Tydzień Noblowski — wielkie niedocenione

/   Tomasz Pospieszny   /

 

Harriet Brooks

(1876–1933)

Harriet Brooks, McCord Museum, Montreal, Quebec

Harriet Brooks była jedną z najwybitniejszych fizyczek jądrowych badającą przemiany jądrowe i radioaktywność. Uważana jest za pierwszą kanadyjską uczoną zajmującą się fizyką jądrową. Współpracowała z ikonami epoki: Josephem Johnem Thomsonem, Ernestem Rutherfordem i Marią Skłodowską-Curie. Rutherford uważał zresztą, że dorównuje ona zdolnościami i geniuszem Marii Curie. Należy do pierwszych osób, które odkryły radon i próbowały określić jego masę atomową. Brooks przeprowadziła serię eksperymentów mających na celu określenie charakteru radioaktywnych emisji z toru. Przypisuje się jej także odkrycie koncepcji odrzutu atomowego. Eksperymenty te stanowiły jedną z podstaw rozwoju nauki o technologii jądrowej.

 

 

Lise Meitner

(1878–1968)

Lise Meitner, [za:] www.austriaart.pl
Albert Einstein mówił o niej: Jest naszą Madame Curie i to bardziej utalentowaną niż Madame Curie. I nie powinno to dziwić. Jej sukcesy naukowe były zaskakujące. Była współodkrywczynią odrzutu jądra atomowego, kilku naturalnych izotopów promieniotwórczych i trwałego izotopu protaktynu. Samodzielnie zbadała właściwości fizyczne wielu substancji promieniotwórczych, rozkład energii promieniowania beta, promieniowanie beta i gamma, odkryła zjawisko nazywane dziś zjawiskiem Augera. Prawidłowo zinterpretowała doświadczenie wykonane przez Ottona Hahna i Fritza Strassmanna, obliczyła energię wyzwalaną w tym procesie oraz przewidziała łańcuchową reakcję jądrową. Lise Meitner z całą pewnością zasłużyła na Nagrodę Nobla, której pomimo ogromnych zasług nigdy nie dostała.

 

 

Marietta Blau

(1894–1970)

Marietta Blau, domena publiczna

Marietta Blau pozostaje do dziś mało znaną i prawie zapomnianą badaczką, która położyła podwaliny pod współczesną fizykę cząstek elementarnych. Opracowała fotograficzną metodę detekcji cząstek. Dzięki jej badaniom i pomysłowości po raz pierwszy
zastosowano fotograficzne emulsje jądrowe, które były użyteczne do obrazowania i dokładnego pomiaru cząstek (głównie cząstek alfa i protonów) oraz zdarzeń jądrowych o wysokiej energii. Jako pierwsza uczona użyła emulsji jądrowych do wykrywania neutronów, co pozwoliło na opracowanie metody dokładnego badania reakcji wywołanych przez zjawiska promieniowania kosmicznego. Jej prace znacznie przyspieszyły rozwój fizyki cząstek. Niestety nie przyznano jej Nagrody Nobla, chociaż otrzymał ją Cecil Powell za użycie światłoczułej emulsji oraz wytworzenie emulsji jądrowej, dzięki której badał procesy jądrowe.

 

Ida Noddack

(1896–1978)

Ida Noddack-Tacke, Stadtarchiv Wesel

Jedna z najwybitniejszych uczonych XX wieku była obdarzona nie tylko niezwykłymi zdolnościami analitycznymi, ale także ponadprzeciętną intuicją. Wyjątkowo precyzyjna i ambitna, wyprzedzała swój czas o kilka pokoleń. Wraz z mężem odkryła dwa
pierwiastki chemiczne – ren i mazur (obecna nazwa technet). Niestety, odkrycie drugiego nie zostało potwierdzone, choć dziś coraz częściej słychać głosy, że niesłusznie. Ida Tacke-Noddack jako pierwsza podała prawidłową interpretację eksperymentu Fermiego, jednak jako kobieta – i tylko dlatego – została zignorowana przez męskie środowisko naukowe. Czas pokazał, że miała rację.

 

Chien-Shiung Wu

(1912–1997)

Chien-Shiung Wu, domena publiczna

Była jedną z największych specjalistek w zakresie radioaktywności. Pracowała przy Projekcie Manhattan nad wzbogaceniem uranu. Do jej największych sukcesów naukowych należy zaliczyć zaprojektowanie i wykonanie w 1957 roku eksperymentu, którym potwierdziła hipotezę dwóch amerykańskich fizyków Tsung-Dao Lee i Chen Ning Yanga z 1956 roku. Przewidzieli oni teoretycznie, że w rozpadzie beta łamana jest parzystość. Była nazywana Pierwszą Damą Fizyki. I pomimo wielkiej pracowitości, oddania nauce, pomysłowości i znacznych osiągnięć nie otrzymała Nagrody Nobla, podczas gdy Lee i Yang zostali jej pierwszymi chińskimi laureatami w 1957 roku. Na pocieszenie Chien-Shiung Wu była pierwszą osobą, która otrzymała Nagrodę Wolfa z fizyki.

_____________________

T. Pospieszny, Pasja i geniusz. Kobiety, które zasłużyły na Nagrodę Nobla, Wydawnictwo Po Godzinach, Warszawa 2019.

Ellen Gleditsch — norweska pionierka radiochemii

 

/   Tomasz Pospieszny   /

 

Ellen Gleditsch jest jedną z niewielu pionierek radiochemii, która jest nie tylko zapomniana w świecie, ale także w Norwegii – kraju rodzimym. Była niezwykle aktywna zawodowo, większą część życia spędziła podróżując i współpracując z innymi naukowcami. Działała także w organizacjach międzynarodowych.

Dom rodziny Gleditsch w Tromsø, National Library of Norway, domena publiczna

Uczona przyszła na świat 29 grudnia 1879 roku w Mandal – małym miasteczku położonym nad Morzem Północnym w południowej Norwegii. Była najstarszym z dziesięciorga rodzeństwa: Karl (1881–1974), Birgit (1882–1941), Eivind (1885–1943), Leif (1886–1946), August (1888–1913), Adler (1893–1978), bliźniaczki Liv (1895–1977) i Astrid (1895–1924) oraz Kristian (1901–1973). Rodzina Gleditschów przybyła do Norwegii około sto lat wcześniej z Jugosławii. Wędrowali przez Niemcy i Danię, gdzie przodek uczonej, Carl August Ludwig von Gleditsch z Sachsen-Weimar, podjął pracę jako kapral w duńskiej armii i poślubił Dunkę. Para później przeprowadziła się i osiedliła w Norwegii, która w 1790 roku była częścią Danii. Ojciec Ellen, Karl Kristian (1851–1913) był synem luterańskiego ministra. Szybko zyskał opinię szanowanego nauczyciela przedmiotów ścisłych, a później także jako dyrektor szkoły średniej w Mandal. W 1889 roku rodzina przeprowadziła się do Tromsø na dalekiej północy Norwegii, gdzie Karl Kristian kontynuował karierę nauczycielską. Kilka lat później został także szanowanym politykiem. Z kolei matka Ellen, Petra Birgitte Hansen (1857–1913) była córką kapitana żeglugi. Była silną i niezależną kobietą angażującą się w politykę. Należała do pierwszego ruchu sufrażystek w Norwegii. Uwielbiała muzykę ludową i tą pasją zainspirowała także swoje dzieci. Według Ellen matka miała niezwykłe zdolności językowe. Pasjonowała ją przyroda i astronomia. Gleditschowie lubili spędzać czas na wsi i zabierali dzieci na długie wędrówki po lasach i górach. Często także żeglowali. Podczas wycieczek ojciec zakochany w botanice uczył swoje dzieci jak rozpoznawać i stosować rośliny w lecznictwie.

Ellen z matką i ojcem, 1913/1914, National Library of Norway, domena publiczna

Miłość rodziców, ich wzajemna troska oraz otwartość na świat sprawiła, że dzieci wychowywały się w szczęśliwej i opiekuńczej rodzinie. Ellen bardzo wcześnie nauczyła się szacunku dla innych ludzi, ale również dla przyrody. Często także, jako najstarsza z rodzeństwa, pomagała matce w opiece nad młodszym rodzeństwem. Wydaj się, że właśnie wówczas rozwinęła się w niej etyka pracy, bezinteresowność, skromność, troska o innych i głębokie wartości humanitarne, które zdominowałyby jej osobowość i pozostały w niej przez całe życie. Ellen w wieku osiemnastu lat zdała egzamin końcowy będąc najlepszą uczennicą w klasie. Znała łacinę, niemiecki, angielski, ale najbardziej interesowała się naukami przyrodniczymi. Zdecydowała się na podjęcie stażu w aptece. W 1897 roku przeniosła się do Oslo, gdzie kontynuowała naukę. Po kilkuletniej praktyce zdała dwa ważne egzaminy: w 1900 roku egzamin na asystenta farmaceutycznego i w 1902 roku niezwykle trudny egzamin na farmaceutę dyplomowanego.

 

Ellen Gleditsch w stroju absolwentki, b.d., National Library of Norway, domena publiczna

 

Po latach uczona wspominała:

Po egzaminie z farmakologii dr Bødtker doradził mi kontynuację studiów w laboratorium uniwersyteckim pod kierunkiem profesora Hiortdahla. Tak bardzo chciałam kontynuować naukę, ale nie miałam pieniędzy, a trzeba było przetrwać, więc zacząłem pracować jako korepetytorka. Wszystko układało się nawet dobrze, ale nie miałam tyle czasu na naukę, ile bym chciała. To była najpierw kwestia przetrwania, a potem nauki. Ale tak naprawdę poszło lepiej, niż mogłoby się wydawać. W 1903 roku zostałam asystentką w uniwersyteckim laboratorium chemicznym, a w 1905 roku zdałam egzamin maturalny, zaś w 1906 roku kwalifikacyjny egzamin wstępny na uniwersytet.

 

Ellen Gleditsch (z lewej) i jej przyjaciółka — botaniczka Thekla Resvoll (1871–1948)[1900 roku prowadziła kursy z botaniki roślin dla farmaceutów], ok. 1905, Oslo Museum, CC BY–SA
Eyvind Bødtker, d.b., fot. Borgens Atelier, Norsk Farmasihistorisk Museum, CC BY–SA

Doktor Eyvind Bødtker (1867–1932) był jednym z najlepszych norweskich chemików organików. Przez lata był mentorem i przyjacielem Ellen. W 1907 roku opublikowała swój pierwszy artykuł naukowy, który za jego radą został przetłumaczony na język francuski i opublikowany we francuskim czasopiśmie naukowym. Bødtker często bywał we Francji i był pod wielkim wrażeniem francuskiego życia kulturalnego oraz naukowego. To on miał niewątpliwy wpływ na Ellen i zapewne obudził w niej pragnienie wyjazdu poza odizolowaną społeczność naukową Oslo. Kiedy podopieczna wyznała mu, że jej największym marzeniem jest nauka w laboratorium Marii Skłodowskiej-Curie, Bødtker postanowił działać. Pojechał do Paryża i odwiedził laboratorium Madame Curie. Ponieważ jej nie zastał zostawił wiadomość moja utalentowana asystentka bardzo chciałaby pracować dla Pani, wyłącznie z zamiłowania do nauki, nie dla zdobycia dyplomu. Kiedy po kilku dniach powrócił spotkał się z Marią. To początkowo odrzuciła prośbę Bødtkera twierdząc, że nie ma już miejsca w laboratorium. Uczony jednak nie ustępował. Pokazał Marii Curie pracę autorstwa Ellen. Praca wydawała się interesująca, ale noblistka nadal twierdziła, że nie ma miejsca w pracowni. Wówczas Bødtker stwierdził, że mademoiselle Gleditsch jest tak mała i lekka, że nie zajmie dużo miejsca w pracowni. W końcu Maria Curie ustąpiła. Według wielu historyków nauki decydującym czynnikiem było prawdopodobnie to, że większość stypendystów w laboratorium Marii była fizykami, a Curie bardzo potrzebowała chemika. Idealną kandydatką była Gleditsch. Wielkie marzenie się ziściło.

 

Instytut Radowy w Paryżu, 1929, Wellcome Images, CC BY–4.0

Gleditsch otrzymała stypendium królowej Norwegii i Szwecji. Było ono niezbędne, aby opłacić pobyt w laboratorium Curie. Jednak Maria Skłodowska-Curie zrobiła tym razem wyjątek. W liście do Ellen napisała: […] jeśli podejmie Pani tę pracę [rekrystalizacja soli baru i radu], która zajmie tylko część Pani czasu, a będzie stanowić ogólną korzyść dla laboratorium, mógłbym zwolnić Panią z opłat […]. Jednocześnie mogłaby Pani pracować nad innymi, bardziej interesującym problemami, które mogą prowadzić do nowych wyników. W październiku 1907 roku Ellen Gleditsch wyjechała do Paryża. Początkowo mieszkała ze swoim bratem Adlerem, a później wynajęła małe mieszkanko za Panteonem, skąd miała blisko do pracowni i Sorbony. Po latach wspominała:

Pomieszczenia, które miała do dyspozycji Maria Curie były położone rozłożyście. Przy wejściu znajdowało się duże biuro z przylegającym ciemnym pokojem, w pobliżu pokoju pełniącego funkcję biblioteki. Trzeba było przejść przez podwórko, by dostać się do dużego laboratorium, w którym można było znaleźć większość sprzętu naukowego. Obok znajdowało się mały gabinet Marii Curie i inny pokój używany przez André Debierneʼa.

 

Maria Skłodowskia-Curie, 1911, Library of Congress

Precyzja z jaką Ellen podjęła się rozdziału soli baru i radu była tak wielka, że Madame Curie szybko uczyniła z niej osobistą asystentkę. W 1907 roku obie rozpoczęły prace nad eksperymentem, który miał obalić teorię Williama Ramsaya (1852–1916). Chemik ów twierdził, że w wyniku działania emanacji radu na miedź, otrzymał lit i sód. Maria Curie wraz z Ellen przeprowadziły niezwykle staranne doświadczenia, stosując w miejsce szklanych naczyń, naczynia platynowe. Stosunkowo szybko uczone stwierdziły, że efekt opisany przez Ramsaya nie istnieje, a obecność litu i sodu jest związana z używanymi przez niego szklanych i kwarcowych naczyń. Pomimo wielu różnic w osobowościach obie panie szybko się polubiły i być może zaprzyjaźniły. Gleditsch była często zapraszana do domu Curie w Sceaux, gdzie poznała córki Marii. Wydaje się również, że był to początek przyjaźni pomiędzy Ellen i Irène. Podczas jednej z krótkich wizyt w Norwegii Gleditsch zaręczyła się z młodym oficerem. Według biografów uczonej, para była bardzo różna i intelektualnie niedobrana. Zaręczyny – prawdopodobnie jedyny związek uczuciowy Gleditsch, który mógł zakończyć się małżeństwem – wkrótce zostały zerwane. W 1926 roku Gleditsch mówiła:

Często wymagana jest obecność [kobiety] w domu. Kobieta, która chce zostać badaczem, musi pogodzić dwa przeciwstawne żądania. Badania wymagają przede wszystkim refleksyjnej atmosfery, możliwości myślenia w ciszy i spokoju oraz skoncentrowania się na konkretnym problemie. Materialne obawy, troska o męża lub dzieci pozostawione w domu bez odpowiedniej pomocy lub opieki zabiją wszelkie szanse na pierwszorzędne wysiłki.

W 1912 roku Gleditsch otrzymała licencjat, z którym powróciła do Norwegii. Przyznano jej skromne stypendium na uniwersytecie w Oslo. Uczona próbowała kontynuować badania związane z czasem połowicznego zaniku radu, a jeszcze rozpoczęte w Paryżu, jednak na przeszkodzie stał brak odpowiednio wyposażonego laboratorium. Bardzo szybko zorientowała się, że swoją pasję i zainteresowanie radioaktywnością będzie mogła rozwijać w Stanach Zjednoczonych. Niestety los pisze własny scenariusz.

 

Portret dr Ellen Gleditsch, b.d., National Library of Norway

Na początku 1913 roku Ellen straciła oboje rodziców i jednego z braci. Została tym samym głową rodziny. Starała się utrzymywać dom i łożyła na edukacje rodzeństwa. Więzi rodzinne były bardzo mocne, co manifestowało się między innymi tym, że Ellen do końca życia mieszkała z bratem Adlerem. Pod koniec feralnego roku Gleditsch otrzymała stypendium Fundacji Amerykańsko-Skandynawskiej. Napisała do Bertrama Boltwooda (1870–1927) z Yale oraz Theodore’a Lymana (1874–1954) z Harvardu wyrażając chęć podjęcia z nimi współpracy. Po odmowie Lymana, który stwierdził, że żadna kobieta nigdy nie pracowała w jego laboratorium, i nie do końca optymistycznym liście Boltwooda, uparta i zdecydowana Ellen pojechała do Stanów Zjednoczonych. Może budzić to zdziwienie, bowiem Boltwood słyną ze swoich szowinistycznych poglądów. Po latach Gleditsch mówiła (nie odnosząc się do jego nazwiska), że pracowała z uczonym, który był znany z nienawiści do kobiet. I ją akceptował bo nie krzyczała. Według uczonej był to największy komplement w mojej karierze naukowej. To właśnie tutaj w semestrze 1913–1914 uczona określiła okres połowicznego zaniku radu na 1686 lat (dziś wiadomo, że wynosi on 1620 lat). Praca ta sprawiła, że uczona została rozpoznawalna w świecie nauki. Stała się wiodącą specjalistką w izolacji i oddzielaniu substancji promieniotwórczych od minerałów. Theodore W. Richards (1868–1928), zaprosił ją na Harvard, a wiosną 1914 roku otrzymała doktorat honoris causa Smith College w Massachusetts. Również Lyman zmienił zdanie i zaproponował jej posadę. Gleditsch wykładała teorię atomu, omawiając powstałą właśnie teorię kwantów oraz ostatnie prace Bohra, Rutherforda i Moseleya. Rozszerzyła swoje prace o badania nad radioaktywnymi minerałami, którymi interesowała się przez całe życie. Opracowała procedury analityczne izolacji wielu substancji radioaktywnych znalezionych w norweskich minerałach i dostarczała próbki do laboratorium Curie. Jako pierwsza zwróciła uwagę na znaczenie izotopów ołowiu w celu dokładnego określenia wieku Ziemi.

Na Uniwersytecie Harvarda Gleditsch zaangażowała się w badania izotopów. W tamtym czasie wiadomo było, że masa atomowa pierwiastków promieniotwórczych (lub tych, które powstawały w wyniku rozpadu promieniotwórczego) może się różnić w zależności od ich pochodzenia geologicznego. Na przykład, w rudach bogatych w naturalnie występujący tor obfitował ołów-208. Natomiast w rudach bogatych w uran dominował ołów-206. Problem pojawił się kiedy Francis Aston (1877–1945) ogłosił, że znalazł dwie różne masy atomowe dla chloru (odpowiednio 35 i 37), a średnia masa atomowa wynosi 35,46. Chlor nie jest pierwiastkiem radioaktywnym, zatem trudno było wytłumaczyć tą anomalię. Wyglądało na to, że także w tym przypadku skład izotopowy zmieniał się w zależności od źródła (tak jak w dla pierwiastków radioaktywnych). Gleditsch i jej współpracownicy badając chlor pochodzący z różnych źródeł, odkryli, że skład izotopowy chloru w rzeczywistości nie różnił się w zależności od źródła. Badacze określili masę atomową pierwiastka na dwa różne sposoby. W pierwszej metodzie strącili chlorek srebra za pomocą azotanu srebra. Chlorek srebra przemyli, wysuszyli i zredukowali do srebra metalicznego za pomocą gazowego wodoru. Na podstawie masy wysuszonego chlorku srebra i srebra metalicznego wyznaczyli ciężar atomowy chloru. Druga metoda polegała na określeniu gęstości nasyconych roztworów chlorku sodu, a następnie masy chloru. Jednakże Irène Curie w Paryżu otrzymała inny wynik. Gleditsch doszła jednak do wniosku, że próbki Curie musiały być zanieczyszczone. Masa atomowa chloru była zatem stała.

Oczywiście bardzo szybko zaczęła się uczoną interesować prasa. Podczas jednego z wywiadów zapytano ją o chęć wyjścia za mąż. Ze względu na sporą ilość pracy zwyczajnie nie mam [na małżeństwo] czasu; moimi zainteresowaniami są badania [naukowe], które pochłaniają wszystkie moje myśli – odpowiedziała Gleditsch.

Eva Ramstedt, ok. 1910, Uppsala University Library

Wybuch pierwszej wojny światowej przyniósł uczonej naukową izolację. Nie mogła wyjeżdżać, miała kłopoty z dostępem do światowej literatury specjalistycznej. W listopadzie 1915 roku pisała do Marii Skłodowskiej-Curie:

Minęło dużo czasu, odkąd miałam od Ciebie jakieś wiadomości. Mam nadzieję, że radzisz sobie tak dobrze, jak pozwalają na to takie czasy… Jak zapewne wiesz, tego lata spotkałam się z panią Ramstedt. Wspólnie badałyśmy radioaktywność w źródłach i wodzie oraz elektryczność w atmosferze. Mamy nadzieję, że będziemy mogły kontynuować [badania] w przyszłym roku. Miło było rozmawiać o Paryżu, laboratorium Curie i wspomnieniach z naszych czasów studenckich. Przydało mi się przynajmniej rozmawiać z kimś, kto pracuje nad radioaktywnością. Mam tu przyjaciół, chemików i fizyków, ale żaden z nich nie zajmował się wiele promieniotwórczością… Chciałabym pojechać do Paryża i Cię odwiedzić! Oby tylko warunki na to wkrótce pozwoliły!

W 1916 roku otrzymała stanowisko docenta oraz uczciwą pensję. Mogła prowadzić badania i zatrudniać współpracowników. Napisała pierwszy podręcznik dotyczący radioaktywności wydany jednocześnie w Szwecji i Norwegii pt. Rad i procesy radiochemiczne. W 1917 roku została wybrana na członkinię Akademii Nauk w Oslo. Została tym samym drugą kobietą, która dostąpiła tego zaszczytu (pierwszą była Kristine Bonnevie). Uważała, że współpraca międzynarodowa jest niezwykle ważna dla nauki. Ellen Gleditsch twierdziła, że:

W tej atmosferze [wyjazdów] dowiedziałam się, w jaki sposób problem [naukowy] rodzi się w jednym laboratorium, jest podejmowany w innym, a potem może zostać rozwiązany w jeszcze innym. Dowiedziałam się, że konkurencja i wyścig związany z rozwiązaniem [problemów naukowych] jest ściśle powiązany z postępem nauki. Powstaje rodzaj braterstwa między tymi, którzy pracują w tym samym laboratorium, w którym powstają różne problemy, gdzie są omawiane i być może ich rozwiązania skutkują publikacją. Rozwiązanie to dociera w końcu do laboratoriów w innych krajach, w których badane są te same problemy. I w końcu człowiek zdaje sobie sprawę – być może tylko poprzez małe osobiste rozczarowania lub sukcesy, że ktokolwiek podejmuje ten decydujący, ostatni krok związany z rozwiązaniem [problemu], czy płynie z zagranicy czy nie, ma drugorzędne znaczenie.

W 1919 roku Gleditsch wyjechała na dziewięciomiesięczne stypendium do Paryża. Rok później pojechała do Rutherforda do Cambridge i Soddy’ego do Oxfordu, z którym się zaprzyjaźniła i którego prace szczególnie ceniła. Następnie powróciła do Paryża, aby zastąpić podróżującą do Ameryki Południowej Marię Curie w laboratorium. Po powrocie do Norwegii została uhonorowana przez Norweską Akademię Nauk prestiżową nagrodą Nansena.

 

Ellen Gleditsch na schodach Instytutu Radowego w Paryżu, 1924 [za:] Natalie Pigeard-Micault, Les femmes du laboratoire Curie, Glypche, Paris 2013

W 1922 roku Gleditsch po raz pierwszy w liście do Marii Skłodowskiej-Curie skarżyła się na problemy zdrowotne. Pisała, że cierpi na anemię, która powoduje częste przeziębienia. Być może było to związane z pracą z substancjami radioaktywnymi, jednakże zważywszy na fakt, że uczona żyła prawie osiemdziesiąt dziewięć lat można wnioskować, że miała wyjątkowo silny organizm.

W okresie międzywojennym Gledisch skoncentrowała się na badaniu izotopów w minerałach. Część prac wykonała wspólnie z młodszą siostrą Liv, która także była chemikiem. Uczona zaangażowała się również w jedną z komisji działających przy Lidze Narodów. Głośno mówiła:

Nie ma znaczenia, czy praca jest wykonywana przez niską kobietę w Bułgarii czy przez wysokiego mężczyznę w Stanach Zjednoczonych, jeśli wykonano ją dobrze. I właśnie to musimy zrobić: pracować tak dobrze, aby nikt nie ośmielił się powiedzieć – to dobra robota dla kobiety, ale aby wszyscy mogli powiedzieć – to dobra robota w ogóle. Rasa i płeć nie mają znaczenia w nauce.

Ellen Gledtisch, ok. 1935, Oslo Museum, CC CC 1.0

W 1929 roku po wielu perturbacjach została profesorem chemii. W liście do Marii Curie pisała: Dokonało się. Trzy dni temu zostałam profesorem. Mam szczerą nadzieję, że będę w stanie wykonać dobrą robotę; i że nie będzie brakowało pracy. Mam również nadzieję, że od czasu do czasu będę Cię odwiedzać i że te wizyty będą dla mnie źródłem inspiracji i zachęty. Uważała, że praca ze studentami oznacza pracę nad przyszłością. To uczeń jutro będzie kontynuował naszą pracę. Aby popularyzować naukę, Gleditsch zaczęła wygłaszać wykłady popularnonaukowe w radio, pisała też artykuły w języku francuskim, angielskim, niemieckim i norweskim. Była autorką biografii wielu naukowców, których znała osobiście.

Podczas drugiej wojny światowej Gleditsch przyczyniła się do znalezienia bezpiecznej przystani w Norwegii dla uchodźców, głównie ze społeczności uniwersyteckiej. W jej laboratorium w Oslo i innych częściach kraju znaleziono miejsca dla uciekających naukowców. Wśród nich znaleźli się Elizabeth Rona i Marietta Blau. Kiedy Niemcy okupowali Norwegię, Gleditsch nigdy nie rezygnowała z wysiłków przeciwstawienia się okupantom i marionetkowemu reżimowi. Starała się utrzymać ducha oporu i przygotować się na spodziewane ataki na wolność akademicką i osobistą. Nic jej nie złamało. Jej brat, Adler był przez kilka lat jeńcem wojennym. Siostra Liv została aresztowana w ostaniem roku wojny. Ellen Gleditsch nadal okazywała pogardę okupantom, pomagając studentom, naukowcom i innym ludziom, którzy znaleźli się w niebezpieczeństwie. Kilkakrotnie ukrywała ich w swoim mieszkaniu. W 1943 roku uczona została aresztowana. Przesłuchiwał ją dobrze wykształcony niemiecki oficer. Po niemiecku przekonała go, aby ją wypuścił. I właściwie nie wiadomo dlaczego, oficer podziękował jej za miłe spotkanie i wyraził nadzieję, że spotkają się ponownie w przyjemniejszych okolicznościach. Wkrótce jednak została oskarżona o działalność polityczną na uniwersytecie i zakazano jej pracy na uczelni.

 

Zebranie Komisji Norm i Jednostek Promieniotwórczości w Sztokholmie w 1953; od lewej m.in: Raymond Delaby (1.),  Irène Joliot-Curie (6.), Ellen Gleditsch (9.), Friedrich Paneth (10.), austriacka fizyk Berta Karlik (11.) i George de Hevesy (12.), National Library of Norway

 

Po wojnie pozostała w kontakcie z przyjaciółmi i kolegami, takimi jak np. Lise Meitner, którą regularnie odwiedzała w Sztokholmie. W 1946 roku uczona przeszła na emeryturę i rozpoczęła współpracę z UNESCO. Jej celem była walka z analfabetyzmem. W 1947 roku na zaproszenie Frederica Joliota-Curie wzięła udział w ceremonii z okazji dziesiątej rocznicy śmierci Rutherforda. W 1952 roku została powołana do norweskiej komisji ds. koordynacji naukowej jako przedstawicielka rządu, gdzie była rzecznikiem międzynarodowej kontroli nad bombą atomową. W tym samym roku zrezygnowała z pracy w UNESCO w proteście przeciwko przyjęciu Hiszpanii pod faszystowskim reżimem Franco jako członka instytucji. Przez cały czas publikowała. Pod koniec życia zainteresowała się szczególnie historią nauki. Jej ostatni artykuł dotyczący życia i pracy szwedzkiego chemika Carla Wilhelma Scheele’a został opublikowany w 1968 roku. Uczona otrzymała wiele nagród i wyróżnień, w tym między innymi w 1962 roku jako pierwsza kobieta doktorat honoris causa Sorbony, medal miasta Paryża, została także honorowym obywatelem Paryża. Otrzymała również doktorat honoris causa Uniwersytetu w Strasburgu.

Pod koniec maja 1968 roku spędzała weekend w swoim wiejskim domu w Enebakk pod Oslo. Poczuła się źle. Straciła przytomność. Lekarze orzekli, że dostała udaru. Kilka dni później, 5 czerwca w wieku osiemdziesięciu dziewięciu lat Ellen Gleditsch zmarła.

Można by oczekiwać, że w Norwegii pamięć o uczonej będzie pielęgnowana i trwała. Niestety niewiele osób zna tą wyjątkową kobietę i jej osiągnięcia. Niestety mało kto pamięta Ellen Gleditsch – wybitną uczoną, działaczkę pokojową oraz przyjaciółkę i współpracowniczkę Marii Skłodowskiej-Curie.

 

W styczniu 2019 roku Svein Stølen – rektor Uniwersytetu w Oslo – odsłonił pamiątkową plakietę na budynku przy ulicy Jonas Reins 1 w Oslo, gdzie Ellen Gleditsch mieszkała w latach 1931–1968, fot. Eivind Torgersen, [za:] https://forskning.no
_______________

Literatura zalecana:

[1] A.-M. Weidler Kubanek, Nothing Less Than An Adventure: Ellen Gleditsch and Her Life in Science, CreateSpace Independent Publishing Platform, 2010.

[2] A. Lykknes, Ellen Gleditsch and Research on Radium, Chlorine and Potassium, [w]: Women in Their Element: Selected Women’s Contributions To The Periodic System, ed., Annette Lykknes, Brigitte Van Tiggelen, World Scientific Publishing Co, Singapore 2019.

[3] A. Lykknes, L. Kvittingen, A. K. Børrese, Ellen Gleditsch: Duty and responsibility in a research and teaching career, 1916-1946, Historical Studies in the Physical and Biological Sciences, 36 (1), 2005, str. 131–188.

[4] A. Lykknes, H. Kragh, L. Kvittingen, Ellen Gleditsch: Pioneer Woman in Radiochemistry, Phys. Perspect., 6, 2004, str. 126–155.

[5] A. Lykknes, Ellen Gleditsch: Woman Chemist in IUPAC’s Early History, Chemistry International, 2019, str. 26–27.

[6] A.-M. Weidler Kubanek, C. P. Grzegorek, Ellen Gleditsch: Professor and Humanist, [w]: A Devotion to Their Science: Pioneer Women of Radioactivity, ed., Marlene F. Rayner-Canham, Geoffrey W. Rayner-Canham, McGill-Queen’s University Press, Québec 1997.

[7] A. Lykknes, Ellen Gleditsch: Professor, Radiochemist, and Mentor, Department of Chemistry Norwegian University of Science and Technology Trondheim, Norway, Ph. D. thesis, 2005.

[8] M. F. Rayner-Canham, G. W. Rayner-Canham, Sir W. Grenfell College, Stefanie Horovitz, Ellen Gleditsch, Ada Hitchins, and the discovery of isotopes, Bull. Hist. Chem., 25(2), 2000, str. 103–108.

Hertha Ayrton — uczona aktywistka

/   Tomasz Pospieszny   /

 

Osobiście nie zgadzam się z tym, żeby w ogóle wprowadzać problem płci w nauce. Perspektywa, zgodnie z którą rozpatruje się tę kwestię, jest zupełnie błędna i pozbawiona sensu merytorycznego. Kobieta po prostu albo jest dobrym naukowcem, albo nie; w każdym przypadku powinna jednak mieć równe szanse, a jej prace należy studiować z punktu widzenia naukowego, a nie perspektywy płci.

Hertha Ayrton

14 marca 1909 roku w liście do „Westminster Gazette” Hertha Ayrton napisała, że „błędy są niezwykle trudne do naprawienia, ale błąd, związany z przypisaniem sukcesu mężczyźnie, za – tak naprawdę – pracę wykonaną przez kobietę, ma więcej żyć niż kot”. Wiedziała co pisze, bowiem przez wiele lat jej praca i osoba była nieuznawana w zdominowanym przez mężczyzn świecie inżynierii i nauk ścisłych.

Portsea na przełomie XIX i XX wieku, domena publiczna

Phoebe Sarah Hertha nazywana przez rodzinę Sarah urodziła się 28 kwietnia 1854 roku na wyspie Portsea u południowego wybrzeża Anglii, w hrabstwie Hampshire. Była trzecią córką z ośmiorga dzieci Żyda polskiego pochodzenia, imigranta z Polski pod carskim zaborem rosyjskim i zegarmistrza Leviego Marksa oraz krawcowej Alice Theresy Moss, której rodzice byli polskimi uchodźcami. Ojciec Herthy był również synem polskiego karczmarza i uciekł do Anglii przed żydowskimi prześladowaniami pod carskimi rządami. Niestety zdrowie Leviego, prawdopodobnie podkopane przez młodzieńcze doświadczenia, nigdy nie było dobre. Wykupił licencję na sprzedawanie swoich towarów jako domokrążca, jednak nie odnosił żadnych sukcesów w interesach. Ojciec Herthy zmarł w 1861 roku, pozostawiając ciężarną żonę i siedmioro dzieci w poważnej sytuacji finansowej. Hertha musiała szybko dojrzeć. Przejęła częściowo obowiązki matki, opiekując się młodszym rodzeństwem. Kiedy skończyła dziewięć lat, przeniosła się do ciotek, które prowadziły szkołę. Tutaj bardzo szybko uwidocznił się jej talent do nauk ścisłych. Naukę kontynuowała w prywatnej szkole w północno-zachodnim Londynie, prowadzonej przez ciotkę ze strony matki Miriam i jej męża Alphonseʼa Hartoga, dzięki którym poznała niezwykle uzdolnionych kuzynów. Od nich uczyła się między innymi muzyki, łaciny i matematyki. W szkole przyszła uczona nauczyła się, między innymi od swojego wuja Alphonseʼa, płynnie języka francuskiego. Po zajęciach szkolnych udzielała korepetycji. W ten sposób zarobione pieniądze wysyłała matce, aby pomóc matce i rodzeństwu. Uchodziła za ładną dziewczynę była niska, miała przenikliwe szarozielone oczy i kruczoczarne włosy. Jednak Hertha absolutnie nie zwracała uwagi na swój wygląd i zalotników. Od młodzieńczych lat była niezależna, bardzo uparta i wyzwolona. Kiedy została niesprawiedliwie oskarżona o jakieś wykroczenie, przez kilka dni prowadziła strajk głodowy. Mając szesnaście lat zdecydowała, żeby nie nazywać jej Sarah lecz Hertha na cześć bogini ziemi z wiersza Algernona Charlesa Swinburneʼa. Oczywiście na kształtowanie się osobowości Herthy mieli wpływ jej przyjaciele. Jedną z jej najlepszych przyjaciółek była kuzynka Florence Nightingale – Barbara Leigh Smith (po mężu Bodichon) – walcząca feministka i wybitna postaci ruchu na rzecz emancypacji kobiet oraz jedna z założycieli Girton College w Cambridge.

 

Barbara Leigh Smith Bodichon (1827–1891), National Portrait Gallery St. Martin’s Place London WC2H OHE, CC–BY 3.0

 

Smith zachęcała Herthę, aby starała się o stypendium na studia. Przyszła uczona nie otrzymała stypendium jednak w 1876 roku została przyjęta do collegeʼu i rozpoczęła studiowanie matematyki i fizyki. Jednym z jej mistrzów był fizyk zajmujący się elektrycznością Richard Glazebrook, uczeń Jamesa Clerka Maxwella. Najprawdopodobniej to on zachęcił i zainteresował Herthę właśnie tym tematem.

 

Richard Tetley Glazebrook (1854–1935), National Portrait Gallery St. Martin’s Place London WC2H OHE, CC–BY 3.0

 

Niestety po pierwszym semestrze podupadła na zdrowiu i musiała na rok opuścić Cambridge. Roczna przerwa w nauce spowodowała znaczne zaległości, przez co Hertha miała znaczne kłopoty z nadrobieniem materiału. Należy jednak dodać, że mimo zaległości Hertha rozwijała się naukowo oraz wykazywała znaczne zdolności w kierunku technicznym. Jako pierwsza zaprojektowała i zbudowała sfigmomanometr czyli aparat do pomiaru ciśnienia tętniczego krwi. Był to pierwszy z jej wielu sukcesów, które miały nadejść. Podczas studiów prowadziła także chór, założyła straż pożarną i klub matematyczny. Co warte podkreślenia w 1880 roku ukończyła studia, lecz uczelnia nigdy nie dała jej dyplomu lecz certyfikat. Jako ostatni brytyjski uniwersytet Cambridge „uległˮ dopiero w 1948 roku, kiedy to przyznał stopnie naukowe kobietom! W 1881 roku zdała egzamin zewnętrzny na Uniwersytecie Londyńskim, który przyznał jej licencjat z nauk ścisłych.

Po opuszczeniu Cambridge Hertha i jedna z jej koleżanek z roku wynajęły mieszkanie w Londynie, gdzie prowadziły prywatne lekcje. Była bardzo zaangażowana w prace matematyczne i fizyczne. Miała niezwykły zmysł konstruktorski – w tym czasie wynalazła na przykład przyrząd kreślarski służący do pomniejszania i powiększania figur, który znalazł zastosowanie w pracowniach architektonicznych i inżynieryjnych. Była też autorką licznych rozwiązań problemów matematycznych. Wiele z jej pomysłów zostało opatentowanych: w sumie była autorką 26 patentów – pięciu z matematyki, trzynastu związanych z lampami łukowymi i elektrodami, reszta dotyczyła rozwiązań związanych na napędami powietrza.

 

William Edward Ayrton (1847–1908), National Portrait Gallery St. Martin’s Place London WC2H OHE, CC–BY 3.0

 

Przez kolejne dwa lata przygotowywał się także do egzaminów na uniwersytet, aby studiować fizykę stosowaną. Zapisała się na kurs uzupełniający w Finsbury Technical College, który prowadził William Edward Ayrton. Uczony przyszedł na świat 14 września 1847 roku w Londynie. Był syn adwokata, studiował matematykę na University College w Londynie i elektryczność w Glasgow u Williama Thomsona (Lorda Kelwina). Uchodził za pioniera nauczania fizyki i elektrotechniki. Przez kilka lat pracował za granicą między innymi w Indiach (1868–1872) i Japonii (1873–1897). Po powrocie do Londynu został mianowany wykładowcą w kilku uczelniach technicznych, w tym Finsbury. To spotkanie miało zmienić życie Herthy.

Ayrton, który dwa lata wcześniej owdowiał oświadczył sie Herthcie i w 1885 roku para zawarła związek małżeński. Miss Herthon zaadoptowała córkę Edwarda z pierwszego małżeństwa Edith (1879–1945), późniejszą pisarkę i aktywistkę. Rok później para doczekała się kolejnej córki Barbary (1886–1950) znanej sufrażystki, która imię otrzymała na cześć Barbary Leigh Smith.

 

Hertha Ayrton, ©The Institute of Engineering and Technology, IET Archives UK 108 IMAGE 1/1/0020

 

Hertha zatrudniła gosposię, co umożliwiło jej rozpoczęcie pracy naukowej u boku męża. Początkowo pomagała Edwardowi w eksperymentach nad wynalezieniem stabilnego i cichego źródła światła. Kiedy Edward wyjechał służbowo za granicę, a Hertha przebywała poza domem doszła do tragedii. Ich wspólna praca została zniszczona, gdy gosposia sądząc, że papiery z notatkami uczonych są przeznaczone do zniszczenia spaliła je w kominku. Wkrótce Hertha zaczęła przeprowadzać własne eksperymenty w domu, podczas gdy jej mąż opiekował się ich córkami. Praca ta doprowadziła uczoną do kilku ważnych odkryć. W pierwszej kolejności skupiła się nad problemem migotania i syczenia powstającym podczas oświetlenia łukowego. Stwierdziła, że problemem są pręty węglowe, które po podłączeniu do nich źródła prądu ulegają dziurawieniu poprzez ulatnianie się węgla. Przez powstające otwory w prętach przechodziło powietrze powodując charakterystyczny świst. Hertha zmieniła kształt prętów oraz zauważyła relacje pomiędzy spadkiem napięcia i długością łuku oraz przepływem prądu elektrycznego. W latach 1895–1896 wyniki prac opublikowała w dwunastu artykułach naukowych w czasopiśmie „The Electricanˮ. W 1899 roku jako pierwsza kobieta otrzymała członkostwo w prestiżowej instytucji zrzeszającej inżynierów elektryków. Była również pierwszą kobietą, która odczytała własną pracę naukową w Royal Society w Londynie. Jedna z gazet pisała:

Damy uczestniczące w tym wydarzeniu z wielkim zdumieniem przyjęły to, że przedstawicielka ich własnej płci kierowała pokazami sprawiającymi wrażenie najbardziej niebezpiecznych ze wszystkich Pani Ayrton natomiast w ogóle nie wyglądała na przestraszoną.

 

Hertha Ayrton, [za:] E. Sharp, „Hertha Ayrton, 1854-1923, a memoir”, London 1926.

Hertha zaczęła prowadzić wykłady związane z jej badaniami i cieszyła się znaczną popularnością zarówno w kraju jak i za granicą.  W1900 roku została zaproszona na Międzynarodowy Kongres Elektryczny odbywający sie w Paryżu, gdzie po francusku wygłosiła odczyt na temat swoich badań nad łukiem elektrycznym. W 1902 roku otrzymała nominację członkowską do londyńskiego Towarzystwa Królewskiego, jednak prawnik towarzystwa orzekł, że Hertha jako kobieta jest niewybieralna, bowiem jako kobieta zamężna nie stanowiła samodzielnego podmiotu prawnego!! Pierwszą kobietę wybrano dopiero w 1946 roku. Uczona podczas udzielonego wywiadu powiedziała:

Osobiście nie zgadzam się z tym, żeby w ogóle wprowadzać problem płci w nauce. Perspektywa, zgodnie z którą rozpatruje się tę kwestię, jest zupełnie błędna i pozbawiona sensu merytorycznego. Kobieta po prostu albo jest dobrym naukowcem, albo nie; w każdym przypadku powinna jednak mieć równe szanse, a jej prace należy studiować z punktu widzenia naukowego, a nie perspektywy płci.

 

Okładka książki: H. Ayrton, „The Electric Arc”, The Electrician Printing and Publishing Company, London, 1902

W 1902 roku ukazała się jej książka pt. The Electric Arc, która podsumowywała wyniki jej pracy. W latach 1904–1908 uczona pracowała nad projektowaniem elektrycznych reflektorów dla Royal Navy. Niestety jej prace w większości przypisano Edwardowi, chociaż ten protestował i zawsze podkreślał udział Herthy w pracach naukowych. Jej prace zostały docenione w 1906 roku, gdy przyznano jej Medal Hughesa Towarzystwa Królewskiego „za oryginalne odkrycie w dziedzinie nauk fizycznych, a w szczególności dotyczące generowania, magazynowania i wykorzystywania energii elektrycznej”. Została też przyjęta na pełnoprawną członkinię Institution of Electrical Engineers.

Do jej przyjaciółek należała między innymi Maria Skłodowska-Curie. Uczone poznały się w 1903 roku w Londynie, gdzie państwo Curie prezentowali swoje wyniki badania nad radem w londyńskim Królewskim Towarzystwie. Przyjaźń obu kobiet była na tyle trwała, że Maria znalazła w 1912 roku schronienie w domu Ayrton po wybuchu skandalu związanego z tzw. aferą Langevina.

 

Mill House w Highcliffe, wynajęty przez Herthę Ayrton na wspólny pobyt z Marią Skłodowską i jej córkami latem 1912 roku, [za:] http://www.dorsetlife.co.uk

Podczas pierwszej wojny światowej Hertha przekonała Biuro Wojenne do wykorzystania jej wynalazku, który mógł rozproszyć chmury gazów bojowych. Wkrótce ponad sto tysięcy wentylatorów, które miały również inne zastosowania, było używanych na froncie zachodnim.

 

Wentylatory pomysłu Herthy Ayrtonm [za:] https://www.allaboutcircuits.com

Hertha Ayrton miała zdecydowane lewicowe poglądy, dlatego bez wahania dołączyła do do powstałej Partii Pracy. Zawsze była zagorzałą zwolenniczką praw kobiet, podobnie zresztą jak jej mąż. Już w 1899 roku przewodniczyła sekcji naukowej drugiego spotkania Międzynarodowego Kongresu Kobiet. Odgrywała wiodącą rolę w ruchu sufrażystek, zwłaszcza po wojnie. Ayrton była mocno zaangażowana w ruch sufrażystek. W 1911 roku odmówiła udziału w powszechnym spisie ludności, pisząc na formularzu:

Jak miałabym odpowiedzieć na wszystkie te pytania, skoro rzekomo brak mi inteligencji, by móc samodzielnie wybierać kandydatów do parlamentu? Nie dostarczę żadnych tego rodzaju informacji do czasu, aż uzyskam prawa obywatelskie. Domagam się prawa wyborczego dla kobiet.

 

Barbara Ayrton w stroju „córki rybaka” promuje londyńską Wystawę Kobiecą w maju 1909 roku, fot. Christina Broom, [za:] http://historyinphotos.blogspot.com

Edward Ayrton zmarł 8 listopada 1908 roku. Hertha pozbawiona silnego wsparcia męża walczyła o prawa kobiet. Była niezwykle dumna, że jej córka Barbara należała do jednych z najbardziej wojujących sufrażystek.

Hertha Ayrton zmarła w Londynie 26 sierpnia 1923 roku w wieku 69 lat na posocznicę.

 

Literatura zalecana:

  1. Evelyn Sharp, Hertha Ayrton: A Memoir, Edward Arnold & Co., London 1926.
  2. Hertha Ayrton, The Electric Arc, Cambridge University Press, Cambridge 1912 (pierwsze wydanie 1902).
  3. Ioan James, Remarkable Engineers. From Riquet to Shannon, Cambridge University Press, Cambridge 2010.
  4. Rachel Swaby, Upór i przekora. 52 kobiety, które zmieniły naukę i świat, Wydawnictwo Agora, Warszawa 2017.

„Światło w ciemności” — komiks o Marii Skłodowskiej-Curie

fot. Piękniejsza Strona Nauki

 

W bieżącym roku kilka wydawnictw oddało do rąk czytelników książki dotyczące życia Marii Skłodowskiej-Curie. Jedną z nich jest pozycja pt. Maria Skłodowska-Curie. Światło w ciemności. Tekst napisały Frances Andreasen Osterfelt i Anja C. Andersen, zaś za stronę graficzną odpowiadała polska graficzka i ilustratorka Anna Błaszczyk. Książka ukazała się nakładem poznańskiego wydawnictwa Media Rodzina, partnerem wydania jest Muzeum Marii Skłodowskiej-Curie w Warszawie. Książka według opisu wydawcy liczy 136 stron.

 

fot. Piękniejsza Strona Nauki

 

Początkowo podszedłem do książki dość sceptycznie, chyba ze względu na ilustracje, które nie do końca do mnie przemawiały. Jednak po przeczytaniu książki z przekonaniem mogę stwierdzić, że jest to pozycja ciekawa i przede wszystkim potrzebna. W moim odczuciu utwierdziły mnie rozmowy z młodymi czytelnikami, którym zarówno strona graficzna jak i merytoryczna bardzo odpowiada. Jest to bardzo ważne, aby właśnie dzieci i młodzież zachęcać do poznawania życia Marii Skłodowskiej-Curie w nowatorski sposób, a co ważniejsze przemawiający do ich wyobraźni.

 

fot. Piękniejsza Strona Nauki

 

Omawiana książka jest dobrze opracowaną powieścią graficzną, która pokazuje życie uczonej. Książka została podzielona na 5 rozdziałów i Epilog. I właściwie jedynym mankamentem jest to, że kończy się za szybko. Szkoda, że autorki pobieżnie tylko pokazały działalność Marii podczas pierwszej wojny światowej, nie wspomniały o jej podróżach do Stanów Zjednoczonych… Z drugiej strony, gdyby pokazać w ten sposób całe życie uczonej być może nie zachęciłoby to młodego czytelnika do dalszych samodzielnych poszukiwań Marii Skłodowskiej-Curie.

 

fot. Piękniejsza Strona Nauki

 

W tekście duńskich autorek znalazłem zaledwie kilka drobnych przeinaczeń, o których nawet nie ma sensu pisać. Właściwie znajduje to nawet usprawiedliwienie w tym, że tekstu nie ma zbyt wiele, a dominują wspomniane już grafiki (chętnie podałbym, które zrobiły na mnie wrażenie, ale niestety książka nie ma numeracji stron, co niewątpliwie utrudnia jej opisywanie).

 

fot. Piękniejsza Strona Nauki

 

Życie Marii Skłodowskiej-Curie dla współczesnych młodych ludzi jest zapewne czymś niezwykle odległym, czasem być może odrealnionym, ale cechy jej charakteru, które to życie ukształtowały w pełni powinny pozostawać godnym wzorem do naśladowania. Jej pracowitość, upór, dążenie do spełnienia marzeń są w istocie świadectwem, że ciężka praca, a nade wszystko wiara we własne możliwości pozwala na realizację nawet tych marzeń, które wydają się niemożliwe do zrealizowania. Autorki we wstępie napisały:

Na przykładzie jej życia pragniemy przypomnieć, jak bogaty może stać się świat, jeśli stworzy się równe szanse dla wszystkich – niezależnie od płci, rasy i narodowości.

Niech to przesłanie będzie najlepszą rekomendacją dla tej wyjątkowej pozycji na polskim rynku wydawniczym. Obyśmy mogli w przyszłości czytać takich powieści więcej.

Tomasz Pospieszny

 

fot. Piękniejsza Strona Nauki

 

 

 

Eva Ramstedt — uwielbiana przez studentów

 /   Tomasz Pospieszny   /

 

Do napisania tego krótkiego felietonu zachęcił mnie (a właściwie sprowokował) Jakub Müller z Piekar Śląskich. Kilka dni temu, gdy się spotkaliśmy, podarował mi małą książeczkę pt. Marie Curie och radium autorstwa Evy Ramstedt. Książka została wydana w 1932 roku (a więc jeszcze za życia Marii Curie) w Sztokholmie przez P. A. Norstedt & Söners Förlag (Svenska Bokförlaget). Bohaterka książki jest wszystkim doskonale znana, ale kim jest autorka?

Eva Ramstedt, ok. 1910, Uppsala University Library

Eva Julia Augusta Ramstedt urodziła się 15 września 1879 roku w Sztokholmie. Jej rodzicami byli burmistrz Sztokholmu Johan Ramstedt i Henrika Torén. Szkołę średnią ukończyła w mieście rodzinnym z bardzo dobrym ocenami. Wykazywała duże zainteresowanie naukami przyrodniczymi – zwłaszcza fizyką i chemią, dlatego postanowiła studiować fizykę na uniwersytecie w Uppsali.

W 1904 roku została współzałożycielką Stowarzyszenia Kobiet Akademickich, którego celem było propagowanie nauk ścisłych wśród dziewcząt. W tym samym roku obroniła licencjat z filozofii, a cztery lata później z fizyki. W 1910 roku obroniła rozprawę doktorską związaną z zachowaniem się cieczy w różnych warunkach fizycznych. Po doktoracie zwróciła uwagę na zjawisko radioaktywności. Sprowokowało ją to do rocznego wyjazdu do Paryża, gdzie miała sposobność poznawania tajników tej niezwykłej nauki od Marii Skłodowskiej-Curie. W laboratorium odkrywczyni polonu i radu Eva poznała i zaprzyjaźniła się z Ellen Gledtisch oraz May Sybil Leslie.

Po powrocie z Paryża Ramstedt została zatrudniona w Instytucie Chemii Fizycznej im. Alfreda Nobla na Wydziale Fizyki na stanowisku zastępcy profesora. Warto podkreślić, że przez rok pracowała jako adiunkt w pracowni laureata Nagrody Nobla z chemii, twórcy teorii dysocjacji elektrolitycznej słynnego Svante Arrheniusa. W 1915 roku Ramstedt została pierwszą kobietą zatrudnioną jako profesor na Uniwersytecie Sztokholmskim.

Eva Ramstedt, b.d., [za:] https://sok.riksarkivet.se/sbl/Presentation.aspx?id=7526
            Była jedyną kobietą, która wzięła udział w wyprawie do Jämtland (prowincja historyczna w środkowej Szwecji, położona w południowo-zachodniej części Norrland), gdzie mogła zobaczyć zaćmienie słońca. Podczas tego wydarzenia badała zmiany elektryczności w powietrzu. Niestety nie zawsze miała idealne warunki do pracy. W 1922 roku do Fredericka Soddy’ego pisała:

Pracujemy tutaj w dość trudnych warunkach. Budynek jest beznadziejnie mały, a każdy pokój jest zatłoczony. Pracuję w piwnicy w ogóle nie nadającej się do pracy. W tym roku jestem jednak zadowolona, gdyż mam asystenta. Sama jestem bardzo zajęta nauczaniem i pracą w komisji na Uniwersytecie, dlatego prace badawcze nie mogą być prowadzone tak, jak bym chciała. Teraz mój asystent może pracować, nawet jeśli ja nie mogę.

Od 1915 do 1932 roku była profesorem nadzwyczajnym radiologii na Uniwersytecie Sztokholmskim, a w latach 1919–1945 starszym wykładowcą matematyki i fizyki w Folk High School w Sztokholmie. Początkowo dla dydaktyki tylko częściowo zrezygnowała z pracy badawczej, ale z czasem poświęciła się całkowicie nauczaniu. Uznawano ją za bardzo dobrą wykładowczynię. Była podziwiana przez studentów, którym poświęcała dużo czasu i troski o ich osobisty rozwój. W liście do Marii Curie pisała: Co do mnie, byłam niewierna nauce, nigdy nie znajdowałam [wystarczająco dużo] czasu na badania. Niemniej jednak moja obecna praca bardzo mnie interesuje i mam nadzieję, że tej zimy będę mogła poprowadzić na uniwersytecie kurs [na temat budowy] atomu. Natomiast Lise Meitner donosiła: Czytając [artykuły] dotyczące pracy naukowej, czasami jest mi bardzo przykro, że zostawiłam pracę badawczą, ale jednocześnie bardzo lubię moją obecną pracę.

Uczona brała także aktywny udział w ruchu na rzecz praw kobiet, była między innymi członkinią Międzynarodowej Federacji Kobiet Uniwersyteckich. Zainteresowanie Ramstedt współpracą międzynarodową było naturalną konsekwencją jej badań. Uczona miała dobre kontakty z wieloma kobietami naukowcami, w tym Marią Skłodowską-Curie, Lise Meitner, Elizabeth Roną czy Ellen Gleditsch. Z tą ostatnią opublikowała książkę na temat radu i procesów radioaktywnych. Celem tej pracy było przedstawienie krótkiego przeglądu rozwoju nowej, ale szybko rozwijającej się nauki.

Dr Anna Beckman, dr Helena Klein, starszy wykładowca Eva Ramstedt, profesor Gabriella Josephson i prezes stowarzyszenia Vera Lindberg na przyjęciu herbacianym w siedzibie Stowarzyszenia Studentów w Uppsali, zdjęcie opublikowane w czasopiśmie „Upsala Nya Tidning” 2 listopada 1942, [za:] Europeana.eu
            Eva Ramstedt miała silną osobowość, którą wzbudzała szacunek. Nie dystansowała się jednak od otoczenia – wśród przyjaciół uchodziła za niezwykle towarzyską i oddaną. Kontynuowała nauczanie aż do przejścia na emeryturę w 1945 roku. Zmarła 11 września 1971 roku w wieku dziewięćdziesięciu pięciu lat.

Niestety uczona nie doczekała się pełnej biografii i do dziś pozostaje mało znaną pionierką nauki.

 

Zalecana literatura:

[1] M. F. Rayner-Canham, G. W. Rayner-Canham, …And Some Other Women of the French Group, [w:] A Devotion to Their Science. Pioneer Women of Radioactivity, red. Marlene F. Rayner-Canham, Geoffrey W. Rayner-Canham, McGill–Queen’s University Press, Québec, 1997.

[2] N. Pigeard-Micault, Les femmes du laboratoire de Marie Curie, Éditions Glyphe, Paris 2013.

[3] E. Ramstedt, Marie Curie och Radium, P. A. Norstedt & Söners Förlag (Svenska Bokförlaget), Stockholm, 1932.

Nobel i emulsje

 

Kończąc „tydzień noblowski” zapraszamy do lektury fragmentu rozdziału poświęconego Marietcie Blau — Pionierka fizyki cząstek — z książki Tomasza Pospiesznego pt. Pasja i geniusz. Kobiety, które zasłużyły na Nagrodę Nobla.

 

***

Cecil Powell, b.d., www.britannica.com

W 1950 roku Nagroda Nobla z fizyki została przyznana Cecilowi F. Powellowi (1903–1969) – jak podano – „za opracowanie fotograficznej metody badania procesów jądrowych i jego odkryć dotyczących mezonów wykonanych tą metodą”. Powell ukończył fizykę na Uniwersytecie Cambridge w roku 1925 roku. Później przez dwa lata pracował w Laboratorium Cavendisha pod kierunkiem Ernesta Rutherforda i Charlesa Wilsona. W roku 1929 roku obronił doktorat. Trzy lata później ożenił się ze swoją asystentką Isobel Therese Artner. Pracę nad promieniowaniem kosmicznym rozpoczął w 1933 roku, stosując emulsje światłoczułe. Był współodkrywcą pionu (mezonu pi), którego istnienie teoretycznie przewidział Hideki Yukawa (1907–1981). Ruth Sime podkreśla:

Powell przeszedł z komór mgłowych na metody fotograficzne w 1938 roku, po tym, jak on i pozostali [badacze] tej dziedziny zrozumieli znaczenie [prac] Blau i Wambacher w zastosowaniu emulsji do badania promieniowania kosmicznego i procesów jądrowych. Podczas wojny Powell zastosował technikę fotograficzną do przedsięwzięcia na dużą skalę, a w 1947 roku odkrył mezon pi na płytkach wystawionych na działanie promieniowania kosmicznego. Gdyby Blau otrzymała Nagrodę Nobla z Powellem w 1950 roku (Wambacher zmarła w kwietniu tego roku), zapewniłoby jej to miejsce w historii nauki. Ponieważ jednak nie dzieliła z nim nagrody, ona i jej praca zostały całkowicie zapomniane.

 

Warto zwrócić uwagę, że pierwszą nominację do Nagrody Nobla z fizyki Blau otrzymała wraz z Herthą Wambacher od Erwina Schrödingera (1887–1961) w 1950 roku. Uczony nominował Mariettę (samodzielnie) jeszcze w 1956 roku z fizyki i 1957 roku z fizyki i chemii. Schrödinger nie nominował później Herthy najprawdopodobniej pod wpływem Meyera, który uświadomił mu, że była ona zwolenniczką nazizmu i bardzo źle potraktowała Mariettę, a poza tym niezręcznie wyglądałaby nominacja samej uczennicy. W 1955 roku jej kandydaturę wystawił Hans Thirring (1888–1976). Powell otrzymał w sumie dwadzieścia trzy nominacje – w 1949 roku osiem, 1950 roku czternaście i jedną w 1951 roku*. Kiedy odebrał Nagrodę Nobla, w zwyczajowym wykładzie mówił o promieniowaniu kosmicznym i mezonach, ale nie powoływał się na żadną pracę sprzed 1947 roku, nie wspomniał też ani razu o uczonej… Fizyk Axel E. Lindh (1888–1960), członek komitetu noblowskiego, wymieniając osiągnięcia Powella, powiedział, że laureat z emulsji jądrowych stworzył niezwykle skuteczną pomoc w badaniu mezonów. Nie mówiąc o Blau, chciał wymazać ją z historii nauki. Sime tak skomentowała nieprzyznanie Blau Nagrody Nobla:

Marginalizacja Blau jest widoczna w procesie podejmowania decyzji o przyznaniu Nagrody Nobla w dziedzinie fizyki w 1950 roku dla Powella. Blau i Wambacher były również nominowane w tym roku przez Erwina Schrödingera. Chociaż w 1936 roku Nobel dla fizyków Victora Hessa i Carla Andersona został przyznany jako precedens, gdyż dzielący nagrodę otrzymali ją za fundamentalne wcześniejsze odkrycie i jego konsekwencję, która przyszła później, to jest oczywiste, że kandydatury kobiet nie były obiektywnie rozważane. Natomiast dokumentacja pokazuje, że komitet noblowski z fizyki przygotował rażąco niedokładną ocenę, która negowała znaczenie i priorytet pracy Blau czy Blau i Wambacher. Nazwiska kobiet są całkowicie nieobecne w opublikowanych tekstach noblowskich na ten rok, chociaż wspomniano o innych naukowcach, którzy nigdy nie zostali nominowani i wnieśli znacznie mniej. Sam Powell nie cytował Blau w swoim wykładzie noblowskim.

Marietta Blau w swoim laboratorium w Instytucie Radowym w Wiedniu, ok. 1925, z archiwum Marii Retenzi

Nie ulega wątpliwości, że Marietta Blau podzieliła los Lise Meitner. Obie wybitne uczone nie zostały docenione przez komitet noblowski w dużej mierze dlatego, że były kobietami i Żydówkami. „Nominujący do Nobla podają w wątpliwość wkład obu kobiet, wskazując na okres zmniejszonej produktywności po dokonaniu odkryć, nie biorąc pod uwagę tego, że przyczynę stanowiła ich emigracja i zesłanie” – konkluduje Sime. Herbert Pietschmann (ur. 1936) wspominał:

Lise Meitner [była] również starszą kobietą, [jednak] nie była tak delikatna i nieśmiała jak Marietta Blau, ale były podobieństwa. Gdy patrzę wstecz, te podobieństwa pojawiają się przede mną, by wyrazić, jaki los dzielą te dwie grandes dames austriackiej fizyki. Obie były namiętnie oddane swojej dyscyplinie i obie zostały pozbawione najwyższego uznania za swoją pracę.

Student Marietty Arnold Perlmutter pisał:

Wracam teraz do tematu, który musiał być źródłem wielkiego bólu i frustracji w osobistym życiu Marietty Blau, a mianowicie oficjalnego zaniedbania jej roli w odkryciu pionu. Była zbyt dumna i skryta, by otwarcie mi o tym powiedzieć, ale pamiętam, że żywiła wielką pogardę dla C. F. Powella.

 

Erwin Schrödinger (1887–1961), [za:] https://kierul.wordpress.com
Schrödinger jednak nie rezygnował. Uważał, że Marietta powinna zostać odznaczona nagrodą jego imienia. Przibram podał jej kandydaturę i w 1962 roku została czwartą laureatką wyróżnienia. W ramach nagrody Akademia przyznała dotację pieniężną w wysokości około tysiąca dolarów Blau i pośmiertnie Wambacher. Ich nazwiska zostały również wyryte na tablicy honorowej Uniwersytetu Wiedeńskiego. Trudno nie zgodzić się z następującą opinią: Marietta Blau jest najbardziej tragiczną postacią w historii wokół promieni kosmicznych. Jej życie i twórczość charakteryzowały przeciwności losu, ale jej osiągnięcia i wyniki pracy przewyższają osiągnięcia wielu innych osób, którym przyznano Nagrodę Nobla w kontekście promieni kosmicznych. Niestety historia Marietty jest kolejnym przykładem szowinistycznego traktowania przez komitet noblowski. W 1955 roku Blau przyjęła profesurę na Florydzie na Uniwersytecie w Miami, gdzie założyła i wyposażyła wydział fizyki cząstek elementarnych. W trakcie kariery wykazywała ogromne zdolności do dokonywania innowacji i pracowitość. Jej uczniowie uważali ją za „papieża” fizyki emulsji. Jeden z studentów w poświęconych jej wspomnieniach napisał:

Marietta Blau była raczej małą osobą – może 5 stóp i 2 cale wzrostu (158 cm) – oraz całkiem szczupłą, o słodkim, życzliwym wyrazie twarzy. Jej głowa była ledwie widoczna nad kierownicą małego plymoutha i chociaż nie była bardzo wyszkolona w prowadzeniu, kilka razy negocjowała podróż z Nowego Jorku do Miami […]. Początkowo robiła wrażenie kruchej osoby, którą mógłby przewrócić wiatr. Powiedziałabym, że była całkiem ładna, ale prezentowała się niepozornie, skromnie. Mówiła rozważnie, powoli i delikatnie, a jej angielski, choć z nieznacznym akcentem, był wytworny. Była dobrze zaznajomiona z klasyką, literaturą i sztuką. Uczestniczyliśmy w wielu koncertach muzycznych.

 

Pierre Radvanyi pamiętał, że rozmawiali po niemiecku lub francusku i tak charakteryzował Mariettę:

[…] była niskiego wzrostu, czarne włosy miała zaczesane w kok, a jej błyszczące czarne oczy lśniły inteligencją. Zwykle nosiła ciemne ubrania. W tym czasie mieszkała na jednym z wyższych pięter dużego budynku. Po raz pierwszy, kiedy ją odwiedziłem, mieszkała w innym mieszkaniu ze swoją równie drobną matką, która była uprzejma i powściągliwa.

 

* Nominowali go między innymi: Enrico Fermi, Werner Heisenberg, Wolfgang Pauli, Francis Perrin, Maurice de Broglie i Czesław Białobrzeski.

***

Noblistka z Katowic

 

Zapraszamy do lektury fragmentu rozdziału Tańcząca z atomami z książki Tomasza Pospiesznego pt. Pasja i geniusz. Kobiety, które zasłużyły na Nagrodę Nobla.

***

Od pewnego czasu coraz częściej mówiono, że uczona może zostać laureatką Nagrody Nobla. Pierwsze nominacje z fizyki pojawiły się w 1955 roku. Max Born w liście do Francka pisał: „Nie mam żadnych propozycji w tym roku z chemii, natomiast z fizyki pójdę za twoim głosem: nominuję Jensena i Marię Goeppert-Mayer”. W 1955 roku nominowano ją do Nagrody Nobla dwukrotnie, w 1956 roku już sześciokrotnie. W sumie w latach 1955–1963 nominowano ją dwadzieścia sześć razy z fizyki i raz z chemii (1958). Poza Bornem jej kandydaturę zgłaszali między innymi Franck, Urey, Wigner, Libby.

Joseph Mayer, fot. Bachrach [za:] „Biographical Memoirs National Academy of Sciences”, The National Academies Press, T. 65, 1994.
3 listopada 1963 roku o drugiej rano do domu Mayerów zadzwonił telefon. Odebrał Joe, który przekazał słuchawkę żonie, mówiąc, że to ze Sztokholmu. Zdziwiona Maria powiedziała, że nie zna nikogo w Sztokholmie. Szwedzki dziennikarz oznajmił jej, że wspólnie z Jensenem otrzymała Nagrodę Nobla. „Naprawdę nie wiem, co powiedzieć! Czy to prawda? Nadal nie mogę uwierzyć, że to prawda” – mówiła wzruszona. Po drugiej stronie oceanu Hans Jensen zareagował podobnie. Już raz dziesięć lat wcześniej poinformowano go, że otrzymał Nagrodę Nobla. Tym razem nie chciał uwierzyć. „Miałem wcześniejsze doświadczenia z tego rodzaju nonsensem” – powiedział.

Maria Goeppert-Mayer miała istotny powód, by wznieść toast. Marie-Anne wspominała: „Dostałam telefon w środku nocy i byłem pewna, że moja matka jest pijana. Rano zadzwoniłam do nich, ponieważ byłam pewna, że wszystko wyśniła”. Sześćdziesiąt lat po Marii Skłodowskiej-Curie, Maria Goeppert-Mayer została laureatką Nagrody Nobla z fizyki. Otrzymała ją po latach upokorzeń, wyrzeczeń i zwątpienia. Nagrodę przyznano jej za odkrycia dotyczące „struktury powłokowej jądra atomowego”. Kiedy dziennikarze pytali ją, jak może streścić swoje badania, powiedziała:

Wyobraź sobie salę pełną tańczących walca. Tancerze przesuwają się dookoła tej sali w koncentrycznych kołach. Następnie pomyśl, że w każdym kole możesz zmieścić dwa razy więcej tancerzy, jeśli jedna para wiruje w kierunku ruchu wskazówek zegara, a druga w przeciwnym. A potem dodatkowa wariacja: pomyśl, że ci tancerze wirują w porywach, jak mistrzowie. Te z par, które wirują w kierunku wskazówek zegara, robią porywy w tym samym kierunku. Porywy pozostałych par są w kierunku przeciwnym. Tak samo jest z parami wirującymi w kierunku przeciwnym do kierunku wskazówek zegara – niektóre wykonują zrywy w tym samym kierunku, inne w przeciwnym.

Eugene Wigner (1903–1995), b.d, [za:] www.atomicarchive.com
10 grudnia 1963 roku z rąk króla Szwecji Gustawa VI Adolfa Maria Goeppert-Mayer odebrała medal i dyplom Nagrody Nobla. Wraz z nią nagrodę otrzymali Hans Jensen i Eugene Wigner. Maria i Hans otrzymali połowę nagrody, drugą – „za wkład w teorię jądra atomowego i cząstek elementarnych, w szczególności poprzez odkrycie i zastosowanie fundamentalnych zasad symetrii” – odebrał Wigner. Pięćdziesięciosiedmioletnia, mała i krucha Maria z wyraźnymi oznakami niedowładu lewej strony ciała, ubrana w kwiecistą suknię i taką narzutkę, z delikatnym łańcuchem pereł na szyi, ostrożnie, uśmiechając się dość niewyraźnie, odebrała największy naukowy zaszczyt świata. Peter Mayer wspominał:

Właściwie, kiedy moja matka ściskała dłoń króla, odczuwała ból. Pamiętam zdjęcie w gazetach, na którym potrząsała jego ręką; wiele osób uważało, że to dobre zdjęcie mojej matki, a ja reagowałem z kamienną twarzą: „Ona cierpi”. Moja matka miała bardzo poważny paraliż w lewej ręce. Na próbie zdecydowano, że ktoś odbierze od niej medal i dyplom. Podczas ceremonii nie było tej osoby, więc matka przyciskała nagrodę do ciała, bojąc się, że ją upuści, jednocześnie ściskając dłoń króla.

Po ceremonii król podał jej ramię, a gdy szli na uroczysty bankiet, wszyscy się im kłaniali. „To było jak czarodziejska baśń” – powiedziała. Baśń, która dla Marii Goeppert-Mayer się urzeczywistniła. Po powrocie do domu powiedziała: „Ku mojemu zaskoczeniu zdobycie nagrody nie było aż tak ekscytujące, jak wykonanie samej pracy. To była fajna zabawa, widzieć, jak to działa”138. W 1964 roku grupie licealistek wyznała: Pewnego popołudnia znalazłam wskazówkę i po całym dniu pracy odkryłam, że wszystkie dane, wszystko, co miałam nadzieję wyjaśnić, było rzeczywiście przepowiedziane przez teorię, którą opracowałam. W takich chwilach nikt nie myśli o Noblu.

Maria Goeppert-Mayer z królem Szwecji Gustawem Adolfem w trakcie ceremonii wręczenia Nagrody Nobla, Sztokholm 1963, archiwum Bożeny Kubiak

 

Nagroda Nobla właściwie nie zrewolucjonizowała życia Marii. „Jeśli kochasz naukę, wszystko, czego naprawdę pragniesz, to kontynuowanie pracy. Nagroda Nobla wzbudza emocje, ale nie zmienia niczego” – stwierdziła kiedyś. Starała się nadal pracować, wykładała, zajmowała się ukochanymi orchideami, trochę podróżowała. W październiku 1967 roku z okazji setnej rocznicy urodzin Marii Skłodowskiej-Curie przyjechała do Polski. Zapytana przez sekretarza naukowego PAN Henryka Jabłońskiego (1909– 2003), czy ma jakieś szczególne życzenia, odparła bez namysłu: „chcę odwiedzić Katowice. Niestety nie miała okazji ich zobaczyć.

***

Mural na budynku Rektoratu Uniwersytetu Śląskiego w Katowicach, fot. Ewelina Wajs

Noblowska pomyłka

 

Lise Meitner to uczona, która otrzymała w sumie 48 nominacji do Nagrody Nobla (29 nominacji z fizyki i 19 z chemii)! Mimo tego, nigdy nie przyznano jej tej prestiżowej Nagrody. Jej ogromny wkład w prace Ottona Hahna, jej udział w odkryciu rozszczepienia jądra atomowego nigdy nie został uwzględniony przez Szwedzką Akademię Nauk.

Zapraszamy do lektury fragmentu rozdziału „Rozszczepienie atomu i zapomnienie” z  książki Tomasza Pospiesznego pt. „Pasja i geniusz. Kobiety, które zasłużyły na Nagrodę Nobla”.

***

Komisja Akademii Nauk w Sztokholmie ogłosiła w 1945 roku, że Nagrodę Nobla z chemii za rok 1944 otrzymał Otto Hahn „za odkrycie rozszczepienia ciężkich jąder”. Świat nauki był niezwykle zaskoczony. Nikt nie kwestionował wartości pracy Hahna, ale wszystkich zaskoczył brak nagrody dla Meitner. Niels Bohr uważał, że Nagrodę Nobla z chemii powinni otrzymać Hahn i Strassmann, natomiast z fizyki Meitner i Frisch. Amerykański fizyk Arthur Compton (1892–1962) mówił: „profesor Hahn i Meitner powinni zostać nagrodzeni odpowiednio za prace nad identyfikacją procesu rozszczepienia jądra oraz za wykazanie ogromnej ilości energii uwolnionej w trakcie rozszczepienia”. Weizsäcker powiedział: „Nie sądzę, żeby ktokolwiek z nas był w tym czasie innego zdania – Hahn i Meitner powinni otrzymać Nagrodę […]”. James Franck uzasadniał:

Nie muszę podkreślać wagi tego odkrycia, które zapewne jest największym odkryciem w fizyce ostatnich dziesięciu lat, ale chciałbym wyjaśnić, dlaczego myślę, że Hahn i Meitner powinni być uhonorowani razem… [Meitner] nie współpracowała przy publikacji Hahna i Strassmanna, która w zasadzie zawierała rozwiązanie, ale Hahn nie wyciągnął sam wniosku o konsekwencjach. Lise Meitner zrobiła to z Frischem; była pierwszą, która zauważyła wagę tego odkrycia oraz napisała o następstwach, że tzw. produkty rozszczepienia odrywają się od innych, wytwarzając ogromną energię. Ona i Frisch byli także pierwszymi, którzy zaobserwowali ten fakt podczas eksperymentu183.

 

Trudno się nie zgodzić z opinią, że „osiągnięcia naukowe całego życia Lise Meitner były uwieńczone Nagrodą Nobla dla Ottona Hahna”. Pierwszą wspólną nominację do noblowskiego wyróżnienia z chemii uczeni otrzymali w 1924 roku od austriackiego chemika Heinricha Goldschmidta185. Rok później powtórzył on swoją nominację, wsparty głosem Fajansa. Fajans nominował samą Meitner także w 1946 roku. Z kolei Planck zgłaszał Meitner i Hahna do Nagrody Nobla z chemii w latach: 1929, 1930, 1933, 1934, 1936 i 1937. Bohr zaproponował kandydaturę jej i Frischa w latach 1947 i 1948, a z fizyki w 1946 roku. Theodor Svedberg (1884–1971) zgłosił Lise i Ottona w 1939 roku. Podsumowując swój wybór, napisał:

[…] Wydaje się, że dzielenie Nagrody pomiędzy Hahnem i Meitner za odkrycie rozszczepienia uranu lub wspólną ich pracę nad produktami rozszczepienia uranu nie powinno być kwestionowane. Dlatego podział Nagrody mógłby również zostać zaproponowany w dużym stopniu w odniesieniu do całej ich wspólnej pracy w dziedzinie promieniotwórczości.

 

Z kolei pierwszą nominację z fizyki uczeni otrzymali w 1937 roku od Heisenberga i von Lauego. „Jestem bardzo przychylny wnioskowi proponującemu pannę Meitner (ponownie) do Nagrody Nobla. Już wcześniej, w zeszłym roku, przedstawiłem taką propozycję, sugerując dzielenie nagrody z chemii pomiędzy Hahna i Meitner” – pisał von Laue. Franck nominował obu uczonych w latach: 1940, 1941, 1943, 1946, oraz samą Meitner w 1956 roku. Wśród innych nominujących należy wymienić Costera (1940) i Borna (1954, 1964, 1965) czy Józefa Rotblata (1959, 1961). W 1954 roku Born pisał o Lise: „Jest ona jednym z czołowych ekspertów w dziedzinie radioaktywności i chociaż od jej najważniejszych odkryć minął już jakiś czas, proponuję ją, ponieważ do niedawna wykonywała znakomitą pracę”. Natomiast Rotblat argumentował:

Chociaż eksperymenty, które doprowadziły do rozdzielenia i izolacji produktów rozszczepienia, zostały przeprowadzone przez profesora Hahna, ogólnie przyjmuje się, że to Frisch i Meitner opisali proces jako rozszczepienie jądra i poprawnie je zinterpretowali. Frisch i Meitner są zatem prawdziwymi odkrywcami rozszczepienia jądrowego.

 

Jeszcze raz, w 1964 roku, Born dowodził:

W 1955 roku zaproponowałem [kandydaturę] profesora Jensena i Marię Goeppert-Mayer […]. Nie powtórzyłem tej sugestii, ponieważ zdałem sobie sprawę, że szanse na przyznanie

kobiecie nagrody są niewielkie, skoro Lise Meitner nie można znaleźć wśród laureatów Nagrody Nobla. […] Poprzez przyznanie Nagrody Marii Goeppert-Mayer, którą bardzo podziwiam, sytuacja uległa zmianie. […] Dlatego Komitet powinien uhonorować Lise Meitner nagrodą.

 

Niestety Hahn nie miał w sobie takiej determinacji. Nominował on Lise jeden raz w 1948 roku do nagrody z fizyki… W sumie Meitner była nominowana do Nagrody Nobla z fizyki dwadzieścia dziewięć razy, z chemii dziewiętnaście; otrzymała więc łącznie czterdzieści osiem nominacji! Prawdopodobnie Akademia nie uznała udziału Meitner w odkryciu w 1944 roku dlatego, że podczas eksperymentalnej identyfikacji baru nie przebywała w Berlinie. Inną dość istotną przyczyną było blokowanie kandydatury Meitner przez Mannego Siegbahna. Uczony wpływał na przyznawanie Nagrody Nobla z fizyki i z pewnością mógł skutecznie blokować kandydaturę Lise, między innymi z obawy przed możliwością zwiększenia się prestiżu naukowego uczonej. Bohr i von Laue wierzyli, że gdyby Lise wyemigrowała do innego kraju niż Szwecja, otrzymałaby Nagrodę Nobla. Dirk Coster w liście do uczonej napisał:

Otto Hahn laureatem Nagrody Nobla! Z całą pewnością na to zasłużył. Jednak szkoda, że w 1938 roku pomogłem Ci uciec z Berlina. W przeciwnym wypadku też byłabyś laureatką. Co byłoby z pewnością bardziej sprawiedliwe.

 

Sime trafnie podsumowuje, że „prywatnie Meitner była w cieniu Hahna, ale jego publiczny wizerunek pozostał w jej cieniu”. Dziś, przeszło siedemdziesiąt lat później, można z dużym prawdopodobieństwem wyjaśnić, dlaczego Lise Meitner została pominięta przez komitet noblowski. Historycy nauki twierdzą między innymi:

Lise Meitner nie została uwzględniona w 1944 roku, ponieważ struktura komitetów Nobla była źle przystosowana do oceny pracy interdyscyplinarnej; ponieważ członkowie komisji chemicznej nie byli w stanie lub nie chcieli uczciwie ocenić jej wkładu; a także dlatego, że podczas wojny szwedzcy naukowcy opierali się na własnych ograniczonych kompetencjach. Wykluczenie Meitner z udziału w nagrodzie z chemii można podsumować jako mieszankę uprzedzeń dyscyplinarnych, politycznej tępoty, ignorancji i nieuzasadnionego pośpiechu. Nagroda chemiczna dla samego Hahna była pod wieloma względami nierozważną decyzją. W efekcie z odkrycia rozszczepienia usunięto fizykę. To z kolei, jak się wydaje, zawęziło zbytnio ocenę pracy Meitner i Frischa w 1946 roku, która została ponownie uznana za niesprawiedliwą, być może po części z powodu rywalizacji ze szwedzką społecznością fizyków. […] Bez względu na to, czy Meitner zasługiwała na Nagrodę Nobla czy nie, nie zasłużyła na to, co dostała: jej reputacja i pozycja naukowca zostały oczernione w procesie oceny przyznania Nagrody Nobla, o którą nigdy nie poprosiła. Ale nic z tego nie rozgoryczało Meitner. Skarżyła się niewiele i dużo wybaczyła.

 

Jeśli chodzi o granice pomiędzy fizyką i chemią, to chyba najtrafniej określiła je Maria Goeppert-Mayer:

Cóż, Hahn był oczywiście chemikiem z wykształcenia. Rozróżnienie pomiędzy chemią i fizyką nie jest łatwe do określenia. Myślę, że jedynym wyraźnym rozróżnieniem jest to, czy byłeś na wydziale chemii czy na wydziale fizyki. I to jest prawie wszystko. Zawsze były to różne budynki. Chemia była w jednym miejscu, a fizyka w innym, a chemia fizyczna w jeszcze innym.

 

Sama Meitner uważała, że:

Hahn z pewnością zasłużył na Nagrodę Nobla w dziedzinie chemii. Naprawdę nie ma co do tego wątpliwości. Ale wierzę, że Frisch i ja przyczyniliśmy się nieznacznie do wyjaśnienia procesu rozszczepienia uranu, a także, że wytwarza się tak wiele energii. […] Z tego powodu uważam za niesprawiedliwe, że w gazetach byłam nazywana Mitarbeiter [współpracownikiem] Hahna w tym samym sensie co Strassmann.

 

W liście do żony Bohra, Margrethe, (1890–1984) Lise napisała:

Hahnowie przyjadą na ceremonię w początkach grudnia. Oczywiście czekam na niego, ale to spotkanie nie będzie łatwe. Podobnie jak to, że muszę uczestniczyć w bankiecie, czego wcześniej nie robiłam. Ale jeśli nie pójdę na uhonorowanie Hahna, to obawiam się, że mogę być źle zrozumiana.

 

Napisała też do Hahna karteczkę: „Szansa, że mogę zostać Twoją koleżanką noblistką jest ostatecznie rozstrzygnięta. Jeśli jesteś zainteresowany, mogę powiedzieć Ci coś na ten temat”. Oczywiście nie odpowiedział. Przyjaciółce Eve von Bahr-Bergius skarżyła się: „to bardzo bolesne, że w wywiadach [Hahn] nie powiedział o mnie ani słowa, nie mówiąc już o naszych trzydziestu latach wspólnej pracy”. Natomiast do Jamesa Francka pisała: „Jestem częścią tłumionej przeszłości, Hahn nigdy w żadnym z wywiadów dotyczących jego pracy nie wspomniał naszych długich lat wspólnej pracy ani nawet mojego imienia”. Hahn otrzymał 121 tysięcy koron szwedzkich, z czego 10 tysięcy koron przekazał Strassmannowi, Lise Meitner zaś sumę, której nigdy nie ujawniono. Przekazała ona ten „napiwek” Komitetowi Atomistyki w Princeton, którym kierował Albert Einstein.

***

 

123. rocznica urodzin Ireny Joliot-Curie

Z okazji urodzin drugiej w historii nauki laureatki Nagrody Nobla z chemii zapraszamy do przeczytania fragmentu książki Tomasza Pospiesznego pt. Pasja i geniusz. Kobiety, które zasłużyły na Nagrodę Nobla.

 

Irenka w Saint-Rèmy-lès-Chevreuse, gdzie rodzina spędzała lato, 1904, [za:] Marie Curie. Une femme dans son siècle, Paris 2017, s. 99; opracowanie graficzne Ewelina Wajs
Irène Joliot-Curie przyszła na świat 12 września 1897 roku w Paryżu. Nieco ponad rok później jej rodzice, Maria Skłodowska-Curie i Pierre Curie, ogłosili odkrycie dwóch nowych cudownych pierwiastków radioaktywnych – polonu i radu. Sądzę, że można śmiało wysunąć wniosek, iż Irène urodziła się w przededniu naukowej rewolucji. Z listu Marii do siostry Heleny wiadomo, że poród nastąpił „przynajmniej o 15 dni za wcześnie; przyspieszyło go zmęczenie przy porządkowaniu mieszkania i rzeczy zimowych, dreptałam za wiele przez ostatnie dni1. Poród odebrał teść Marii – Eugènie Curie. Kilka dni później, 27 września, na raka piersi zmarła matka Pierre’a Sophie-Claire. Eugène zamieszkał z rodziną syna i wydaje się, że od tego momentu był „najlepszym przyjacielem dziewczynki, najtkliwszym jej wychowawcą2. Irène, wspominając dziadka, pisała, że był człowiekiem:

[…] o postępowych poglądach, wolnomyślicielem i antyklerykałem3. […] Jestem przekonana, że w niektórych kwestiach politycznych dziadek miałby te same poglądy co ja, ponieważ mój sąd opiera się na prostych zasadach, które on mi wszczepił. Moje nastawienie w stosunku do spraw politycznych i religijnych zawdzięczam w znacznie większym stopniu jemu niż matce4.

Jej siostra Ève Curie wspominała z kolei, że:

[…] jemu to niewątpliwie zawdzięcza późniejsza Irena Joliot-Curie równowagę psychiczną,

on ją nauczył stronić od wszelkiego smutku i bezgranicznie kochać rzeczywistość, on jej przekazał swój antyklerykalizm, a nawet swoje sympatie polityczne5.

Sama uczona zaś dodawała:

W początkach mego wykształcenia ważną rolę odegrał dziadek, dawał mi dużo książek i kazał się uczyć wierszy, które nie bardzo jeszcze rozumiałam, ale których piękno już odgadywałam. Z tych czasów pozostało mi zamiłowanie do uczenia się poezji6.

Irena z dziadkiem Eugeniuszem Curie, [za:] https://www.pourlascience.fr/sd/histoire-sciences/deux-jeunes-gens-complementaires-4516.php, dostęp 12 września 2019
Nie powinno to dziwić, gdyż doktor Curie miał więcej czasu niż synowa, a jednocześnie był bardziej antyklerykalny niż ona. Irène przejęła nieprzejednany stosunek dziadka do religii. Dopóki żyła, nigdy nie weszła do kościoła, nawet żeby podziwiać dzieła sztuki sakralnej7. We wspomnieniach poświęconych matce napisała:

Matka, która nigdy nie była wierząca, mówiła nam niekiedy: „Wychowuję was bez religii. Później, kiedy będziecie dorosłe, będziecie mogły, o ile zechcecie, przyjąć religię, która by wam odpowiadała”. Dziadek, stary wolnomyśliciel, nie ochrzcił swoich synów, co było rzeczą rzadką w tamtym czasie. Na pewno nie mógłby zrozumieć ani uznać, że synowie jego mogliby się nawrócić na jakąś religię. Ja zajmuję to samo stanowisko i chociaż szanuję szczerze wiarę, nie mogłabym współżyć blisko ze swoim dzieckiem, którego pojęcia tak bardzo odbiegałyby od moich8.

Bronisława Dłuska w liście do Ludwika Wertensteina pisała, że Irène:

[…] namiętnie kochała matkę i uważała ją za swoją wyłączną własność. Nikt inny nie miał

na nią wpływu z wyjątkiem dziadka, dr. Eugeniusza Curie, który po śmierci żony zamieszkał

z rodzicami Ireny. Był to człowiek niezwykle wykształcony i niezmiernej dobroci. […] Mając

dużo wolnego czasu, dziadek opiekował się troskliwie i mądrze małą Ireną. Uczył ją czytać

i pisać, chodził z nią na spacery i rozmawiał całymi godzinami. Wpływ matki i dziadka odbił

się wcześnie na dziecku, urabiając w nim poważny stosunek do życia i do lekceważenia błahszych jego stron9.

Maria była oddaną, kochającą i troskliwą matką. W listopadzie 1897 roku w jednym z listów do Władysława Skłodowskiego pisała:

Nadal karmię moją małą królewnę, ale niedawno obawialiśmy się, że będę musiała przestać. W ciągu ostatnich trzech tygodni Irena nagle spadła na wadze, wyglądała niezdrowo, była bez ochoty do życia i smutna. Teraz idzie jednak ku lepszemu. Jeśli Irena będzie normalnie przybierała na wadze, będę nadal karmić ją sama. Jeśli nie, wezmę mamkę, mimo przykrości, jaką mi to sprawi, i mimo kosztów: za nic na świecie nie chciałabym zaszkodzić rozwojowi mojego dziecka10.

Maria z Ireną, ok. 1904, Musee Curie (coll. ACJC)

Natomiast w grudniu 1898 roku do Bronisławy Dłuskiej donosiła, że z Irène „robi się coraz większy łobuz, co do żywienia jest bardzo wybredna i, oprócz tapioki na mleku, nic prawie regularnie jeść nie chce, nawet jajek”11. W notatniku notowała etapy rozwoju córki:

Styczeń 1898 roku: Chowa się dobrze i zaczyna przekręcać się w łóżeczku na bok.

Luty: Zaczyna bać się obcych ludzi i rzeczy, podniesionych głosów itp.12

20 lipca: […] robi „pa” rączką – zupełnie już dobrze chodzi na czworakach i mówi „gogli – gogli – go”. Przez cały dzień przebywa w ogrodzie w Sceaux, na dywanie. Tacza się po nim, wstaje, siada…

15 sierpnia: […] wyrznął się siódmy ząbek, na dole z lewej strony. Może się utrzymać, stojąc pół minuty bez niczyjej pomocy. Od trzech dni kąpiemy ją w rzece. Krzyczy przy tym, ale dzisiaj (czwarta kąpiel) przestała krzyczeć i zaczęła się bawić, uderzając rączkami o wodę. Bawi się z kotem i goni go z bojowymi okrzykami. Nie boi się już obcych. Dużo śpiewa.

Z krzesła potrafi sama wdrapać się na stół.

17 października: […] chodzi bardzo dobrze, zupełnie już nie biega na czworakach.

5 stycznia 1899 roku: […] ma piętnaście zębów13.

Maria i Piotr Curie z córką Ireną oraz Jean i Henrietta Perrinowie z córką Aliną, ok. 1900, [za:] http://www.bg.agh.edu.pl/MSC/msc.php?page=04C_PiotrCurie, dostęp 5 września 2020
Należy pamiętać, że w czasie gdy Irène stawiała dzielnie pierwsze kroki i poznawała świat na swój własny dziecięcy sposób, jej rodzice poznawali mistyczny świat atomów. Wnuczka Marii Hélene Langevin-Joliot podkreśliła:

Moja matka […] mówiła, że były dwie Marie, jedna ta z laboratorium i druga w domu. W domu pełniła rolę matki, która troszczy się o dzieci. Piotr dużo mniej zajmował się córkami,

więc w ich domu panował tradycyjny w owych czasach podział ról. Oczywiście mieli w domu pomoc, kogoś, kto gotował, pilnował dzieci. Ojciec Piotra mieszkał z nimi i w dużej mierze przejął opiekę nad dziećmi, szczególnie moją matką, co było ogromnie ważne, zwłaszcza po śmierci Piotra14.

Irène podobnie jak jej ojciec niewiele mówiła, była uparta, nieśmiała i skryta, myślała wolno, ale dogłębnie, cechowała ją wielka inteligencja. Uczennica Marii Eugénie Cotton podaje, że kiedy Irène w gabinecie przyrodniczym w Sevres zobaczyła gipsowy odlew ciosu mamuta, zapytała ją, czy kiedykolwiek widziała mamuta. Gdy Cotton wyjaśniła, że mamuty żyły bardzo dawno, zaintrygowana Irene powiedziała: „No to spytam się dziadzi, jest stary. Musiał przecież kiedyś je widzieć15. Dziadek nauczył ją też wrażliwości. Kiedyś zobaczyła obraz Rembrandta przedstawiający starą biedną kobietę i wykrzyknęła, zanosząc się płaczem: „Och, moja biedna staruszko!16. Wykazywała dziecinną nieśmiałość i zuchwałość. Kiedy Maria zapraszała nielicznych przyjaciół do domu, Irène ukrywała się za jej spódnicą i od czasu do czasu upominała się „Musisz zwrócić na mnie uwagę17. Zagadywana na plaży przez znajomą matki powiedziała ostrożnie: „Nie bardzo cię znam18. Nie bez powodu Maria nazywała ją małą królewną lub małym dzikusem19.

Irena i Ewa Curie, 1908, Muzeum Marii Skłodowskiej-Curie w Warszawie, [za:] http://www.bg.agh.edu.pl/MSC/msc.php?page=04C_PiotrCurie, dostęp 5 września 2020
Od wczesnych lat wykazywała znaczne zainteresowanie i zdolności do nauki. Splendor, który spadł na rodzinę Curie w 1903 roku w związku z przyznaniem Marii i Pierre’owi Nagrody Nobla z fizyki, dotknął także bezpośrednio sześcioletnią Irène. Dziennikarze podchodzili pod ogród państwa Curie i ukradkiem próbowali rozmawiać z ich córką. Zapytana przez jednego z nich: „Gdzie są twoi rodzice?”, odpowiedziała poważnie: „W laboratorium20. Hélene Langevin-Joliot wspominała:

Mama opowiadała mi, że uwielbiała spędzać czas z rodzicami, ale nie zawsze było to możliwe. Lubiła też bawić się z dziećmi, a Nagroda Nobla była jedną z jej ulubionych zabawek21.

Eugénie Cotton pisała z kolei, że Irène:

[…] do ósmego roku życia wzrastała w szczęśliwym domu rodzinnym. Rodziców swoich, rzecz prosta, widywała za dnia bardzo rzadko, ale wieczorami, w niedzielę, podczas wakacji otoczona była ich czułą miłością i pozostały jej piękne wspomnienia wspólnych spacerów w lesie, nad morzem. Często obijały się o jej uszy wyrazy takie jak laboratorium, rad, polon, emanacja. […] [Irene] bawiła się pięknym złotym medalem Davy’ego, który otrzymali jej rodzice, widziała, jak rad świeci w ciemności […]22.

 

Bibliografia

1. K. Kabzińska, M.H. Malewicz, J. Piskurewicz, J. Róziewicz, Korespondencja polska Marii Skłodowskiej-Curie. 1881−1934, Instytut Historii Nauki PAN, Polskie Towarzystwo Chemiczne, Warszawa 1994, s. 27.

2. E. Curie, Maria Curie, Wydawnictwo Naukowe PWN, Warszawa 1997, s. 160.

3. I. Joliot-Curie, Wspomnienia o Marii Skłodowskiej-Curie, „Postępy Fizyki” 6, 1955, s. 40–65.

4. Tamże, s. 57.

5. S. Quinn, Życie Marii Curie, Prószyński i S-ka, Warszawa 1997, s. 358.

6. I. Joliot-Curie, Wspomnienia, dz. cyt., s. 44.

7. S. Bertsch McGrayne, Nobel Prize Women in Science. Their Lives, Struggles, and Momentous Discoveries, wyd. 2, Joseph Henry Press, Washington 2006, s. 121.

8. I. Joliot-Curie, Wspomnienia, dz. cyt., s. 57.

9. E. Wajs-Baryła, List Bronisławy Dłuskiej do Ludwika Wertensteina z charakterystyką Ireny Joliot-Curie – po otrzymaniu Nagrody Nobla, „Nauka Polska. Jej Potrzeby, Organizacja i Rozwój” 27 (52), 2018, s. 13–24.

10. S. Quinn, Życie Marii Curie, dz. cyt., s. 189.

11. E. Curie, Maria Curie, dz. cyt., s. 173.

12. S. Quinn, Życie Marii Curie, dz. cyt., s. 189.

13. E. Curie, Maria Curie, dz. cyt., s. 173–174.

14. A. Albrecht, Maria Skłodowska-Curie. Listy, Drzewo Babel, Warszawa 2012, s. 47.

15. S. Bertsch McGrayne, Nobel Prize Women in Science, dz. cyt., s. 122.

16. Tamże, s. 122.

17. Tamże.

18. Tamże.

19. W. Conkling, Radioactive! How Irene Curie and Lise Meitner Revolutionized Science and Changed the World, Algonquin Young Readers, Chapel Hill 2016, s. 20.

20. S. Bertsch McGrayne, Nobel Prize Women in Science, dz. cyt., s. 122.

21. Cytat z filmu: Wyjście z cienia – historia Ireny i Fryderyka Joliot-Curie, reż. R. Reed, USA 2009.

22. E. Cotton, Rodzina Curie i promieniotwórczość, Wiedza Powszechna, Warszawa 1965, s. 97.

Skłodowska-Curie czy Curie-Skłodowska?

 

 

/   Tomasz Pospieszny   /

Jednym z najczęstszych pytań związanych z Marią Skłodowską-Curie jest kwestia jej nazwiska. Warto zauważyć, że uczona podpisywała się w różny sposób i trudno dziś dociekać, który był dla niej istotniejszy.

 

Dyplom Nagrody Nobla z 1903 roku dla małżonków Curie, Domena publiczna

 

Na dyplomie Nagrody Nobla z 1903 roku widnieje podpis Marie Curie, ale już na dyplomie drugiej Nagrody Nobla z 1911 roku napisano Marie Sklodowska Curie, co według niektórych opinii było zrobione na prośbę samej uczonej. Ciekawym jest fakt, że na stronie The Nobel Prize uczoną przedstawiono jako Marie Curie, née Sklodowska.[1]

Dyplom Nagrody Nobla z 1911 roku dla Marii Skłodowskiej-Curie, Domena publiczna

 

W języku polskim jako pierwsze podaje się nazwisko rodowe, stąd powinniśmy pisać Maria Skłodowska-Curie. We Francji zwyczaj jest odwrotny, dlatego mamy Marie Curie-Sklodowska czy Irène Joliot-Curie, a nie Curie-Joliot (jest to powszechnie przyjęty zapis nazwiska córki i zięcia uczonej).[2]

 

Autograf Marii Skłodowskiej-Curie z listu do Ludwika Wertensteina, 1929, Polska Akademia Nauk Archiwum w Warszawie

 

Fragment listu Marii Skłodowskiej-Curie do Ludwika Wertensteina, 1913, Polska Akademia Nauk Archiwum w Warszawie

 

Sama Maria podpisywała się bardzo różnie np.: Marie Curie, Madame Curie, Madame Pierre Curie (jako autorka książki L’isotopie et les éléments isotopes, Société de Physique, Paris 1921), Madame Sklodowska Curie (w rozprawie doktorskiej z 1903 roku), Marya Skłodowska-Curie (w rozprawie doktorskiej wydanej w języku polskim), M. Curie, M. Skłodowska-Curie czy też M., M.C. lub MSC (do rodziny podpis bardzo charakterystyczny). Lucjan Biliński w książce Z Mazowsza do sławy paryskiego Panteonu[3], przytacza słowa brata Marii Józefa Skłodowskiego: Na kamieniu grobowym został wyryty napis, zawierający przed nazwiskiem nabytym, francuskim, nazwisko jej rodowe według dokładnej pisowni polskiej z »ł« przekreślonym pośrodku. Natomiast na grobowcu w Panteonie, zgodnie z francuskim zwyczajem, wyryto już napis Marie Curie-Sklodowska.

Nieprawdą jest, że po śmierci Piotra (czyli po 1906 roku) – jak podają niektórzy – Maria używała tylko nazwiska Curie. Wystarczy prześledzić jej liczną korespondencję, gdzie można znaleźć listy podpisane dwoma nazwiskami.[4]

 

Fragment listu Marii Skłodowskiej-Curie do Ludwika Wertensteina, 1929, Polska Akademia Nauk Archiwum w Warszawie

 

Pozostaje zawsze bardzo delikatna kwestia związana z nazwą Uniwersytetu im. Marii Curie-Skłodowskiej w Lublinie. Prof. Józef Hurwic dążył przez wiele lat (od 1959 roku) do zmiany nazwy uczelni na Uniwersytet im. Marii Skłodowskiej-Curie.[5] Wiązało się to jednak z wieloma problemami natury technicznej i wieloma sprzeciwami.[6] W 1991 roku podkreślono, że uczona wychodząc za mąż przyjęła nazwisko Curie, a rodowe Skłodowska, dopisywała z francuskim zwyczajem. Kolejnym argumentem jest wpis w Księdze Pamiątkowej Lubelskiej Archikatedry (z 1930 roku), gdzie uczona podpisała się M. Curie-Skłodowska.

 

Faksymile, publikowane na licznych materiałach promujących budowę Instytutu Radowego w Warszawie, lata 20. XX wieku, Archiwum Tomasza Pospiesznego

Osobiście uważam (i zawsze podkreślam), że powinniśmy stosować polską formę zapisu nazwiska uczonej tj. Maria Skłodowska-Curie. W ten sposób podają to nazwisko polskie encyklopedie i słowniki biograficzne[7]. Jednak to co ważniejsze, to pamięć o uczonej – nie zapomnijmy o tej wyjątkowej kobiecie, która jeden z odkrytych przez siebie pierwiastków chemicznych nazwała na cześć nieistniejącego wówczas kraju. Kraju, który zawsze nosiła w sercu.

___________________________

Autor składa serdeczne podziękowania Pani prof. PAN dr hab. Hannie Krajewskiej — dyrektor Archiwum Polskiej Akademii Nauk za udostępnienie korespondencji Marii Skłodowskiej-Curie.

___________________________

[1] https://www.nobelprize.org/prizes/chemistry/1911/summary/ oraz https://www.nobelprize.org/prizes/physics/1903/summary/

[2] Małżonkowie Joliot-Curie przyjęli takie nazwiska za zgodą Marii [za]: T. Pospieszny, Radowa księżniczka, Historia Ireny Joliot-Curie, Gdynia 2017, str. 150-151.

[3] L. Biliński, Z Mazowsza do sławy paryskiego Panteonu, Biblioteka Publiczna m.st. Warszawy, Biblioteka Główna Województwa Mazowieckiego, Warszawa 2003.

[4] K. Kabzińska, M.H. Malewicz, J. Piskurewicz, J. Róziewicz, Korespondencja polska Marii Skłodowskiej-Curie. 1881–1934, Instytut Historii Nauki PAN, Polskie Towarzystwo Chemiczne, Warszawa 1994, np. str. 94, 97, 103, 124, 186, 195 etc.

[5] J. Hurwic, W sprawie nazwiska i imienia Marii Skłodowskiej-Curie, „Kwartalnik Historii Nauki i Techniki” 1986, nr 3-4, str. 849-851

[6] A. Borkowski, Kolejność nazwisk. Wokół nazwy Uniwersytetu Marii Curie Skłodowskiej, https://www.umcs.pl/pl/kolejnosc-nazwisk-150-rocznica-urodzin-marii-curie-sklodowskiej-umcs-lublin,11949.htm#page-1

[7] [1] Nowa encyklopedia powszechna PWN, tom 5, Wydawnictwo Naukowe PWN, Warszawa, 1996, str. 872; [2] Wielkie biografie – Encyklopedia PWN, Odkrywcy, wynalazcy, uczeni, tom 3, Wydawnictwo Naukowe PWN, Warszawa, 2008, str. 462.