłodowska-Curie, Badanie ciał radioaktywnych, dz. cyt., str. 19.
Mileva Marič odeszła w zapomnieniu i taką też pozostała przez wiele lat. Pochowano ją w obrządku prawosławnym w jej ukochanym Zurychu na cmentarzu Nordheim. Nagrobek Milevy Marič został usunięty w latach siedemdziesiątych ubiegłego stulecia przez władze cmentarza, gdyż przez wiele lat po jej śmierci nie była uiszczana opłata za grób. Z inicjatywy dra Ljubo Vujevicia z The Tesla Memorial Society w Nowym Yorku odnaleziono grób Milevy w 2004 roku. Zainicjowano także ponowne wzniesienie nagrobka kobiety, która była towarzyszką życia Alberta Einsteina.
Proponujemy Państwu lekturę fragmentu książki Tomasza Pospiesznego pt. Pasja i geniusz. Kobiety, które zasłużyły na Nagrodę Nobla opisujący życie Milevy Marič.
Pani Einstein-Marity
Niezwykle uporządkowana Mileva wprowadziła ład w życie Einsteina. W dzieciństwie nauczyła się szyć, a później także gotować. Nie tylko szyła swoje sukienki, ale także reperowała ubrania Alberta. Umiała trafić do jego serca przez swój intelekt, ale także przez jego żołądek. Roztargnienie, brak organizacji, bałaganiarstwo i zapominalstwo Einsteina była zdolna okiełznać jak nikt inny. Tak doskonale nam idzie wspólne zgłębianie naszych mrocznych dusz, picie kawy, jedzenie kiełbasek itd. – pisał Albert[1]. Jeden z biografów Einsteina Peter Michelmore napisał, że Mileva:
[…] potrafiła szybciej niż [Albert] wyrobić sobie zdanie na temat ludzi i była bardzo stała w swoich wyborach. W każdej sprawie zajmowała zdecydowany punkt widzenia. Z góry planowała zarówno przebieg swoich studiów, jak i rozkład każdego dnia. Próbowała również wprowadzić porządek w życie Alberta. I matematyka była tylko częścią tego wszystkiego. Namawiała go do regularnego spożywania posiłków i uczyła oszczędności. Często wściekała się na jego roztargnienie. Wtedy spoglądał na nią ze spokojem, jak tupie nóżką niczym mała dziewczynka, a w jego oczach pojawiały się łobuzerskie ogniki. Potem robił śmieszne miny lub opowiadał żarcik i jej złość powoli ustępowała[2].
Mileva,Albert i ich pierwszy syn Hans Albert, Berno, 1904, Instytut Leo Baecka, [za:] http://einstein-virtuell.mpiwg-berlin.mpg.de/VEA/SC-1668110491_MOD-736752543_SEQ1883770543_SL-110908586_en.htmlNiestety nie wszyscy byli przychylni ich związkowi. Przyjaciele Milevy uważali, że Albert nie jest dla niej odpowiednim partnerem. Z kolei jego znajomi nie potrafili zrozumieć, co widzi w utykającej, humorzastej Milevie. Albert jednak podziwiał jej inteligencję. I był zakochany. Kiedy jeden z jego kolegów powiedział: Wiesz, nigdy nie odważyłbym się poślubić kobiety, która nie byłaby zupełnie zdrowa, Albert odpowiedział: Ale ona ma taki cudowny głos[3].
Tymczasem zbliżał się czas egzaminów: międzykursowego i końcowego. Einstein zdał egzamin międzykursowy w październiku 1898 roku, Mileva zaś musiała przygotowywać się do niego dłużej z racji pobytu na uniwersytecie w Heidelbergu. Przystąpiła do niego w październiku następnego roku, zdając z piątą lokatą. Latem 1899 roku, gdy Mileva przygotowywała się do egzaminów, Einstein przebywał na wakacjach wraz z matką i siostrą. Pokazał wówczas matce zdjęcie Milevy. W liście do ukochanej pisał, że wywarło ono na Paulinie Einstein wrażenie – moja stara matka pozdrawia Cię jak najserdeczniej[4]. Niestety kiedy Frau Einstein zorientowała się, że nie jest to kolejny romans syna, lecz związek poważny, jej zachowanie względem Milevy uległo radykalnej zmianie. Przeszkadzało jej, że jest Serbką, że nie jest Żydówką, że pochodzi z pospolitej rodziny, że jest starsza od Alberta, że jest ułomna fizycznie. Jednym słowem, była najgorszą z możliwych partii dla jej ukochanego syna. Pierwsze niepokojące wieści nadesłała Helena Kaufler, która na własne oczy widziała niechęć Pauliny do Milevy. Zrozpaczona Mileva pisała do niej:
Sądzisz, że ona w ogóle mnie lubi? Naprawdę się ze mnie tak strasznie naśmiewała? Wiesz, poczułam się głęboko nieszczęśliwa, ale potem się pocieszyłam, że w końcu ten najważniejszy dla mnie człowiek jest innego zdania, a kiedy on roztacza nade mną wspaniałą wizję naszej przyszłości, nie myślę już o moim nieszczęściu[5].
Niestety najgorsze miało dopiero nadejść. Latem 1900 roku przystąpili do egzaminów końcowych składających się z części pisemnej i ustnej. Einstein zdał, Mileva nie. Jako jedyna uzyskała średnią poniżej pięciu. Tym samym jako jedyna nie otrzymała dyplomu. Być może miał na to wpływ egzamin ustny, który Mitza zdawała przed profesorami mężczyznami, z góry przeświadczonymi o braku zdolności kobiet do nauk ścisłych. Możliwe też, że nie opanowała całego materiału, przecież w tym samym roku zdawała także egzamin międzykursowy. Załamana wróciła do rodziców z mocnym postanowieniem przystąpienia do egzaminów w roku następnym. Albert zaś udał się na wakacje z rodziną. Niestety sytuacja pomiędzy nim i matką była bardzo napięta. Kiedy Paulina dowiedziała się, że Mileva oblała egzaminy, zapytała: No, i kim teraz będzie ta twoja Laleczka?. Z pewnością i wyzwaniem w oczach Albert odpowiedział: Moją żoną. Ona jest takim samym molem książkowym jak ty, a tobie potrzebna jest żona. Gdy ty będziesz miał trzydziestkę, z niej będzie już stara krowa! – krzyczała Paulina[6]. Jej wściekłość zmieniła się w histerię i bezradność:
Mama rzuciła się na łóżko, ukryła głowę w poduszkach i rozpłakała jak dziecko. Gdy tylko się opanowała, natychmiast przystąpiła do gwałtownego ataku: „W ten sposób rujnujesz swoją przyszłość i grzebiesz swoje szanse! Żadna porządna rodzina by jej nie chciała. Jeśli zajdzie w ciążę, dopiero będziesz się miał z pyszna!” Przy tym ostatnim wybuchu, przed którym było jeszcze wiele innych, w końcu straciłem cierpliwość. Zaprzeczyłem ostro, abyśmy żyli w grzechu, po czym zrugałem ją, na czym świat stoi […][7].
Akademia Olimpijska: Albert Einstein z przyjaciółmi: Conradem Habichem i Maurice’m Solovine’em, ok. 1903, domena publiczna
Wydaje się, że młody Einstein był na tyle uparty, że dążył do celu za wszelką cenę. Dopiero teraz widzę jak szaleńczo Cię kocham – pisał do Milevy[8]. Żywiołowe wręcz wyznania uczuć mogą świadczyć o buncie Alberta przeciw rodzinie, chociaż na pewno kochał Milevę. Napisał do niej:
Co będzie, to będzie, ale i tak będziemy mieć najpiękniejsze życie pod słońcem. Przyjemna praca i bycie razem – czegóż można jeszcze chcieć? Jak uciułamy trochę pieniędzy, kupimy sobie rowery i będziemy co parę tygodni jeździć na wycieczki[9].
Państwo Einsteinowie w Kacu w Serbii, ok. 1912, domena publiczna
Czy ta romantyczna deklaracja nie nasuwa skojarzeń z francusko-polską parą uczonych pędzących na bicyklach?
Niestety sytuacja materialna Einsteina z dnia na dzień się pogorszyła: chcąc go ukarać, rodzina przestała przekazywać mu pieniądze. Udzielał korepetycji, ale był to skromny dochód, który nie pozwalał na finalizację planów Alberta i Milevy. A przecież mieli marzenia. Jakże cudnie będzie wyglądał świat, gdy będę już Twoją małą żoną – pisała Mileva[10]. Niestety rodzice Einsteina robili wszystko, co tylko mogli, by utrudnić im życie. Zwłaszcza Milevie. Do Heleny pisała:
Ta kobieta najwyraźniej obrała sobie za cel życia, by zatruć życie nie tylko moje. Ale i swojego syna […]. Posunęli się nawet do tego, by napisać list do moich rodziców, w którym oczerniają mnie w stopniu wręcz skandalicznym[11].
Brak stabilności finansowej nie ograniczył jednak pracy twórczej Alberta. Pierwszą pracą, której się poświęcił, było padanie efektu kapilarnego, czyli podnoszenie się słupa cieczy w bardzo cienkiej rurce. 3 października 1900 roku, na dwa miesiące przed wysłaniem artykułu do redakcji „Annalen der Physikˮ, w liście do Milevy pisał:
Wnioski na temat efektu kapilarnego, do jakich doszedłem niedawno w Zurychu, wydają mi się całkiem nowe, choć są takie proste. Kiedy oboje będziemy już w Zurychu, spróbujemy zdobyć jakieś dane empiryczne na ten temat […]. Jeśli ujawnia się tu jakieś prawo przyrody, poślemy rezultaty do „Annalenˮ[12].
Walter Isaacson, autor doskonałej biografii Einsteina, podaje, że był to początek sporów dotyczących udziału Milevy Marič w badaniach i teoriach Einsteina. W tym jednak przypadku wydaje się, że jej rola ograniczała się do słuchaczki i być może dyskutantki. W liście do Heleny Savić (od 15 listopada 1900 roku żony Milivojea Savića) pisała:
Albert napisał artykuł z fizyki, który prawdopodobnie wkrótce zostanie opublikowany w „Annalen der Physik”. Możesz sobie wyobrazić, jaka jestem dumna z mojego ukochanego. Nie jest to taki zwykły artykuł, tylko bardzo ważny – dotyczy teorii cieczy. Wysłaliśmy kopię do Boltzmanna, gdyż chcielibyśmy wiedzieć, co on o tym myśli. Mam nadzieję, że nam odpisze[13].
Boltzmann nie odpisał, a artykuł Einstein z czasem uznał za mało znaczący. Pomimo pierwszego osiągnięcia naukowego nadal pozostawał bez pracy. Zmuszony przez rodzinę pojechał do Mediolanu. Miało to służyć rozdzieleniu kochanków.
Z listów można wnioskować, że im dłużej Albert nie widział Mitzy, tym bardziej szalał z miłości:
Bez Ciebie brakuje mi pewności siebie, przyjemności z pracy, przyjemności z życia – krótko mówiąc, bez Ciebie moje życie straciło swój sens[14].
Jakże mogłem przedtem żyć. […] Bez myśli o Tobie wolałbym umrzeć. […] Spośród wszystkich ludzi, Ty kochasz mnie najmocniej i najlepiej rozumiesz. […] Wieczorami myślę o tym, że [Ty] myślisz o mnie i całujesz w łóżku poduszkę. Wiem, jak to jest! […]. Moim szczęściem jest Twoje szczęście. […] Moje życie zyskuje prawdziwy sens tylko dzięki myślom o Tobie. […] Jak cudownie było ostatnim razem, gdy mogłem Cię obejmować, tak jak natura stworzyła[15].
W innym liście dodawał: Na zawsze pozostaniemy studentami i gówno będzie nas obchodził cały świat[16]. Niestety nie dane było im pozostać wiecznymi studentami. Mileva rozpoczęła przygotowania do ponownego podejścia do egzaminów końcowych i miała nadzieję, że uzyskanie dyplomu umożliwi jej przygotowanie rozprawy doktorskiej. Promotorem miał być profesor Heinrich Martin Weber (1842–1913). W marcu 1900 roku w liście do Heleny pisała:
Profesor Weber przyjął moją propozycję pracy dyplomowej i był z niej całkiem zadowolony. Szukam tematów dalszych badań, które będę musiała wykonać. E. [Albert] wybrał dla siebie bardzo interesujący temat[17].
Albert z kolei pisał:
Ja również cieszę się bardzo, że będziemy nad tym razem pracowali. Nie wolno Ci teraz przerywać Twoich badań – jakiż będę dumny, gdy moje małe kochanie zostanie już panią doktor, a ja wciąż będę zupełnie zwykłym człowiekiem![18]
Niestety współpraca nie układała się idealnie. Weber był autorytatywny i z czasem coraz mniej lubił zuchwałego Einsteina. Milevie dostawało się także. Wiosną następnego roku pisała:
Miałam kilka kłótni z Weberem, ale jestem już do tego przyzwyczajona[19]. Dzięki obawom Webera nie udało mi się jeszcze zdobyć doktoratu [pomimo ukończenia kursu]. Znosiłam zbyt wiele i w żadnym wypadku nie wrócę do niego ponownie[20].
Można z dużą dozą prawdopodobieństwa przypuszczać, że Mileva nie uzyskała dyplomu, gdyż Albert nie potrafił ukrywać niechęci do profesora Webera. Tymczasem życie Milevy uległo radykalnej zmianie.
W maju 1900 roku spędziła z Albertem piękne, romantyczne i namiętne wakacje nad jeziorem Como. Niebawem okazało się, że jest w ciąży. 28 maja Einstein w liście do ukochanej pisał: Jak się czujesz, kochana? Jak tam chłopiec? […] Jak tam nasz mały synek?[21]. Pomimo dolegliwości ciążowych Mileva starała się przygotować do egzaminu, który miała zdawać w lipcu. Niestety i tym razem się nie udało. Abraham Pais podkreśla: teraz, gdy już wiemy, że w tym czasie była w odmiennym stanie, tym bardziej winniśmy podziwiać jej odwagę i upór, by zdawać raz jeszcze[22]. Bez dyplomu, w ciąży, bez ukochanego przy sobie wróciła do Nowego Sadu. Musiała zmierzyć się sama z trudami ciąży i porzuconymi marzeniami o karierze naukowej. Co jednak najgorsze, była przekonana, że na zachodzie zostanie uznana za ladacznicę, która zrujnowała Albertowi życie, na wschodzie zaś za idiotkę[23]. Jesienią 1901 roku Einstein został prywatnym nauczycielem w Szafuzie nad Renem. Jednocześnie wiązał nadzieje z otrzymaniem posady w urzędzie patentowym w Bernie. Mileva czuła się osamotniona. W liście do Alberta pisała:
Gdybyś tylko wiedział, jak bardzo samotna i opuszczona się czuję, na pewno byś przyjechał. […] Żebyś wiedział, jak bardzo chcę Cię znowu zobaczyć! Myślę o tobie całymi dniami, a jeszcze bardziej nocami[24].
W grudniu 1901 roku Albert pisał:
Wyczekuję naszej drogiej Lieserl [córeczki], ale po kryjomu (tak aby Doxerl się nie dowiedziała) wyobrażam sobie, że jest to Hanserl […]. Istnieje tylko kwestia, jak moglibyśmy przyjąć naszą Lieserl; nie chciałbym jej oddawać […][25].
Kiedy kilka dni później dowiedział się, że otrzymał pracę w Bernie, przyszło ukojenie i spokój. W listach do Mitzy pisał:
Zurych, 30 kwietnia 1901 roku
Mój kochany kotku,
[…] Sama się przekonasz, jaki pogodny i radosny się stałem. Dawno zapomniałem o wszystkich moich troskach. I tak bardzo Cię znowu kocham! To tylko z nerwów byłem tak niedobry dla Ciebie […] i tęsknię bardzo do chwili, kiedy znowu Cię ujrzę. […]
W styczniu 1902 roku otrzymał wiadomość, że został ojcem. Poród był długi i ciężki. Córeczce Mileva nadała imię Lieserl. Einstein pisał do ukochanej:
Berno, 4 lutego 1902 roku
Moje najdroższe kochanie,
Biedne, najdroższe kochanie; co musiałaś wycierpieć, jeśli nie możesz nawet samodzielnie do mnie napisać! Szkoda, że nasza droga Lieserl musi zostać przedstawiona światu w ten sposób! Mam nadzieję, że do czasu nadejścia mojego listu będziesz zdrowsza i weselsza. […] Więc faktycznie jest dziewczynka. Czy jest zdrowa i płacze jak trzeba? Jakiego koloru ma oczka? Skąd bierzesz mleko? Czy dużo je? Musi być kompletnie łysa. Kocham ją bardzo, a przecież nawet nie wiem, jak wygląda. […] Chętnie sam zmajstrowałbym taką Lieserl, to musi być fascynujące! Z pewnością umie już płakać, lecz śmiać nauczy się dopiero później. Jest w tym pewna głęboka prawda. […]
Albert Einstein na rok przed otrzymaniem Nagrody Nobla, 1920, domena publiczna
Niestety nie ma żadnych listów świadczących o tym, że Einstein widział swoją córkę. Trudno domniemywać, czy o istnieniu dziecka wiedziała także rodzina i najbliżsi przyjaciele Einsteina. Wprawdzie jego matka 20 lutego 1902 roku pisała: tej Marič zawdzięczam najgorsze chwile mojego życia; gdyby to leżało w mojej mocy, zrobiłabym wszystko, aby zniknęła z naszego horyzontu[29], ale nie ma pewności, że odnosi się tym samym do narodzin wnuczki. Nie wiadomo też nic pewnego o losie dziecka. Michele Zackheim w swojej książce o Lieserl twierdzi, że była niepełnosprawna fizycznie i zamieszkała z rodziną Milevy. Według niej prawdopodobnie zmarła na szkarlatynę we wrześniu 1903 roku[30]. Z kolei wieloletni badacz życia Einsteina Robert Schulmann wysunął hipotezę, że Lieserl adoptowała Helena Savić. Nadano jej imię Zorka i miała żyć aż do lat dziewięćdziesiątych ubiegłego wieku. W rzeczywistości Saviciowie mieli niewidomą od wczesnego dzieciństwa córkę o takim imieniu, która zmarła w 1992 roku. Jednakże wnuk Heleny, a siostrzeniec Zorki doktor Milan Popović, odrzucił możliwość, że była to Lieserl, i twierdził, że to dziecko zmarło we wrześniu 1903 roku. W swojej książce napisał: wysunięta teoria, jakoby moja babcia adoptowała Lieserl, jest pozbawiona jakichkolwiek podstaw, gdyż zostało to dokładnie sprawdzone w historii mojej rodziny[31]. Znajduje to potwierdzenie w korespondencji Milevy i Alberta. W sierpniu 1903 roku Mileva pojechała do Nowego Sadu, gdyż została poinformowana, że Lieserl zachorowała na szkarlatynę. Z podróży wysłała kartę Albertowi: Podróż upływa szybko, ale jest ciężka. Nie czuję się dobrze. Co porabiasz, mój Jonzile? Napisz do mnie prędko. Twoja biedna Laleczka[32]. Złe samopoczucie Milevy wynikało z tego, że była ponownie w ciąży. Albert odpisał:
Bardzo mi przykro z powodu tego, co się stało z Lieserl. Szkarlatyna pozostawia często trwałe ślady. Jak Lieserl została zarejestrowana urzędowo? Musimy bardzo uważać, bo inaczej dziecko będzie miało problemy w przyszłości[33].
Mileva i Albert Einsteinowie, ok. 1905, domena publiczna
10 października 1902 roku zmarł ojciec Alberta. Krótko przed śmiercią wyraził zgodę na ślub syna z Milevą[34]. 6 stycznia 1903 roku Einstein dotrzymał słowa i ożenił się z Mitzą. Ślub cywilny odbył się w Bernie w towarzystwie najbliższych przyjaciół. Rok później, 14 maja 1904 roku, Mileva urodziła syna Hansa Alberta. W liście do Heleny pisała, żeby przyjechała do Berna, gdyż chciała jej pokazać moje małe kochanie, które też ma na imię Albert. Nie umiem wyrazić, ile daje mi radości, gdy śmieje się po przebudzeniu albo fika nóżkami w kąpieli[35]. Ojciec Milevy przyjechał zobaczyć wnuka i zaoferował zięciowi pokaźną sumę pieniędzy. Einstein jednak ich nie przyjął, argumentując:
Nie poślubiłem twojej córki dla pieniędzy, ale dlatego, że ją kocham, potrzebuję jej, ponieważ oboje jesteśmy jednością. Wszystko, co zrobiłem i osiągnąłem, zawdzięczam Milevie. Jest moim genialnym źródłem inspiracji, moim aniołem ochronnym przeciwko pokusom w życiu, a tym bardziej w nauce. Bez niej nie rozpocząłbym pracy, nie mówiąc już o jej zakończeniu[36].
_______
[1] R. Highfield, P. Carter, Prywatne życie Alberta Einsteina, op. cit., s. 67.
[2] P. Michelmore, Einstein: Profile of the Man, Dodd, Mead and Company, New York 1962, s. 36.
Harriet Brooks była jedną z najwybitniejszych fizyczek jądrowych badającą przemiany jądrowe i radioaktywność. Uważana jest za pierwszą kanadyjską uczoną zajmującą się fizyką jądrową. Współpracowała z ikonami epoki: Josephem Johnem Thomsonem, Ernestem Rutherfordem i Marią Skłodowską-Curie. Rutherford uważał zresztą, że dorównuje ona zdolnościami i geniuszem Marii Curie. Należy do pierwszych osób, które odkryły radon i próbowały określić jego masę atomową. Brooks przeprowadziła serię eksperymentów mających na celu określenie charakteru radioaktywnych emisji z toru. Przypisuje się jej także odkrycie koncepcji odrzutu atomowego. Eksperymenty te stanowiły jedną z podstaw rozwoju nauki o technologii jądrowej.
Lise Meitner
(1878–1968)
Lise Meitner, [za:] www.austriaart.plAlbert Einstein mówił o niej: Jest naszą Madame Curie i to bardziej utalentowaną niż Madame Curie. I nie powinno to dziwić. Jej sukcesy naukowe były zaskakujące. Była współodkrywczynią odrzutu jądra atomowego, kilku naturalnych izotopów promieniotwórczych i trwałego izotopu protaktynu. Samodzielnie zbadała właściwości fizyczne wielu substancji promieniotwórczych, rozkład energii promieniowania beta, promieniowanie beta i gamma, odkryła zjawisko nazywane dziś zjawiskiem Augera. Prawidłowo zinterpretowała doświadczenie wykonane przez Ottona Hahna i Fritza Strassmanna, obliczyła energię wyzwalaną w tym procesie oraz przewidziała łańcuchową reakcję jądrową. Lise Meitner z całą pewnością zasłużyła na Nagrodę Nobla, której pomimo ogromnych zasług nigdy nie dostała.
Marietta Blau
(1894–1970)
Marietta Blau, domena publiczna
Marietta Blau pozostaje do dziś mało znaną i prawie zapomnianą badaczką, która położyła podwaliny pod współczesną fizykę cząstek elementarnych. Opracowała fotograficzną metodę detekcji cząstek. Dzięki jej badaniom i pomysłowości po raz pierwszy
zastosowano fotograficzne emulsje jądrowe, które były użyteczne do obrazowania i dokładnego pomiaru cząstek (głównie cząstek alfa i protonów) oraz zdarzeń jądrowych o wysokiej energii. Jako pierwsza uczona użyła emulsji jądrowych do wykrywania neutronów, co pozwoliło na opracowanie metody dokładnego badania reakcji wywołanych przez zjawiska promieniowania kosmicznego. Jej prace znacznie przyspieszyły rozwój fizyki cząstek. Niestety nie przyznano jej Nagrody Nobla, chociaż otrzymał ją Cecil Powell za użycie światłoczułej emulsji oraz wytworzenie emulsji jądrowej, dzięki której badał procesy jądrowe.
Ida Noddack
(1896–1978)
Ida Noddack-Tacke, Stadtarchiv Wesel
Jedna z najwybitniejszych uczonych XX wieku była obdarzona nie tylko niezwykłymi zdolnościami analitycznymi, ale także ponadprzeciętną intuicją. Wyjątkowo precyzyjna i ambitna, wyprzedzała swój czas o kilka pokoleń. Wraz z mężem odkryła dwa
pierwiastki chemiczne – ren i mazur (obecna nazwa technet). Niestety, odkrycie drugiego nie zostało potwierdzone, choć dziś coraz częściej słychać głosy, że niesłusznie. Ida Tacke-Noddack jako pierwsza podała prawidłową interpretację eksperymentu Fermiego, jednak jako kobieta – i tylko dlatego – została zignorowana przez męskie środowisko naukowe. Czas pokazał, że miała rację.
Chien-Shiung Wu
(1912–1997)
Chien-Shiung Wu, domena publiczna
Była jedną z największych specjalistek w zakresie radioaktywności. Pracowała przy Projekcie Manhattan nad wzbogaceniem uranu. Do jej największych sukcesów naukowych należy zaliczyć zaprojektowanie i wykonanie w 1957 roku eksperymentu, którym potwierdziła hipotezę dwóch amerykańskich fizyków Tsung-Dao Lee i Chen Ning Yanga z 1956 roku. Przewidzieli oni teoretycznie, że w rozpadzie beta łamana jest parzystość. Była nazywana Pierwszą Damą Fizyki. I pomimo wielkiej pracowitości, oddania nauce, pomysłowości i znacznych osiągnięć nie otrzymała Nagrody Nobla, podczas gdy Lee i Yang zostali jej pierwszymi chińskimi laureatami w 1957 roku. Na pocieszenie Chien-Shiung Wu była pierwszą osobą, która otrzymała Nagrodę Wolfa z fizyki.
_____________________
T. Pospieszny, Pasja i geniusz. Kobiety, które zasłużyły na Nagrodę Nobla, Wydawnictwo Po Godzinach, Warszawa 2019.
Ellen Gleditsch jest jedną z niewielu pionierek radiochemii, która jest nie tylko zapomniana w świecie, ale także w Norwegii – kraju rodzimym. Była niezwykle aktywna zawodowo, większą część życia spędziła podróżując i współpracując z innymi naukowcami. Działała także w organizacjach międzynarodowych.
Dom rodziny Gleditsch w Tromsø, National Library of Norway, domena publiczna
Uczona przyszła na świat 29 grudnia 1879 roku w Mandal – małym miasteczku położonym nad Morzem Północnym w południowej Norwegii. Była najstarszym z dziesięciorga rodzeństwa: Karl (1881–1974), Birgit (1882–1941), Eivind (1885–1943), Leif (1886–1946), August (1888–1913), Adler (1893–1978), bliźniaczki Liv (1895–1977) i Astrid (1895–1924) oraz Kristian (1901–1973). Rodzina Gleditschów przybyła do Norwegii około sto lat wcześniej z Jugosławii. Wędrowali przez Niemcy i Danię, gdzie przodek uczonej, Carl August Ludwig von Gleditsch z Sachsen-Weimar, podjął pracę jako kapral w duńskiej armii i poślubił Dunkę. Para później przeprowadziła się i osiedliła w Norwegii, która w 1790 roku była częścią Danii. Ojciec Ellen, Karl Kristian (1851–1913) był synem luterańskiego ministra. Szybko zyskał opinię szanowanego nauczyciela przedmiotów ścisłych, a później także jako dyrektor szkoły średniej w Mandal. W 1889 roku rodzina przeprowadziła się do Tromsø na dalekiej północy Norwegii, gdzie Karl Kristian kontynuował karierę nauczycielską. Kilka lat później został także szanowanym politykiem. Z kolei matka Ellen, Petra Birgitte Hansen (1857–1913) była córką kapitana żeglugi. Była silną i niezależną kobietą angażującą się w politykę. Należała do pierwszego ruchu sufrażystek w Norwegii. Uwielbiała muzykę ludową i tą pasją zainspirowała także swoje dzieci. Według Ellen matka miała niezwykłe zdolności językowe. Pasjonowała ją przyroda i astronomia. Gleditschowie lubili spędzać czas na wsi i zabierali dzieci na długie wędrówki po lasach i górach. Często także żeglowali. Podczas wycieczek ojciec zakochany w botanice uczył swoje dzieci jak rozpoznawać i stosować rośliny w lecznictwie.
Ellen z matką i ojcem, 1913/1914, National Library of Norway, domena publiczna
Miłość rodziców, ich wzajemna troska oraz otwartość na świat sprawiła, że dzieci wychowywały się w szczęśliwej i opiekuńczej rodzinie. Ellen bardzo wcześnie nauczyła się szacunku dla innych ludzi, ale również dla przyrody. Często także, jako najstarsza z rodzeństwa, pomagała matce w opiece nad młodszym rodzeństwem. Wydaj się, że właśnie wówczas rozwinęła się w niej etyka pracy, bezinteresowność, skromność, troska o innych i głębokie wartości humanitarne, które zdominowałyby jej osobowość i pozostały w niej przez całe życie. Ellen w wieku osiemnastu lat zdała egzamin końcowy będąc najlepszą uczennicą w klasie. Znała łacinę, niemiecki, angielski, ale najbardziej interesowała się naukami przyrodniczymi. Zdecydowała się na podjęcie stażu w aptece. W 1897 roku przeniosła się do Oslo, gdzie kontynuowała naukę. Po kilkuletniej praktyce zdała dwa ważne egzaminy: w 1900 roku egzamin na asystenta farmaceutycznego i w 1902 roku niezwykle trudny egzamin na farmaceutę dyplomowanego.
Ellen Gleditsch w stroju absolwentki, b.d., National Library of Norway, domena publiczna
Po latach uczona wspominała:
Po egzaminie z farmakologii dr Bødtker doradził mi kontynuację studiów w laboratorium uniwersyteckim pod kierunkiem profesora Hiortdahla. Tak bardzo chciałam kontynuować naukę, ale nie miałam pieniędzy, a trzeba było przetrwać, więc zacząłem pracować jako korepetytorka. Wszystko układało się nawet dobrze, ale nie miałam tyle czasu na naukę, ile bym chciała. To była najpierw kwestia przetrwania, a potem nauki. Ale tak naprawdę poszło lepiej, niż mogłoby się wydawać. W 1903 roku zostałam asystentką w uniwersyteckim laboratorium chemicznym, a w 1905 roku zdałam egzamin maturalny, zaś w 1906 roku kwalifikacyjny egzamin wstępny na uniwersytet.
Ellen Gleditsch (z lewej) i jej przyjaciółka — botaniczka Thekla Resvoll (1871–1948)[1900 roku prowadziła kursy z botaniki roślin dla farmaceutów], ok. 1905, Oslo Museum, CC BY–SAEyvind Bødtker, d.b., fot. Borgens Atelier, Norsk Farmasihistorisk Museum, CC BY–SA
Doktor Eyvind Bødtker (1867–1932) był jednym z najlepszych norweskich chemików organików. Przez lata był mentorem i przyjacielem Ellen. W 1907 roku opublikowała swój pierwszy artykuł naukowy, który za jego radą został przetłumaczony na język francuski i opublikowany we francuskim czasopiśmie naukowym. Bødtker często bywał we Francji i był pod wielkim wrażeniem francuskiego życia kulturalnego oraz naukowego. To on miał niewątpliwy wpływ na Ellen i zapewne obudził w niej pragnienie wyjazdu poza odizolowaną społeczność naukową Oslo. Kiedy podopieczna wyznała mu, że jej największym marzeniem jest nauka w laboratorium Marii Skłodowskiej-Curie, Bødtker postanowił działać. Pojechał do Paryża i odwiedził laboratorium Madame Curie. Ponieważ jej nie zastał zostawił wiadomość moja utalentowana asystentka bardzo chciałaby pracować dla Pani, wyłącznie z zamiłowania do nauki, nie dla zdobycia dyplomu. Kiedy po kilku dniach powrócił spotkał się z Marią. To początkowo odrzuciła prośbę Bødtkera twierdząc, że nie ma już miejsca w laboratorium. Uczony jednak nie ustępował. Pokazał Marii Curie pracę autorstwa Ellen. Praca wydawała się interesująca, ale noblistka nadal twierdziła, że nie ma miejsca w pracowni. Wówczas Bødtker stwierdził, że mademoiselle Gleditsch jest tak mała i lekka, że nie zajmie dużo miejsca w pracowni. W końcu Maria Curie ustąpiła. Według wielu historyków nauki decydującym czynnikiem było prawdopodobnie to, że większość stypendystów w laboratorium Marii była fizykami, a Curie bardzo potrzebowała chemika. Idealną kandydatką była Gleditsch. Wielkie marzenie się ziściło.
Instytut Radowy w Paryżu, 1929, Wellcome Images, CC BY–4.0
Gleditsch otrzymała stypendium królowej Norwegii i Szwecji. Było ono niezbędne, aby opłacić pobyt w laboratorium Curie. Jednak Maria Skłodowska-Curie zrobiła tym razem wyjątek. W liście do Ellen napisała: […] jeśli podejmie Pani tę pracę [rekrystalizacja soli baru i radu], która zajmie tylko część Pani czasu, a będzie stanowić ogólną korzyść dla laboratorium, mógłbym zwolnić Panią z opłat […]. Jednocześnie mogłaby Pani pracować nad innymi, bardziej interesującym problemami, które mogą prowadzić do nowych wyników. W październiku 1907 roku Ellen Gleditsch wyjechała do Paryża. Początkowo mieszkała ze swoim bratem Adlerem, a później wynajęła małe mieszkanko za Panteonem, skąd miała blisko do pracowni i Sorbony. Po latach wspominała:
Pomieszczenia, które miała do dyspozycji Maria Curie były położone rozłożyście. Przy wejściu znajdowało się duże biuro z przylegającym ciemnym pokojem, w pobliżu pokoju pełniącego funkcję biblioteki. Trzeba było przejść przez podwórko, by dostać się do dużego laboratorium, w którym można było znaleźć większość sprzętu naukowego. Obok znajdowało się mały gabinet Marii Curie i inny pokój używany przez André Debierneʼa.
Maria Skłodowskia-Curie, 1911, Library of Congress
Precyzja z jaką Ellen podjęła się rozdziału soli baru i radu była tak wielka, że Madame Curie szybko uczyniła z niej osobistą asystentkę. W 1907 roku obie rozpoczęły prace nad eksperymentem, który miał obalić teorię Williama Ramsaya (1852–1916). Chemik ów twierdził, że w wyniku działania emanacji radu na miedź, otrzymał lit i sód. Maria Curie wraz z Ellen przeprowadziły niezwykle staranne doświadczenia, stosując w miejsce szklanych naczyń, naczynia platynowe. Stosunkowo szybko uczone stwierdziły, że efekt opisany przez Ramsaya nie istnieje, a obecność litu i sodu jest związana z używanymi przez niego szklanych i kwarcowych naczyń. Pomimo wielu różnic w osobowościach obie panie szybko się polubiły i być może zaprzyjaźniły. Gleditsch była często zapraszana do domu Curie w Sceaux, gdzie poznała córki Marii. Wydaje się również, że był to początek przyjaźni pomiędzy Ellen i Irène. Podczas jednej z krótkich wizyt w Norwegii Gleditsch zaręczyła się z młodym oficerem. Według biografów uczonej, para była bardzo różna i intelektualnie niedobrana. Zaręczyny – prawdopodobnie jedyny związek uczuciowy Gleditsch, który mógł zakończyć się małżeństwem – wkrótce zostały zerwane. W 1926 roku Gleditsch mówiła:
Często wymagana jest obecność [kobiety] w domu. Kobieta, która chce zostać badaczem, musi pogodzić dwa przeciwstawne żądania. Badania wymagają przede wszystkim refleksyjnej atmosfery, możliwości myślenia w ciszy i spokoju oraz skoncentrowania się na konkretnym problemie. Materialne obawy, troska o męża lub dzieci pozostawione w domu bez odpowiedniej pomocy lub opieki zabiją wszelkie szanse na pierwszorzędne wysiłki.
W 1912 roku Gleditsch otrzymała licencjat, z którym powróciła do Norwegii. Przyznano jej skromne stypendium na uniwersytecie w Oslo. Uczona próbowała kontynuować badania związane z czasem połowicznego zaniku radu, a jeszcze rozpoczęte w Paryżu, jednak na przeszkodzie stał brak odpowiednio wyposażonego laboratorium. Bardzo szybko zorientowała się, że swoją pasję i zainteresowanie radioaktywnością będzie mogła rozwijać w Stanach Zjednoczonych. Niestety los pisze własny scenariusz.
Portret dr Ellen Gleditsch, b.d., National Library of Norway
Na początku 1913 roku Ellen straciła oboje rodziców i jednego z braci. Została tym samym głową rodziny. Starała się utrzymywać dom i łożyła na edukacje rodzeństwa. Więzi rodzinne były bardzo mocne, co manifestowało się między innymi tym, że Ellen do końca życia mieszkała z bratem Adlerem. Pod koniec feralnego roku Gleditsch otrzymała stypendium Fundacji Amerykańsko-Skandynawskiej. Napisała do Bertrama Boltwooda (1870–1927) z Yale oraz Theodore’a Lymana (1874–1954) z Harvardu wyrażając chęć podjęcia z nimi współpracy. Po odmowie Lymana, który stwierdził, że żadna kobieta nigdy nie pracowała w jego laboratorium, i nie do końca optymistycznym liście Boltwooda, uparta i zdecydowana Ellen pojechała do Stanów Zjednoczonych. Może budzić to zdziwienie, bowiem Boltwood słyną ze swoich szowinistycznych poglądów. Po latach Gleditsch mówiła (nie odnosząc się do jego nazwiska), że pracowała z uczonym, który był znany z nienawiści do kobiet. I ją akceptował bo nie krzyczała. Według uczonej był to największy komplement w mojej karierze naukowej. To właśnie tutaj w semestrze 1913–1914 uczona określiła okres połowicznego zaniku radu na 1686 lat (dziś wiadomo, że wynosi on 1620 lat). Praca ta sprawiła, że uczona została rozpoznawalna w świecie nauki. Stała się wiodącą specjalistką w izolacji i oddzielaniu substancji promieniotwórczych od minerałów. Theodore W. Richards (1868–1928), zaprosił ją na Harvard, a wiosną 1914 roku otrzymała doktorat honoris causa Smith College w Massachusetts. Również Lyman zmienił zdanie i zaproponował jej posadę. Gleditsch wykładała teorię atomu, omawiając powstałą właśnie teorię kwantów oraz ostatnie prace Bohra, Rutherforda i Moseleya. Rozszerzyła swoje prace o badania nad radioaktywnymi minerałami, którymi interesowała się przez całe życie. Opracowała procedury analityczne izolacji wielu substancji radioaktywnych znalezionych w norweskich minerałach i dostarczała próbki do laboratorium Curie. Jako pierwsza zwróciła uwagę na znaczenie izotopów ołowiu w celu dokładnego określenia wieku Ziemi.
Na Uniwersytecie Harvarda Gleditsch zaangażowała się w badania izotopów. W tamtym czasie wiadomo było, że masa atomowa pierwiastków promieniotwórczych (lub tych, które powstawały w wyniku rozpadu promieniotwórczego) może się różnić w zależności od ich pochodzenia geologicznego. Na przykład, w rudach bogatych w naturalnie występujący tor obfitował ołów-208. Natomiast w rudach bogatych w uran dominował ołów-206. Problem pojawił się kiedy Francis Aston (1877–1945) ogłosił, że znalazł dwie różne masy atomowe dla chloru (odpowiednio 35 i 37), a średnia masa atomowa wynosi 35,46. Chlor nie jest pierwiastkiem radioaktywnym, zatem trudno było wytłumaczyć tą anomalię. Wyglądało na to, że także w tym przypadku skład izotopowy zmieniał się w zależności od źródła (tak jak w dla pierwiastków radioaktywnych). Gleditsch i jej współpracownicy badając chlor pochodzący z różnych źródeł, odkryli, że skład izotopowy chloru w rzeczywistości nie różnił się w zależności od źródła. Badacze określili masę atomową pierwiastka na dwa różne sposoby. W pierwszej metodzie strącili chlorek srebra za pomocą azotanu srebra. Chlorek srebra przemyli, wysuszyli i zredukowali do srebra metalicznego za pomocą gazowego wodoru. Na podstawie masy wysuszonego chlorku srebra i srebra metalicznego wyznaczyli ciężar atomowy chloru. Druga metoda polegała na określeniu gęstości nasyconych roztworów chlorku sodu, a następnie masy chloru. Jednakże Irène Curie w Paryżu otrzymała inny wynik. Gleditsch doszła jednak do wniosku, że próbki Curie musiały być zanieczyszczone. Masa atomowa chloru była zatem stała.
Oczywiście bardzo szybko zaczęła się uczoną interesować prasa. Podczas jednego z wywiadów zapytano ją o chęć wyjścia za mąż. Ze względu na sporą ilość pracy zwyczajnie nie mam [na małżeństwo] czasu; moimi zainteresowaniami są badania [naukowe], które pochłaniają wszystkie moje myśli – odpowiedziała Gleditsch.
Eva Ramstedt, ok. 1910, Uppsala University Library
Wybuch pierwszej wojny światowej przyniósł uczonej naukową izolację. Nie mogła wyjeżdżać, miała kłopoty z dostępem do światowej literatury specjalistycznej. W listopadzie 1915 roku pisała do Marii Skłodowskiej-Curie:
Minęło dużo czasu, odkąd miałam od Ciebie jakieś wiadomości. Mam nadzieję, że radzisz sobie tak dobrze, jak pozwalają na to takie czasy… Jak zapewne wiesz, tego lata spotkałam się z panią Ramstedt. Wspólnie badałyśmy radioaktywność w źródłach i wodzie oraz elektryczność w atmosferze. Mamy nadzieję, że będziemy mogły kontynuować [badania] w przyszłym roku. Miło było rozmawiać o Paryżu, laboratorium Curie i wspomnieniach z naszych czasów studenckich. Przydało mi się przynajmniej rozmawiać z kimś, kto pracuje nad radioaktywnością. Mam tu przyjaciół, chemików i fizyków, ale żaden z nich nie zajmował się wiele promieniotwórczością… Chciałabym pojechać do Paryża i Cię odwiedzić! Oby tylko warunki na to wkrótce pozwoliły!
W 1916 roku otrzymała stanowisko docenta oraz uczciwą pensję. Mogła prowadzić badania i zatrudniać współpracowników. Napisała pierwszy podręcznik dotyczący radioaktywności wydany jednocześnie w Szwecji i Norwegii pt. Rad i procesy radiochemiczne. W 1917 roku została wybrana na członkinię Akademii Nauk w Oslo. Została tym samym drugą kobietą, która dostąpiła tego zaszczytu (pierwszą była Kristine Bonnevie). Uważała, że współpraca międzynarodowa jest niezwykle ważna dla nauki. Ellen Gleditsch twierdziła, że:
W tej atmosferze [wyjazdów] dowiedziałam się, w jaki sposób problem [naukowy] rodzi się w jednym laboratorium, jest podejmowany w innym, a potem może zostać rozwiązany w jeszcze innym. Dowiedziałam się, że konkurencja i wyścig związany z rozwiązaniem [problemów naukowych] jest ściśle powiązany z postępem nauki. Powstaje rodzaj braterstwa między tymi, którzy pracują w tym samym laboratorium, w którym powstają różne problemy, gdzie są omawiane i być może ich rozwiązania skutkują publikacją.Rozwiązanie to dociera w końcu do laboratoriów w innych krajach, w których badane są te same problemy. I w końcu człowiek zdaje sobie sprawę – być może tylko poprzez małe osobiste rozczarowania lub sukcesy, że ktokolwiek podejmuje ten decydujący, ostatni krok związany z rozwiązaniem [problemu], czy płynie z zagranicy czy nie, ma drugorzędne znaczenie.
W 1919 roku Gleditsch wyjechała na dziewięciomiesięczne stypendium do Paryża. Rok później pojechała do Rutherforda do Cambridge i Soddy’ego do Oxfordu, z którym się zaprzyjaźniła i którego prace szczególnie ceniła. Następnie powróciła do Paryża, aby zastąpić podróżującą do Ameryki Południowej Marię Curie w laboratorium. Po powrocie do Norwegii została uhonorowana przez Norweską Akademię Nauk prestiżową nagrodą Nansena.
Ellen Gleditsch na schodach Instytutu Radowego w Paryżu, 1924 [za:] Natalie Pigeard-Micault, Les femmes du laboratoire Curie, Glypche, Paris 2013
W 1922 roku Gleditsch po raz pierwszy w liście do Marii Skłodowskiej-Curie skarżyła się na problemy zdrowotne. Pisała, że cierpi na anemię, która powoduje częste przeziębienia. Być może było to związane z pracą z substancjami radioaktywnymi, jednakże zważywszy na fakt, że uczona żyła prawie osiemdziesiąt dziewięć lat można wnioskować, że miała wyjątkowo silny organizm.
W okresie międzywojennym Gledisch skoncentrowała się na badaniu izotopów w minerałach. Część prac wykonała wspólnie z młodszą siostrą Liv, która także była chemikiem. Uczona zaangażowała się również w jedną z komisji działających przy Lidze Narodów. Głośno mówiła:
Nie ma znaczenia, czy praca jest wykonywana przez niską kobietę w Bułgarii czy przez wysokiego mężczyznę w Stanach Zjednoczonych, jeśli wykonano ją dobrze. I właśnie to musimy zrobić: pracować tak dobrze, aby nikt nie ośmielił się powiedzieć – to dobra robota dla kobiety, ale aby wszyscy mogli powiedzieć – to dobra robota w ogóle. Rasa i płeć nie mają znaczenia w nauce.
Ellen Gledtisch, ok. 1935, Oslo Museum, CC CC 1.0
W 1929 roku po wielu perturbacjach została profesorem chemii. W liście do Marii Curie pisała: Dokonało się. Trzy dni temu zostałam profesorem. Mam szczerą nadzieję, że będę w stanie wykonać dobrą robotę; i że nie będzie brakowało pracy. Mam również nadzieję, że od czasu do czasu będę Cię odwiedzać i że te wizyty będą dla mnie źródłem inspiracji i zachęty. Uważała, że praca ze studentami oznacza pracę nad przyszłością. To uczeń jutro będzie kontynuował naszą pracę. Aby popularyzować naukę, Gleditsch zaczęła wygłaszać wykłady popularnonaukowe w radio, pisała też artykuły w języku francuskim, angielskim, niemieckim i norweskim. Była autorką biografii wielu naukowców, których znała osobiście.
Podczas drugiej wojny światowej Gleditsch przyczyniła się do znalezienia bezpiecznej przystani w Norwegii dla uchodźców, głównie ze społeczności uniwersyteckiej. W jej laboratorium w Oslo i innych częściach kraju znaleziono miejsca dla uciekających naukowców. Wśród nich znaleźli się Elizabeth Rona i Marietta Blau. Kiedy Niemcy okupowali Norwegię, Gleditsch nigdy nie rezygnowała z wysiłków przeciwstawienia się okupantom i marionetkowemu reżimowi. Starała się utrzymać ducha oporu i przygotować się na spodziewane ataki na wolność akademicką i osobistą. Nic jej nie złamało. Jej brat, Adler był przez kilka lat jeńcem wojennym. Siostra Liv została aresztowana w ostaniem roku wojny. Ellen Gleditsch nadal okazywała pogardę okupantom, pomagając studentom, naukowcom i innym ludziom, którzy znaleźli się w niebezpieczeństwie. Kilkakrotnie ukrywała ich w swoim mieszkaniu. W 1943 roku uczona została aresztowana. Przesłuchiwał ją dobrze wykształcony niemiecki oficer. Po niemiecku przekonała go, aby ją wypuścił. I właściwie nie wiadomo dlaczego, oficer podziękował jej za miłe spotkanie i wyraził nadzieję, że spotkają się ponownie w przyjemniejszych okolicznościach. Wkrótce jednak została oskarżona o działalność polityczną na uniwersytecie i zakazano jej pracy na uczelni.
Zebranie Komisji Norm i Jednostek Promieniotwórczości w Sztokholmie w 1953; od lewej m.in: Raymond Delaby (1.), Irène Joliot-Curie (6.), Ellen Gleditsch (9.), Friedrich Paneth (10.), austriacka fizyk Berta Karlik (11.) i George de Hevesy (12.), National Library of Norway
Po wojnie pozostała w kontakcie z przyjaciółmi i kolegami, takimi jak np. Lise Meitner, którą regularnie odwiedzała w Sztokholmie. W 1946 roku uczona przeszła na emeryturę i rozpoczęła współpracę z UNESCO. Jej celem była walka z analfabetyzmem. W 1947 roku na zaproszenie Frederica Joliota-Curie wzięła udział w ceremonii z okazji dziesiątej rocznicy śmierci Rutherforda. W 1952 roku została powołana do norweskiej komisji ds. koordynacji naukowej jako przedstawicielka rządu, gdzie była rzecznikiem międzynarodowej kontroli nad bombą atomową. W tym samym roku zrezygnowała z pracy w UNESCO w proteście przeciwko przyjęciu Hiszpanii pod faszystowskim reżimem Franco jako członka instytucji. Przez cały czas publikowała. Pod koniec życia zainteresowała się szczególnie historią nauki. Jej ostatni artykuł dotyczący życia i pracy szwedzkiego chemika Carla Wilhelma Scheele’a został opublikowany w 1968 roku. Uczona otrzymała wiele nagród i wyróżnień, w tym między innymi w 1962 roku jako pierwsza kobieta doktorat honoris causa Sorbony, medal miasta Paryża, została także honorowym obywatelem Paryża. Otrzymała również doktorat honoris causa Uniwersytetu w Strasburgu.
Pod koniec maja 1968 roku spędzała weekend w swoim wiejskim domu w Enebakk pod Oslo. Poczuła się źle. Straciła przytomność. Lekarze orzekli, że dostała udaru. Kilka dni później, 5 czerwca w wieku osiemdziesięciu dziewięciu lat Ellen Gleditsch zmarła.
Można by oczekiwać, że w Norwegii pamięć o uczonej będzie pielęgnowana i trwała. Niestety niewiele osób zna tą wyjątkową kobietę i jej osiągnięcia. Niestety mało kto pamięta Ellen Gleditsch – wybitną uczoną, działaczkę pokojową oraz przyjaciółkę i współpracowniczkę Marii Skłodowskiej-Curie.
W styczniu 2019 roku Svein Stølen – rektor Uniwersytetu w Oslo – odsłonił pamiątkową plakietę na budynku przy ulicy Jonas Reins 1 w Oslo, gdzie Ellen Gleditsch mieszkała w latach 1931–1968, fot. Eivind Torgersen, [za:] https://forskning.no_______________
Literatura zalecana:
[1] A.-M. Weidler Kubanek, Nothing Less Than An Adventure: Ellen Gleditsch and Her Life in Science, CreateSpace Independent Publishing Platform, 2010.
[2] A. Lykknes, Ellen Gleditsch and Research on Radium, Chlorine and Potassium, [w]: Women in Their Element: Selected Women’s Contributions To The Periodic System, ed., Annette Lykknes, Brigitte Van Tiggelen, World Scientific Publishing Co, Singapore 2019.
[3] A. Lykknes, L. Kvittingen, A. K. Børrese, Ellen Gleditsch: Duty and responsibility in a research and teaching career, 1916-1946, Historical Studies in the Physical and Biological Sciences, 36 (1), 2005, str. 131–188.
[4] A. Lykknes, H. Kragh, L. Kvittingen, Ellen Gleditsch: Pioneer Woman in Radiochemistry, Phys. Perspect., 6, 2004, str. 126–155.
[5] A. Lykknes, Ellen Gleditsch: Woman Chemist in IUPAC’s Early History, Chemistry International, 2019, str. 26–27.
[6] A.-M. Weidler Kubanek, C. P. Grzegorek, Ellen Gleditsch: Professor and Humanist, [w]: A Devotion to Their Science: Pioneer Women of Radioactivity, ed., Marlene F. Rayner-Canham, Geoffrey W. Rayner-Canham, McGill-Queen’s University Press, Québec 1997.
[7] A. Lykknes, Ellen Gleditsch: Professor, Radiochemist, and Mentor, Department of Chemistry Norwegian University of Science and Technology Trondheim, Norway, Ph. D. thesis, 2005.
[8] M. F. Rayner-Canham, G. W. Rayner-Canham, Sir W. Grenfell College, Stefanie Horovitz, Ellen Gleditsch, Ada Hitchins, and the discovery of isotopes, Bull. Hist. Chem., 25(2), 2000, str. 103–108.
Osobiście nie zgadzam się z tym, żeby w ogóle wprowadzać problem płci w nauce. Perspektywa, zgodnie z którą rozpatruje się tę kwestię, jest zupełnie błędna i pozbawiona sensu merytorycznego. Kobieta po prostu albo jest dobrym naukowcem, albo nie; w każdym przypadku powinna jednak mieć równe szanse, a jej prace należy studiować z punktu widzenia naukowego, a nie perspektywy płci.
Hertha Ayrton
14 marca 1909 roku w liście do „Westminster Gazette” Hertha Ayrton napisała, że „błędy są niezwykle trudne do naprawienia, ale błąd, związany z przypisaniem sukcesu mężczyźnie, za – tak naprawdę – pracę wykonaną przez kobietę, ma więcej żyć niż kot”. Wiedziała co pisze, bowiem przez wiele lat jej praca i osoba była nieuznawana w zdominowanym przez mężczyzn świecie inżynierii i nauk ścisłych.
Portsea na przełomie XIX i XX wieku, domena publiczna
Phoebe Sarah Hertha nazywana przez rodzinę Sarah urodziła się 28 kwietnia 1854 roku na wyspie Portsea u południowego wybrzeża Anglii, w hrabstwie Hampshire. Była trzecią córką z ośmiorga dzieci Żyda polskiego pochodzenia, imigranta z Polski pod carskim zaborem rosyjskim i zegarmistrza Leviego Marksa oraz krawcowej Alice Theresy Moss, której rodzice byli polskimi uchodźcami. Ojciec Herthy był również synem polskiego karczmarza i uciekł do Anglii przed żydowskimi prześladowaniami pod carskimi rządami. Niestety zdrowie Leviego, prawdopodobnie podkopane przez młodzieńcze doświadczenia, nigdy nie było dobre. Wykupił licencję na sprzedawanie swoich towarów jako domokrążca, jednak nie odnosił żadnych sukcesów w interesach. Ojciec Herthy zmarł w 1861 roku, pozostawiając ciężarną żonę i siedmioro dzieci w poważnej sytuacji finansowej. Hertha musiała szybko dojrzeć. Przejęła częściowo obowiązki matki, opiekując się młodszym rodzeństwem. Kiedy skończyła dziewięć lat, przeniosła się do ciotek, które prowadziły szkołę. Tutaj bardzo szybko uwidocznił się jej talent do nauk ścisłych. Naukę kontynuowała w prywatnej szkole w północno-zachodnim Londynie, prowadzonej przez ciotkę ze strony matki Miriam i jej męża Alphonseʼa Hartoga, dzięki którym poznała niezwykle uzdolnionych kuzynów. Od nich uczyła się między innymi muzyki, łaciny i matematyki. W szkole przyszła uczona nauczyła się, między innymi od swojego wuja Alphonseʼa, płynnie języka francuskiego. Po zajęciach szkolnych udzielała korepetycji. W ten sposób zarobione pieniądze wysyłała matce, aby pomóc matce i rodzeństwu. Uchodziła za ładną dziewczynę była niska, miała przenikliwe szarozielone oczy i kruczoczarne włosy. Jednak Hertha absolutnie nie zwracała uwagi na swój wygląd i zalotników. Od młodzieńczych lat była niezależna, bardzo uparta i wyzwolona. Kiedy została niesprawiedliwie oskarżona o jakieś wykroczenie, przez kilka dni prowadziła strajk głodowy. Mając szesnaście lat zdecydowała, żeby nie nazywać jej Sarah lecz Hertha na cześć bogini ziemi z wiersza Algernona Charlesa Swinburneʼa. Oczywiście na kształtowanie się osobowości Herthy mieli wpływ jej przyjaciele. Jedną z jej najlepszych przyjaciółek była kuzynka Florence Nightingale – Barbara Leigh Smith (po mężu Bodichon) – walcząca feministka i wybitna postaci ruchu na rzecz emancypacji kobiet oraz jedna z założycieli Girton College w Cambridge.
Barbara Leigh Smith Bodichon (1827–1891), National Portrait Gallery St. Martin’s Place London WC2H OHE, CC–BY 3.0
Smith zachęcała Herthę, aby starała się o stypendium na studia. Przyszła uczona nie otrzymała stypendium jednak w 1876 roku została przyjęta do collegeʼu i rozpoczęła studiowanie matematyki i fizyki. Jednym z jej mistrzów był fizyk zajmujący się elektrycznością Richard Glazebrook, uczeń Jamesa Clerka Maxwella. Najprawdopodobniej to on zachęcił i zainteresował Herthę właśnie tym tematem.
Richard Tetley Glazebrook (1854–1935), National Portrait Gallery St. Martin’s Place London WC2H OHE, CC–BY 3.0
Niestety po pierwszym semestrze podupadła na zdrowiu i musiała na rok opuścić Cambridge. Roczna przerwa w nauce spowodowała znaczne zaległości, przez co Hertha miała znaczne kłopoty z nadrobieniem materiału. Należy jednak dodać, że mimo zaległości Hertha rozwijała się naukowo oraz wykazywała znaczne zdolności w kierunku technicznym. Jako pierwsza zaprojektowała i zbudowała sfigmomanometr czyli aparat do pomiaru ciśnienia tętniczego krwi. Był to pierwszy z jej wielu sukcesów, które miały nadejść. Podczas studiów prowadziła także chór, założyła straż pożarną i klub matematyczny. Co warte podkreślenia w 1880 roku ukończyła studia, lecz uczelnia nigdy nie dała jej dyplomu lecz certyfikat. Jako ostatni brytyjski uniwersytet Cambridge „uległˮ dopiero w 1948 roku, kiedy to przyznał stopnie naukowe kobietom! W 1881 roku zdała egzamin zewnętrzny na Uniwersytecie Londyńskim, który przyznał jej licencjat z nauk ścisłych.
Po opuszczeniu Cambridge Hertha i jedna z jej koleżanek z roku wynajęły mieszkanie w Londynie, gdzie prowadziły prywatne lekcje. Była bardzo zaangażowana w prace matematyczne i fizyczne. Miała niezwykły zmysł konstruktorski – w tym czasie wynalazła na przykład przyrząd kreślarski służący do pomniejszania i powiększania figur, który znalazł zastosowanie w pracowniach architektonicznych i inżynieryjnych. Była też autorką licznych rozwiązań problemów matematycznych. Wiele z jej pomysłów zostało opatentowanych: w sumie była autorką 26 patentów – pięciu z matematyki, trzynastu związanych z lampami łukowymi i elektrodami, reszta dotyczyła rozwiązań związanych na napędami powietrza.
William Edward Ayrton (1847–1908), National Portrait Gallery St. Martin’s Place London WC2H OHE, CC–BY 3.0
Przez kolejne dwa lata przygotowywał się także do egzaminów na uniwersytet, aby studiować fizykę stosowaną. Zapisała się na kurs uzupełniający w Finsbury Technical College, który prowadził William Edward Ayrton. Uczony przyszedł na świat 14 września 1847 roku w Londynie. Był syn adwokata, studiował matematykę na University College w Londynie i elektryczność w Glasgow u Williama Thomsona (Lorda Kelwina). Uchodził za pioniera nauczania fizyki i elektrotechniki. Przez kilka lat pracował za granicą między innymi w Indiach (1868–1872) i Japonii (1873–1897). Po powrocie do Londynu został mianowany wykładowcą w kilku uczelniach technicznych, w tym Finsbury. To spotkanie miało zmienić życie Herthy.
Ayrton, który dwa lata wcześniej owdowiał oświadczył sie Herthcie i w 1885 roku para zawarła związek małżeński. Miss Herthon zaadoptowała córkę Edwarda z pierwszego małżeństwa Edith (1879–1945), późniejszą pisarkę i aktywistkę. Rok później para doczekała się kolejnej córki Barbary (1886–1950) znanej sufrażystki, która imię otrzymała na cześć Barbary Leigh Smith.
Hertha zatrudniła gosposię, co umożliwiło jej rozpoczęcie pracy naukowej u boku męża. Początkowo pomagała Edwardowi w eksperymentach nad wynalezieniem stabilnego i cichego źródła światła. Kiedy Edward wyjechał służbowo za granicę, a Hertha przebywała poza domem doszła do tragedii. Ich wspólna praca została zniszczona, gdy gosposia sądząc, że papiery z notatkami uczonych są przeznaczone do zniszczenia spaliła je w kominku. Wkrótce Hertha zaczęła przeprowadzać własne eksperymenty w domu, podczas gdy jej mąż opiekował się ich córkami. Praca ta doprowadziła uczoną do kilku ważnych odkryć. W pierwszej kolejności skupiła się nad problemem migotania i syczenia powstającym podczas oświetlenia łukowego. Stwierdziła, że problemem są pręty węglowe, które po podłączeniu do nich źródła prądu ulegają dziurawieniu poprzez ulatnianie się węgla. Przez powstające otwory w prętach przechodziło powietrze powodując charakterystyczny świst. Hertha zmieniła kształt prętów oraz zauważyła relacje pomiędzy spadkiem napięcia i długością łuku oraz przepływem prądu elektrycznego. W latach 1895–1896 wyniki prac opublikowała w dwunastu artykułach naukowych w czasopiśmie „The Electricanˮ. W 1899 roku jako pierwsza kobieta otrzymała członkostwo w prestiżowej instytucji zrzeszającej inżynierów elektryków. Była również pierwszą kobietą, która odczytała własną pracę naukową w Royal Society w Londynie. Jedna z gazet pisała:
Damy uczestniczące w tym wydarzeniu z wielkim zdumieniem przyjęły to, że przedstawicielka ich własnej płci kierowała pokazami sprawiającymi wrażenie najbardziej niebezpiecznych ze wszystkich Pani Ayrton natomiast w ogóle nie wyglądała na przestraszoną.
Hertha Ayrton, [za:] E. Sharp, „Hertha Ayrton, 1854-1923, a memoir”, London 1926.
Hertha zaczęła prowadzić wykłady związane z jej badaniami i cieszyła się znaczną popularnością zarówno w kraju jak i za granicą. W1900 roku została zaproszona na Międzynarodowy Kongres Elektryczny odbywający sie w Paryżu, gdzie po francusku wygłosiła odczyt na temat swoich badań nad łukiem elektrycznym. W 1902 roku otrzymała nominację członkowską do londyńskiego Towarzystwa Królewskiego, jednak prawnik towarzystwa orzekł, że Hertha jako kobieta jest niewybieralna, bowiem jako kobieta zamężna nie stanowiła samodzielnego podmiotu prawnego!! Pierwszą kobietę wybrano dopiero w 1946 roku. Uczona podczas udzielonego wywiadu powiedziała:
Osobiście nie zgadzam się z tym, żeby w ogóle wprowadzać problem płci w nauce. Perspektywa, zgodnie z którą rozpatruje się tę kwestię, jest zupełnie błędna i pozbawiona sensu merytorycznego. Kobieta po prostu albo jest dobrym naukowcem, albo nie; w każdym przypadku powinna jednak mieć równe szanse, a jej prace należy studiować z punktu widzenia naukowego, a nie perspektywy płci.
Okładka książki: H. Ayrton, „The Electric Arc”, The Electrician Printing and Publishing Company, London, 1902
W 1902 roku ukazała się jej książka pt. The Electric Arc, która podsumowywała wyniki jej pracy. W latach 1904–1908 uczona pracowała nad projektowaniem elektrycznych reflektorów dla Royal Navy. Niestety jej prace w większości przypisano Edwardowi, chociaż ten protestował i zawsze podkreślał udział Herthy w pracach naukowych. Jej prace zostały docenione w 1906 roku, gdy przyznano jej Medal Hughesa Towarzystwa Królewskiego „za oryginalne odkrycie w dziedzinie nauk fizycznych, a w szczególności dotyczące generowania, magazynowania i wykorzystywania energii elektrycznej”. Została też przyjęta na pełnoprawną członkinię Institution of Electrical Engineers.
Do jej przyjaciółek należała między innymi Maria Skłodowska-Curie. Uczone poznały się w 1903 roku w Londynie, gdzie państwo Curie prezentowali swoje wyniki badania nad radem w londyńskim Królewskim Towarzystwie. Przyjaźń obu kobiet była na tyle trwała, że Maria znalazła w 1912 roku schronienie w domu Ayrton po wybuchu skandalu związanego z tzw. aferą Langevina.
Mill House w Highcliffe, wynajęty przez Herthę Ayrton na wspólny pobyt z Marią Skłodowską i jej córkami latem 1912 roku, [za:] http://www.dorsetlife.co.uk
Podczas pierwszej wojny światowej Hertha przekonała Biuro Wojenne do wykorzystania jej wynalazku, który mógł rozproszyć chmury gazów bojowych. Wkrótce ponad sto tysięcy wentylatorów, które miały również inne zastosowania, było używanych na froncie zachodnim.
Hertha Ayrton miała zdecydowane lewicowe poglądy, dlatego bez wahania dołączyła do do powstałej Partii Pracy. Zawsze była zagorzałą zwolenniczką praw kobiet, podobnie zresztą jak jej mąż. Już w 1899 roku przewodniczyła sekcji naukowej drugiego spotkania Międzynarodowego Kongresu Kobiet. Odgrywała wiodącą rolę w ruchu sufrażystek, zwłaszcza po wojnie. Ayrton była mocno zaangażowana w ruch sufrażystek. W 1911 roku odmówiła udziału w powszechnym spisie ludności, pisząc na formularzu:
Jak miałabym odpowiedzieć na wszystkie te pytania, skoro rzekomo brak mi inteligencji, by móc samodzielnie wybierać kandydatów do parlamentu? Nie dostarczę żadnych tego rodzaju informacji do czasu, aż uzyskam prawa obywatelskie. Domagam się prawa wyborczego dla kobiet.
Barbara Ayrton w stroju „córki rybaka” promuje londyńską Wystawę Kobiecą w maju 1909 roku, fot. Christina Broom, [za:] http://historyinphotos.blogspot.com
Edward Ayrton zmarł 8 listopada 1908 roku. Hertha pozbawiona silnego wsparcia męża walczyła o prawa kobiet. Była niezwykle dumna, że jej córka Barbara należała do jednych z najbardziej wojujących sufrażystek.
Hertha Ayrton zmarła w Londynie 26 sierpnia 1923 roku w wieku 69 lat na posocznicę.
Literatura zalecana:
Evelyn Sharp, Hertha Ayrton: A Memoir, Edward Arnold & Co., London 1926.
Hertha Ayrton, The Electric Arc, Cambridge University Press, Cambridge 1912 (pierwsze wydanie 1902).
Ioan James, Remarkable Engineers. From Riquet to Shannon, Cambridge University Press, Cambridge 2010.
Rachel Swaby, Upór i przekora. 52 kobiety, które zmieniły naukę i świat, Wydawnictwo Agora, Warszawa 2017.