Maria Skłodowska-Curie i sukcesorki jej odkryć

17 maja 2019 dr hab. Tomasz Pospieszny miał przyjemność wygłosić wykład przeznaczony dla słuchaczy Uniwersytetu Trzeciego Wieku w Złotowie. Tematem wykładu było życie i dzieło Marii Skłodowskiej-Curie. Chciałbym serdecznie podziękować za zaproszenie pani Annie Marciniak oraz za możliwość wygłoszenia wykładu przed Wspaniałymi Studentami!

 

 

Z kolei 18 maja 2019 roku w Nadnoteckim Instytucie UAM w Pile odbyła się Ogólnopolska Interdyscyplinarna Konferencja Edukacyjna XI Galaktyka Edukacji pt. Interdyscyplinarność w edukacji przyszłości – inspiracje postacią Marii Skłodowskiej-Curie organizowana przez Centrum Doskonalenia Nauczycieli w Pile oraz Nadnotecki Instytut UAM w Pile.

Patronat honorowy objęli Marszałek Województwa Wielkopolskiego – Marek Woźniak, Prezydent Piły – dr inż. Piotr Głowski oraz Wielkopolski Kurator Oświaty – Elżbieta Leszczyńska.

Patronat naukowy JM Rektor Uniwersytetu im. Adama Mickiewicza w Poznaniu – Prof. UAM dr hab. Andrzej Lesicki.

Patronat medialny Portal Superbelfrzy oraz „Sygnał – Magazyn Wychowawcy”.

Dr hab. Tomasz Pospieszny miał zaszczyt i przyjemność wygłosić wykład pt. Maria Skłodowska-Curie i sukcesorki jej odkryć oraz poprowadzić warsztaty pt. Blaski i cienie promieniotwórczości.

Serdecznie zapraszamy do obejrzenia nagrania z wykładu na naszym kanale

Chciałbym w tym miejscu złożyć podziękowania Organizatorom za wspaniałe przyjęcie, okazaną serdeczność i gościnność. Cieszę się niezmiernie, że Maria Skłodowska-Curie stała się inspiracją dla wielu osób, które uczestniczyły w konferencji.

Szczególnie chciałbym podziękować Pani dr Danucie Kitowskiej, Pani Katarzynie Kwaśnik, Pani Joannie Blajchert oraz Panu dr Pawłowi M. Owsiannemu. Pobyt w Pile na długo pozostanie w mojej pamięci.

Tomasz Pospieszny

Radowa Księżniczka w Muzeum Marii Skłodowskiej-Curie w Warszawie

W Muzeum Marii Skłodowskiej-Curie 8 maja odbyło się spotkanie i wykład zatytułowany Radowa Księżniczka. Historia życia Ireny Joliot-Curie. Serdecznie dziękujemy Dyrektorowi Muzeum Marii Skłodowskiej-Curie — Panu Sławomirowi Paszkietowi za zaproszenie. Zdjęcia autorstwa Pana Macieja Domańskiego publikujemy dzięki uprzejmości Muzeum Marii Skłodowskiej-Curie w Warszawie.

Tytuł wykładu nawiązywał do tytułu pierwszej polskiej biografii Ireny o tym samym tytule.

Projekt plakatu Ewelina Wajs

Dla wszystkich Państwa, którzy nie mogli przybyć na wykład osobiście Muzeum Marii Skłodowskiej-Curie w Warszawie prowadziło transmisję poprzez streaming na profilu Muzeum na faceboooku. W każdej chwili nagranie można obejrzeć tutaj.

O Irenie – córce Marii Skłodowskiej-Curie – genialnej uczonej i niepowtarzalnej osobowości opowiedział dr hab. Tomasz Pospieszny

 

Wyjątkową atmosferę stworzył aktor i lektor – Pan Zbigniew Moskal, który przeczytał wybrane fragmenty polskiej biografii Ireny Joliot-Curie

 

Niespodzianką była przygotowana przez Muzeum Marii Skłodowskiej-Curie dedykowana tematyce wykładu gablota, zawierająca najcenniejsze zbiory muzealne związane z postacią Ireny.

 

Oryginalny bucik małej Irenki oraz niepublikowane zdjęcia z albumu rodzinnego

 

 

Rosalind Franklin — Pierwsza dama DNA

Jaka jest korzyść z wykonywania tej całej pracy, jeśli nie czerpiemy z niej radości?

(Rosalind Franklin)

Rosalind Franklin, 1946, National Portrait Gallery, sygn. NPGx 76928
Rosalind Franklin, 1946, National Portrait Gallery, sygn. NPGx 76928

Historia odkrycia struktury kwasu deoksyrybonukleinowego (DNA) wiąże się nierozerwalnie z nazwiskami Jamesa D. Watsona (ur. 1928) i Francisca Cricka (1916–2004). Mało kto wie, że ich praca nie byłaby możliwa bez wyników eksperymentalnych, które otrzymała jedna z najwybitniejszych krystalografów angielskich Rosalind Elsie Franklin. To właśnie dzięki jej przenikliwości umysłu i precyzyjnym badaniom poznaliśmy nie tylko tajemnicę życia związaną z DNA, ale także strukturę kwasu rybonukleinowego (RNA) czy wirusów.

***

Rosalind w wieku 3 lat, ok. 1923, fotografia z Kolekcji Jennifer Glynn, [za:] U.S. Library of Medicine
Przyszła uczona urodziła się 25 lipca 1920 roku w Londynie w zamożnej i wpływowej rodzinie żydowskiej. Ojciec Rosalind, Ellis Arthur Franklin (1894–1964), wykładał w miejskim College’u dla chłopców elektryczność, magnetyzm, a także historię Wielkiej Wojny. Matka, Muriel Frances Waley (1894–1976), była raczej skupiona na prowadzeniu domu oraz wychowywaniu dzieci: najstarszego Davida oraz młodszych od Rosalind Colina, Rolanda i Jenifer. Ponieważ jej siostra była młodsza od Ros (uczona lubiła, aby tak ją nazywać, nie cierpiała zdrobnienia Rosy, którego używali jej koledzy z uniwersytetu) dziewięć lat wychowywała się ona głównie wśród braci. Przejęła od nich wiele cech między innymi zamiłowanie do rywalizacji, sportu czy fotografii. Warto zauważyć, że członkowie rodziny Franklinów byli zaangażowani politycznie, np. jej wuj Herbert Samuel był ministrem spraw wewnętrznych w 1916 roku i pierwszym praktykującym Żydem, który był członkiem w brytyjskim gabinecie. Franklinowie angażowali się społecznie i byli wrażliwi na ludzkie nieszczęście. Podczas drugiej wojny światowej pomagali znaleźć mieszkanie oraz pracę dla żydowskich uchodźców z kontynentu, którzy uciekli przed nazistami. Sami zaopiekowali się dwójką żydowskich dzieci i zapewnili im schronienie we własnym domu.

 

12-letnia Rosalind z rodzeństwem, ok. 1923, fotografia z Kolekcji Jennifer Glynn, [za:] U.S. Library of Medicine
Od wczesnego dzieciństwa Franklin wykazywała wyjątkowe zdolności do nauki. Fascynował ją świat i zjawiska przyrodnicze. Będąc na spacerze z rodzicami ciągle zadawała pytania. Kiedy rodzice zaprowadzili ją do biblioteki odkryła świat nauki, który zafascynował ją bez reszty. Mając sześć lat rozpoczęła naukę w prywatnej szkole dziennej w zachodnim Londynie w Norland Place School. Jej ciotka Helen Bentwich w iście do męża pisała: Rosalind jest niezwykle mądra – cały czas dla własnej przyjemności rozwiązuje zadania z arytmetyki niezmiennie otrzymując prawidłowe wyniki. Od wczesnych lat wykazywała wątpliwości względem religii. Już jako mała dziewczynka pytała matkę: W każdym razie, skąd wiesz, że On [Bóg] nie jest Nią?

Nie skupiała jednak całej uwagi na nauce. Zafascynowała się sportem zwłaszcza krykietem i hokejem. W wieku dziewięciu lat przyjęto ją do szkoły z internatem Lindwood School for Young Ladies w Sussex. Było to spowodowane także częstymi kłopotami zdrowotnymi dziewczynki. Zmiana klimatu miała sprzyjać poprawie zdrowia. W gruncie rzeczy przyszła uczona nauczyła się ignorować ból i choroby. Dwa lata później przeniosła się do szkoły dla dziewcząt w St. Paul w zachodnim Londynie. Była to jedna z nielicznych szkół dla dziewcząt w Londynie, w której nauczano fizyki i chemii. Nie trudno odgadnąć, że była najlepsza z nauk ścisłych, ale przodowała także w studiowaniu łaciny, niemieckiego, francuskiego oraz w sporcie. Ros była frankofilką i przez całe życie rozwijała swoje pasje związane z kulturą i językiem francuskim. Uważała francuski styl życia za znacznie lepszy od angielskiego. W liście do matki napisała: Jestem pewna, że zawsze będę mogła szczęśliwie wędrować po Francji, kocham [tych] ludzi, [ich] kraj i jedzenie.

Jej jedyną słabą stroną była muzyka. Nauczyciel tego przedmiotu uważał nawet, że może ona mieć jakieś kłopoty ze słuchem spowodowane infekcjami migdałków. W 1938 roku z wyróżnieniem zdała maturę i zdobyła stypendium uniwersyteckie. Na prośbę ojca przekazała je uzdolnionemu uczniowi uchodźcy. Jak się wydaje pieniądze w jej życiu nigdy nie odgrywały większej roli. Utrzymywała się ze skromnego stypendium, a później pensji i nigdy nie pozwalała ojcu, aby jej pomagał finansowo. Była świetnym organizatorem. Podróżując po Europie czy Stanach Zjednoczonych zawsze wybierała trzecią klasę komunikacji publicznej.

Rosalind w schronisku podczas wędrówki po Alpach, fot. Vittorio Luzzati, ok. 1949, fotografia z Kolekcji Jennifer Glynn, [za:] U.S. Library of Medicine
Po maturze Franklin rozpoczęła naukę w Newnham College w Cambridge, gdzie studiowała chemię w Natural Sciences Tripos. Tutaj poznała i zaprzyjaźniła się ze specjalistą z zakresu spektroskopii Billem Price’m (1909–1993). Jego prace okazały się później bezcenne w udowodnieniu tworzenia wiązań wodorowych pomiędzy parami zasad azotowych w DNA. Rosalind była niezwykle pilną studentką, osiągającą bardzo dobre wyniki w nauce. Miała spore szanse na uzyskanie stypendium. Niestety utrudniły to skomplikowane relacje z późniejszym laureatem Nagrody Nobla z chemii profesorem Ronaldem Norrishem (1897–1978). Norrish był uparty, apodyktyczny i niezwykle wrażliwy na krytykę, nie podzielał też entuzjazmu Franklin względem równouprawnienia kobiet w nauce i spowalniał realizację ambicji naukowych wyjątkowo zdolnej studentki. Sytuacja stawała się napięta i bardzo niemiła dla młodej uczonej. W 1941 roku Franklin z wyróżnieniem zdała egzaminy końcowe, które jednocześnie przyjęto jako licencjat (w Cambridge przyznawano kobietom licencjaty i magisterium od 1947 roku; wcześniejszym absolwentkom przyznano je z mocą wsteczną). Franklin zrezygnowała z dalszej pracy w laboratorium Norrisha i zatrudniła się jako asystentka w brytyjskim Stowarzyszeniu Badań nad Wykorzystywaniem Węgla (BCURA). Jej badania polegały głównie na określeniu mikrostruktury rożnych próbek węgla. Uczona badała porowatość węgla za pomocą helu, aby określić jego gęstość. Odkryła związek pomiędzy drobnymi przewężeniami w porach węgla i przepuszczalnością porowatej przestrzeni. Jej prace przyczyniły się między innymi w przemyśle paliwowym, a także w produkcji masek gazowych. Badania te stały się podstawą pracy doktorskiej Franklin pt. Chemia fizyczna stałych koloidów organicznych ze szczególnym uwzględnieniem węgla, którą obroniła w 1945 roku. Jeden z jej profesorów powiedział, że jej praca wprowadziła porządek w dziedzinie, która wcześniej była w chaosie. Wyniki uzyskanych prac zostały publikowane w pięciu artykułach, które wciąż są regularnie cytowane.

Franklin w trakcie wspinaczki w Norwegii, ok. 1940, fotografia z Kolekcji Jennifer Glynn, [za:] U.S. Library of Medicine. Rosalind uwielbiała podróże. Wakacje spędzała zazwyczaj zwiedzając Europę.
W czasie wojny Franklin poznała Adrienne Weill, byłą studentkę Marii Skłodowskiej-Curie. Weill wywarła ogromny wpływ na życie Rosalind pomagając jej między innymi w znajomości francuskiego. W tym czasie uczona wraz ze swoją kuzynką Irene zgłosiła się na ochotnika do patrolowania okolic narażonych na naloty.

Po drugiej wojnie światowej Franklin w liście do Weill pisała: Jeśli usłyszysz o kimkolwiek potrzebującym usług chemika fizycznego, który niewiele wie o chemii fizycznej, ale dość dużo o dziurach w węglu, powiadom mnie jak najszybciej. Dzięki pomocy przyjaciółki otrzymała posadę w Paryżu w Narodowym Centrum Naukowo-Technicznym (CNRS). To właśnie tutaj Rosalind Franklin nauczyła się praktycznych aspektów zastosowania krystalografii rentgenowskiej do badania substancji amorficznych. Technika ta stosowana była z dużym powodzeniem przy badaniu związków organicznych. Początkowo zastosowała tę metodę do badania grafitu (odmiany alotropowej węgla). Po czterech latach pracy w laboratorium w Paryżu otrzymała upragnione stypendium i zgodę odpowiednich władz, po czym przeniosła się do King’s College w Londynie. W styczniu 1951 roku wróciła do Londynu i na prośbę Sir Johna Randalla (1905–1984), dyrektora King’s College rozpoczęła badania nad DNA.

DNA jako cząsteczka fascynował uczonych od dawna. Pobudzał do intelektualnej przygody, każdego kto marzył o międzynarodowej sławie w świecie chemii czy biologii. DNA został wyizolowany przez szwajcarskiego lekarza Friedricha Mieschera (1844–1895) w 1869 roku. W 1878 Albrecht Kossel (1853–1927) wyizolował niebiałkowy składnik, a następnie wyizolował pięć podstawowych zasad azotowych (puryny – adeninę i guaninę oraz pirymidyny – cytozynę, tyminę i uracyl). W 1909 roku Phoebus Levene (1869–1940) zidentyfikował nukleotydową jednostkę składającą się z zasady azotowej, cukru (deoksyrybozy w DNA lub rybozy w RNA) i fosforanowej. Zasugerował on, że DNA składa się z szeregu czterech jednostek nukleotydowych połączonych ze sobą grupami fosforanowymi. W 1937 roku William Astbury (1898–1961) opracował pierwsze dyfraktogramy rentgenowskie, które wykazały, że DNA ma strukturę regularną. Nikt jednak nie wiedział jaką DNA ma konkretnie budowę. W latach 1951–1953 Erwin Chargaff (1905–2002) ogłosił tzw. reguły Chargaffa, w myśl których ilość zasad pirymidynowych jest równa ilości zasad purynowych. Ponadto ilość adeniny jest równa ilości tyminy, ilość guaniny jest równa ilości cytozyny.

Franklin w trakcie letniej podróży po Toskanii, fot. Vittorio Luzzati, ok. 1950, fotografia z Kolekcji Jennifer Glynn, [za:] U.S. Library of Medicine
Maurice Wilkins, b.d., The Nobel Foundation Archive, [za:] https://www.nobelprize.org/prizes/medicine/1962/summary/
Randall poprosił Franklin, aby zajęła się badaniem DNA, mimo iż wiedział, że problemem tym zajmuje się Maurice Wilkins (1916–2004). Historycy nauki wskazują, że antagonizmy pomiędzy Wilkinsem i Franklin wynikały z nieporozumienia i niedopatrzenia Randalla, który nie poinformował żadnej z zainteresowanych stron o pracach nad DNA. Uczona wraz ze swoim doktorantem Raymondem Goslingiem (1926–2015) użyła nowej lampy rentgenowskiej z precyzyjnym ogniskiem i mikrokamery zamówionej wcześniej przez Wilkinsa. Sama jednak niezwykle starannie dopracowała i dostosowała ją do swoich potrzeb. Kiedy Wilkins zapytał o technikę, Franklin miała mu odpowiedzieć zdawkowo i dość chłodno. Uczona była postrzegana jako silna, asertywna i niezależna kobieta. Wyrażała swoje poglądy stanowczo i konkretnie, przez co nie zawsze była lubiana. Jednak pod pozornym chłodem kryła się wrażliwa kobieta. Potrafiła także świetnie kierować grupą, czego dowodem są jej liczne zespołowe publikacje. Pomimo wszechobecnej dyskryminacji kobiet Franklin prowadziła badania w zakresie rentgenografii strukturalnej. W listopadzie 1951 roku uczona zanotowała:

Wyniki sugerują, że to struktura helikalna (która musi być bardzo ściśle upakowana) zawierająca 2, 3 lub 4 współosiowe łańcuchy kwasu nukleinowego na jednostkę helikalną i posiada w pobliżu grupy fosforanowe ulokowane na zewnątrz.

James Watson, b.d., The Nobel Foundation Archive, [za:] https://www.nobelprize.org/prizes/medicine/1962/summary/
Franklin wraz z Goslingiem szybko doszli do wniosku, że DNA istnieje w dwóch formach – przy dużej wilgotności włókna kwasu są długie i cienkie, zaś kiedy jest suchy włókna są krótkie i grube. Uczona nazwała je formami B i A. Konflikt pomiędzy stanowczą i dynamiczną Franklin oraz cichym i skromnym Wilkinsem narastał. James Watson wspominał:

Niemal od chwili pojawienia się jej w laboratorium obydwoje działali sobie na nerwy. Konflikt był tak poważny, że wymagał radykalnych rozwiązań – odejścia Rosy z laboratorium bądź przywołania jej do porządku.

W końcu Randall zdecydował, że Franklin skupi się na formie A-DNA, zaś Wilkins na formie B-DNA. Na sukcesy nie musiała długo czekać. Słynne dziś zdjęcie 51 wykonane prze Franklin uważane jest przez wielu za najpiękniejsze zdjęcie rentgenowskie jakie kiedykolwiek wykonano. W styczniu 1953 roku, po uprzednich wątpliwościach, Franklin doszła do wniosku, że obie formy DNA są strukturami helikalnymi. Wydaje się, że temat całkowicie pochłoną uczoną. Według opinii jej siostrzeńca Stephena zainteresowanie [uczonej] […] kwasami nukleinowymi zaczęło się wcześnie. Pod koniec 1939 roku, gdy Rosalind była dziewiętnastoletnią studentką w Newnham College w Cambridge, […] sporządziła w swoim skoroszycie szkic spekulacji o formie kwasu nukleinowego. Biografka Rosalind, Brenda Maddox […] odnotowała, że forma „przedstawia helikalną strukturę”, a uczona zanotowała: „Geometryczne podstawy dziedziczenia?”

Francis Crick, b.d., The Nobel Foundation Archive, [za:] https://www.nobelprize.org/prizes/medicine/1962/summary/
W styczniu 1953 roku Franklin zaczęła pisać serię artykułów. Wynika z tego jasno, że jej prace były gotowe wcześniej niż prace Jamesa D. Watsona i Francisca Cricka, którzy swój model budowali w oparciu o… fotografię wykonaną przez Franklin. Wilkins za pośrednictwem Maxa Perutz’a (1914–2002) i cichą zgodą się Williama Bragga (1890–1971) przekazał zdjęcie wykonane przez Franklin Watsonowi i Crickowi. Nie ma najmniejszej wątpliwości, że dzięki zdjęciu wykonanym przez Franklin Watson i Crick zbudowali swój słynny model DNA. Watson wspominał – Kiedy tylko zobaczyłem to zdjęcie, szczęka mi opadła, a puls raptownie przyspieszył. Sam Wilkins po latach przyznał – Być może powinienem był poprosić Rosalind o zgodę. Cóż…

Do 28 lutego 1953 roku Watson i Crick uznali, że rozwiązali problem na tyle, że Crick w pubie publicznie stwierdził iż wraz z Watsonem znaleźli sekret życia. Watson i Crick zakończyli budowę swojego modelu 7 marca 1953 roku. Wyniki pracy opublikowali w prestiżowym Nature 25 kwietnia 1953 roku. Stephen Franklin twierdzi, że gdyby [Franklin] pozostała w King’s, nie ma wątpliwości, że […] poprawnie ukończyłaby analizę struktury w pierwszej połowie 1953 roku bez żadnego wkładu Cricka lub Watsona, oni zaś nie zrobiliby tego na początku 1953 roku bez pracy Rosalind.

Konflikt z Wilkinsem, zła atmosfera w pracy i brak akceptacji względem uczonej, spowodował, że pod koniec swojej kariery naukowej przeniosła się do Birkbeck College. Jej siostrzeniec wspominał, że Rosalind była tak niezadowolona z [pracy w] King’s College, że wynegocjowała przeniesienie do Birkbeck [College], innej uczelni na Uniwersytecie Londyńskim. Tam w ciszy i spokoju, z dala od niezdrowej konkurencji oddała się pracy związanej z wirusologią. Szczególnie zainteresowała się wirusem mozaiki tytoniowej.

Laboratorium Rosalind Franklin w Birkbeck College (sfotografowane krótko po jej śmierci). Mieściło się na piątym piętrze zniszczonej przez bomby XVIII-wiecznej kamienicy przy Torrington Square – w dawnych kwaterach dla służby. Aparatura rentgenowska znajdowała się w piwnicy, fot. John Finch, ok. 1958, fotografia z Kolekcji Jennifer Glynn, [za:] U.S. Library of Medicine
Rosalind Franklin nigdy nie wyszła za mąż, zdaje się, że unikała bliższych kontaktów damsko-męskich. Była oddana pracy i nauce, chociaż podobno pod koniec życia się zakochała. James Watson w swojej książce pisał:

Zdecydowanie nie starała się podkreślać swej kobiecości. Choć miała dość ostre rysy, nie była zupełnie nieatrakcyjna, mogłaby się nawet podobać, gdyby wykazała choć niewielkie zainteresowanie kwestią swego wyglądu zewnętrznego. Nie poświęcała temu jednak najmniejszej uwagi. Nigdy nie używała kredki do ust, która mogłaby podkreślić czerń jej prostych włosów, a w 31. roku życia nosiła stroje odzwierciedlające całkowity brak fantazji właściwy młodej angielskiej intelektualistce.

Sądzę, że jej oddanie nauce wynikało jednak z przekonania, że nie można poświęcić się kilku sprawom jednocześnie. Kiedy jej koleżanka wróciła po porodzie do pracy Franklin powiedziała, że to nie w porządku w względem dziecka. Nie można robić źle dwóch rzeczy – powiedziała kiedyś.

Rosalind Franklin podczas pracy, ok. 1955, fotografia z Kolekcji Jennifer Glynn, [za:] U.S. Library of Medicine
W połowie 1956 roku, podczas podróży służbowej do Stanów Zjednoczonych uczona zaczęła odczuwać pewne fizyczne dolegliwości. W Nowym Jorku nabrzmiał jej brzuch tak bardzo, że miała trudność w zapięciu spódnicy. Po powrocie do Londynu poddała się badaniom. Okazało się, że ma dwa duże guzy w jamie brzusznej. Po operacji spędzała czas z przyjaciółmi, którzy wspierali ją w trudnej rekonwalescencji. Dużo czasu spędzała także z rodzicami. W trakcie leczenia nowotworu Franklin kontynuował pracę. W 1956 roku opublikowała siedem artykułów, a rok później kolejnych sześć. W sumie w ciągu czterech lat pracy w Birkbeck College Franklin była współautorką siedemnastu prac naukowych poświęconych wirusom. Trzy z nich ukazały się już po jej śmierci.

Choroba powróciła pod koniec 1957 roku. W styczniu 1958 roku wróciła do pracy. Niestety 30 marca poczuła się bardzo źle. Jej przyjaciółka Anne Sayre wspominała:

Walczyła ze śmiercią uparcie i z odwagą, planowała życie, kiedy plany były już kpiną. Umarła tak, jak żyła, z pasją do życia, z którego nigdy nie zrezygnowała. 16 kwietnia 1958 roku, w wieku trzydziestu siedmiu lat, Rosalind Franklin przegrała bitwę.

Przyczyną śmierci był zaawansowany rak jajnika z przerzutami. Została pochowana w 17 kwietnia 1958 roku.

***

Rok po jej śmierci Watson, Crick i Wilkins otrzymali Nagrodę Collinsa Warrena. Dwa lata po jej śmierci przyznano im Nagrodę Laskera. Cztery lata po jej śmierci otrzymali Nagrodę Nobla z medycyny. Podczas noblowskiego wykładu jedynie Wilkins wspomniał uczoną. Watson i Crick nie wspomnieli o Rosalind Franklin świadomie skazując ja na zapomnienie.

***

Wiara Rosalind Franklin w naukę i postęp były drogowskazem w jej życiu. W liście do ojca pisała: Nauka i życie codzienne nie mogą i nie powinny być rozdzielane. Nauka, dla mnie, daje częściowe wyjaśnienie życia… Nie akceptuję twojej definicji wiary, tj. wiary w życie po śmierci… Twoja wiara opiera się na przyszłości Twojej i innych jednostek, moja na przyszłości i losie naszych następców. Wydaje mi się, że Twoja jest bardziej samolubna… […] Nie widzę powodu, aby wierzyć, że twórca protoplazmy lub materii pierwotnej, jeśli taki istnieje, ma powody, by interesować się naszą nieistotną rasą w maleńkim zakątku wszechświata.

 

Zalecana literatura:

  1. B. Maddox, Rosalind Franklin: The Dark Lady of DNA, Harper Perennial, 2002.
  2. B. Maddox, The double helix and the ‘wronged heroine’, Nature, vol. 421, 2003, str. 407–408.
  3. J. Glynn, My Sister Rosalind Franklin, Oxford University Press, 2012.
  4. A. Sayre, Rosalind Franklin and DNA, W. W. Norton & Company 2000.
  5. S. Franklin, My aunt, the DNA pioneer, http://news.bbc.co.uk/2/hi/science/nature/2895681.stm
  6. J. Watson, Podwójna helisa. Historia odkrycia struktury DNA, Prószyński i S-ka, 1996.
  7. F. Crick, Szalona pogoń. W poszukiwaniu tajemnicy życia, Marabut, 1996.

Ze wspomnień o Marii Skłodowskiej-Curie

Fot. Ewelina Wajs

 

Kilka lat temu prawnuki Heleny Skłodowskiej-Szalay przekazały do Muzeum Marii Skłodowskiej-Curie w Warszawie materiały po prababci.

Muzeum właśnie opublikowało nowe wydanie książki Ze wspomnień o Marii Skłodowskiej-Curie. Pamiątkowe wiersze. Złapane chwile autorstwa Heleny Skłodowskiej-Szalay. Książkę poszerzono o fragmenty, które przy pierwszym wydaniu (Nasza Księgarnia, 1958) usunęła cenzura, a także dodano wiersze i anegdoty ze zbiorów rodzinnych oraz unikatowe, wcześniej nie publikowane zdjęcia z rodzinnego albumu. Redakcją nowego wydania zajęła się dr Dominika Świtkowska z Muzeum MSC.

 

30 kwietnia odbył się wieczór promujący książkę w warszawskim muzeum Noblistki. Gościem specjalnym była prawnuczka Heleny – Pani Hanna Karczewska, która urokliwie przywoływała wspomnienia związane z „babcią” — bo tak Helenę Szalay nazywały prawnuki. Prawnuczka barwnie przytoczyła wiele wspomnień z dzieciństwa spędzonego w rodzinnym mieszkaniu przy ulicy Górnośląskiej w Warszawie na piętrze piątym i pół.

Dyrektor Muzeum Marii Skłodowskiej-Curie w Warszawie – Sławomir Paszkiet, Hanna Karczewska, Dominika Świtkowska i Anna Nehrebecka, fot. Rafał Motyl

Wybrane fragmenty wspomnień przeczytała Pani Anna Nehrebecka-Byczewska.

Fot. Rafał Motyl

Specjalnie na to spotkanie Muzeum MSC w Warszawie zaprezentowało wyjątkowe muzealia m.in.: karty do pasjansa Heleny Szalayowej, zeszyty z rękopisami, kalendarzyk z 1939 roku oraz kartę z rodzinnego albumu.

Dominika Świtkowska prezentuje muzealia – dar rodziny Heleny Skłodowskiej-Szalay, fot. Rafał Motyl

Pani Hanna Karczewska wpisała dla nas piękne dedykacje.

Fot. Rafał Motyl
Fot. Ewelina Wajs

Serdecznie dziękujemy Muzeum Marii Skłodowskiej-Curie w Warszawie za zaproszenie oraz udostępnienie zdjęć z uroczystości!

 

Wkrótce premiera!

Jeśli przyjrzymy się losom kobiet – naukowców w tamtych czasach, to okaże się, że zawsze musiały mieć wsparcie mężczyzny: ojca, męża, brata, profesora

Hélène Langevin-Joliot.

O kilku miesięcy Wydawnictwo Po Godzinach intensywnie pracuje nad redakcją oraz korektą nowej książki Tomasza Pospiesznego poświęconej 10 kobietom, które zasłużyły na Nagrodę Nobla.

Kobietom, które albo zdobyły samodzielne i znaczące miejsce w dziejach nauk ścisłych (np. Maria Skłodowska-Curie i jej córka Irène Joliot-Curie), albo odegrały ważną rolę w życiu i działalności swoich partnerów – wybitnych uczonych (np. Mileva, żona Alberta Einsteina).
Jedne są bardziej znane, inne mniej. Obok Marii Skłodowskiej-Curie, Irène Joliot-Curie i Milevy Einstein są to: Clara Immerwahr-Haber, Harriet Brooks, Lise Meitner, Marietta Blau, Ida Tacke-Noddack, Maria Goeppert-Mayer oraz Chien-Shiung Wu.

Premiera książki „Pasja & geniusz. Kobiety, które zasłużyły na Nagrodę Nobla” już w maju!

Patronat nad publikacją objęły:
Muzeum Marii Skłodowskiej-Curie w Warszawie
Polska Sieć Kobiet Nauki/Polish Women Scientists Network
Piękniejsza Strona Nauki
Foton 

Wydawnictwo Naukowe Sub Lupa

Stefania Horovitz i tajemnica izotopów

/   Tomasz Pospieszny   /

 

 

Portret Stefanii Horovitz, prawdopodobnie namalowany przez ojca, b.d., [za:] https://www.geni.com/people/Stefania-Horowitz/6000000009579527822, dostęp z 17 lutego 2018
Odkrycie polonu i radu w 1898 roku przez Marię Skłodowską-Curie spowodowało prawdziwą lawinę odkryć kolejnych nowych pierwiastków. Profesor Józef Hurwic przedstawił to chyba najtrafniej:

Na początku drugiego dziesięciolecia naszego wieku znano około trzydziestu różnych substancji promieniotwórczych, które uważano za odrębne pierwiastki chemiczne, w układzie okresowym zaś między ołowiem i uranem było tylko kilka miejsc nie obsadzonych. Wydawało się więc, że prawo okresowości nie stosuje się do substancji promieniotwórczych. Ich zespół stanowił istną dżunglę.

Tajemnica Natury została wyjaśniona przez Fredericka Soddy’ego w 1913 roku. Uczony zauważył, że jeden pierwiastek chemiczny może mieć kilka odmian różniących się masą atomową. W prestiżowym czasopiśmie „Nature” napisał – Są one [pierwiastki] identyczne pod względem chemicznym, a także fizycznym, z wyjątkiem kilku właściwości zależących wprost od masy atomowej. Ponieważ właściwości chemiczne izotopów są takie same, można je jedynie rozdzielić metodami fizycznymi. Dzięki koncepcji Soddy’ego liczba odkrytych pierwiastków promieniotwórczych nagle zmalała i w układzie okresowym pozostały tylko polon (84Po), radon (86Rn), rad (88Ra), aktyn (89Ac), tor (90Th) i uran (92U). Osiem innych „różnych pierwiastków” (izotopów) tak naprawdę było odmianami umiejscowionych już w układzie okresowym czterech pierwiastków. W tej niezwykłej łamigłówce istotną rolę odegrała uczona urodzona w Warszawie – Stefania Horovitz. Była ona trzecią kobietą z Polski, która po Marii Skłodowskiej-Curie i Alicji Dorabialskiej odegrała istotną rolę w nauce o promieniotwórczości.

Leopold Horovitz, Autoportret, 1915, Domena Publiczna

Stefania Renata Horovitz urodziła się 17 kwietnia 1887 roku w Warszawie. Jej ojciec, Leopold Horovitz (1838–1917), był znanym i cenionym artystą skupionym wokół dworu cesarza Józefa I. Leopold słynął ze zdolności do malowania portretów. W 1873 roku w Wiedniu na międzynarodowej wystawie zdobył złoty metal za jeden ze swoich obrazów. Apogeum jego sławy przypadło na 1896 rok, kiedy został poproszony o namalowanie portretu cesarza Franciszka Józefa I. Dzięki tak szybko rozwijającej się karierze jego rodzina nie narzekała na niedostatki. Mniej więcej w tym samym czasie Leopold wraz z żoną Rozą z Londonów (1853–1920) oraz dziećmi Jerzym (1875–1948), Zofią (1877–1941), Arminem (1880–1965), Janiną (1882–1941) i najmłodszą Stefanią przenieśli się do Wiednia. Stefania pobierała nauki w domu. Nauka była jednak na najwyższym możliwym poziomie. W 1907 roku zainteresowała się chemią i zapisała na Wydział Filozoficzny Uniwersytetu Wiedeńskiego. Sukcesy przychodziły stosunkowo łatwo i już w 1914 roku ukończyła studia doktoranckie specjalizując się w chemii organicznej. Promotorem dysertacji był znany chemik organik profesor Guido Goldschmiedt (1850–1915). Do jego największych osiągnięć naukowych należało między innymi określenie struktury kilku związków pochodzenia naturalnego, w tym papaweryny i kwasu elagowego. Praca Horowitz dotyczyła przegrupowania chininy pod wpływem kwasu siarkowego. Dysertacja została oceniona bardzo dobrze, a jej wynik opublikowano w dwóch pracach naukowych. Po obronie pracy doktorskiej Stefania zwróciła uwagę na chemię jądrową.

Otto Hönigschmid, przed 1921, [za:] https://badw.de/en/community-of-scholars/deceased.html?tx_badwdb_badwperson%5Bper_id%5D=1374&_badwdb_badwperson%5BpartialType%5D=BADWPersonDetailsPartial&tx_badwdb_badwperson%5BmemberType%5D=&tx_badwdb_badwperson%5Baction%5D=show&tx_badwdb_badwperson%5Bcontroller%5D=BADWPerson, dostęp z 17 lutego 2018
Pod koniec 1913 lub na początku 1914 roku rozpoczęła pracę w Instytucie Radowym w Wiedniu pod kierunkiem Ottona Hönigschmida (1878–1945). W latach 1904–1906 uczony pracował w laboratorium odkrywcy fluoru Henriego Moissana w Paryżu, a później u Theodore’a Richardsa na Uniwersytecie Harvarda. Uczony specjalizował się w badaniach węglików, krzemianów i pomiarach masy atomowej. Według opinii Kazimierza Fajansa był on mistrzem w oznaczaniu mas atomowych. Horovitz została jego protegowaną prawdopodobnie na prośbę Goldschmiedta, który był nauczycielem Hönigschmida. Co niezwykle istotne Hönigschmid miał pozytywne nastawienie do kobiet studiujących i zajmujących się nauką.

Historia rozpoczęcia ich współpracy jest niezwykła. Hönigschmid poszukując współpracownika zwrócił się z prośbą do przebywającej w Berlinie Lise Meitner, czy nie zna kogoś w Wiedniu kto kwalifikowałby się do pomocy w jego projekcie związanym z określaniem masy atomowej pierwiastków. Dzięki jej rekomendacji poznał Stefanię. Meitner i Horovitz najprawdopodobniej spotkały się w 1907 roku. Kilka miesięcy później napisał do Meitner: Przesyłam Ci pozdrowienia od panny Horovitz, która nie wierzy, że ją pamiętasz. Właśnie się z nią o to spieram. Od czerwca 1914 roku Horovitz i Hönigschmid rozpoczęli ścisłą współpracę. Otto Hönigschmid napisał do Lise Meitner – Z panną Horovitz pracujemy jak dobrzy koledzy. W tę piękną niedzielę nadal siedzimy w laboratorium od godziny szóstej. Uczeni zajęli się izolowaniem i oczyszczaniem ołowiu ze 100 kilogramów z siarczanu ołowiu pozyskanego z materiałów z Jachimowa. Praca ta była niezwykle czasochłonna i skrupulatna. Wszystkie ważone substancje musiały być izolowane w stanie czystym, a eksperymentator powinien być w stanie określić nawet najmniejszą ilość substancji, która może zostać utracona podczas eksperymentu ilościowego. Wkrótce stwierdzili, że masa atomowa ołowiu powstającego w szeregu uranowo-radowym wynosiła 206,73. Wykazali tym samym, że ołów z rozpadu jest lżejszy niż „zwykły” ołów (207,21). 23 maja 1914 roku Hönigschmid zaprezentował wyniki na kongresie Bunsena w Lipsku. Pracę wysłali także do „Monatshefte für Chemie”, a później także do „Comptes Rendus”. Uczeni wspólnie wykazali także, że odkryty przez Boltwooda i Hahna w 1906 roku pierwiastek jon to de facto izotop toru-230. Było to niezwykle ważne spostrzeżenie, bowiem wykazało, że jon i tor-230 mają takie same właściwości spektroskopowe i chemiczne, a jedyną różnicą jest ich masa atomowa. W jednym eksperymencie Horovitz podważyła istnienie pierwiastka i znalazła drugi dowód na istnienie izotopów.

Stefania Horovitz w Instytucie Radowym w Wiedniu, listopad 1915, Austrian Cenral Library of Physics

Ze współpracy Stefanii i Ottona wynika, że Horovitz była dojrzałym naukowcem i bliskim współpracownikiem swojego mentora. Potrafiła wyciągać słuszne wnioski z przeprowadzonych eksperymentów, często sama inicjowała prace nad nurtującym ją problemem. W 1914 roku Hönigschmid w liście do Meitner pisał: Teraz izolujemy ołów z czystej smółki z Jachimowa… Mamy nadzieję, że w ciągu najbliższych dwóch tygodni przed świętami przeanalizujemy te przygotowane [próbki] ołowiu… W 1922 roku w wykładzie noblowskim Frederick Soddy również podkreślił udział Stefanii Horovitz w pracach nad izotopami. Powiedział między innymi – Jednocześnie prace nad ołowiem z minerałów uranowych były prowadzone przez T. W. Richardsa i jego studentów na Harvardzie, a także przez Hönigschmida i Mlle. Horovitz, którzy podali prawidłowe wartości [masy atomowej ołowiu]. Historyk nauki Lawrence Badash podkreślił, że Hönigschmid i Horovitz przedstawili najbardziej przekonujące dowody potwierdzające istnienia izotopów, a ich prace eksperymentalne potwierdziły jednocześnie pracę wykonaną w trzech innych laboratoriach.

Niestety pod koniec pierwszej wojny światowej współpraca uczonych została przerwana. Hönigschmid przyjął etat na Uniwersytecie w Monachium i opuścił Wiedeń. Z niejasnych dziś powodów Horovitz opuściła Wiedeń i na krótki czas porzuciła karierę naukową. Według opinii członków rodziny chciała pocieszyć matkę po śmierci ojca i w 1917 roku wróciła do Warszawy. Siedem lat później, w 1924 roku wróciła do Wiednia i zafascynowała się psychologią adlerowską. Wspólnie z Alice Friedman zaczęła organizować dom zastępczy dla dzieci z trudnościami w nauce. W 1937 roku, prawdopodobnie z powodów politycznych, Horovitz opuściła Wiedeń i po raz kolejny przeprowadziła się do Warszawy. Wybitny polski radiochemik Kazimierz Fajans w liście do Elisabeth Rona (jedna z uczonych pracujących w Instytucie Radowym w Wiedniu) pisał:

Prawdopodobnie nie otrzymałaś z Wiednia żadnych informacji o losie dr Stefanii Horovitz. Dowiedziałem się o tym od wspólnego krewnego z Warszawy. Stefania przeprowadziła się tam [do Warszawy] po I wojnie światowej i po tym jak jej rodzice zmarli w Wiedniu, aby dołączyć do swojej zamężnej siostry [Zofii Natanson]. Nie była aktywna w chemii, a obie [siostry] zostały zlikwidowane przez nazistów w 1940 roku.

Kiedy Warszawa została okupowana przez nazistów, Horovitz i jej siostra miały szansę ucieczki z getta. Jednak w obawie przed prześladowaniem ukrywających się Żydów obie zdecydowała się udać na Umschlagplatz. Były wśród tysięcy Żydów, którzy zostali przetransportowani do obozu zagłady w Treblince. Obie zginęły. Ich losy są nieznane.

Pod koniec drugiej wojny światowej 14 października 1945 roku pod nazistowską administracją, z którą się nie zgadzali, Otto Hönigschmid wraz z żoną popełnili samobójstwo.

Reszta jest milczeniem…

 

Zalecana literatura:

  1. F. Rayner-Cnaham, G. W. Rayner-Canham, Stefanie Horovitz: A Crucial Role in the Discovery of Isotopes, [w]: A Devotion to Their Science: Pioneer Women of Radioactivity, red.: M. F. Rayner-Cnaham, G. W. Rayner-Canham, McGill-Queen’s University Press, Québec, 1997.
  2. M. Rentetzi, Stephanie Horovitz (1887–1942), [w]: European Women in Chemistry, red.: J. Apotheker, L. S. Sarkadi, Wiley, Verlag, 2011, str. 75–79.
  3. M. Rayner-Canham, G. Rayner-Canham, Stefanie Horovitz, Ellen Gleditsch, Ada Hitchins, and the Discovery of Isotopes, Bulletin for the History of Chemistry, 25(2), 2000, str. 103–108.
  4. B. Van Tiggelen, A. Lykknes, Celebrate the Women Behind the Periodic Table, Nature, 565, 2019, str. 559–561.

 

 

Katowice szlakiem Marii Goeppert-Mayer

Mural na ścianie rektoratu Uniwersytetu Śląskiego w hołdzie Marii Goeppert-Meyer, zaprojektowany został przez Grupę The Krasnals, a wykonany przez Wakeuptime w 2014 roku

Zwiedzaliśmy Katowice śladami Marii Goeppert-Mayer – Noblistki, która urodziła się w 1906 roku właśnie w tym mieście. Na budynku Rektoratu Uniwersytetu Śląskiego od 2014 roku widnieje mural zatytułowany „Tańcząca z atomami”.

Nasza zaprzyjaźniona nauczycielka – Pani Bożena Kubiak, która nas do Katowic zaprosiła – zorganizowała event geocachingowy poświęcony Marii Goeppert-Mayer zatytułowany JEJ MARIA ​. To już drugie spotkanie z tej serii – poświęcone genialnym kobietom-naukowcom – i z niecierpliwością czekamy na kolejne!

Eventowi towarzyszył wykład o Marii Goeppert-Mayer

Sali użyczyła nam Parafia Ewangelicko-Augsburska Zmartwychwstania Pańskiego – dziękujemy!

Drugi dzień naszego pobytu w Katowicach rozpoczęliśmy od spotkania z uczestnikami IX Regionalnego Konkursu im. Marii Goeppert-Mayer i wykładu dra hab. Tomasza Pospiesznego zatytułowanego „Pasja i geniusz” w ZSO nr 1 im. Mikołaja Kopernika w Katowicach.

Następnym przystankiem był Główny Instytut Górnictwa i Centrum Radiometrii Środowiskowej im. Marii Goeppert-Mayer, które zwiedziliśmy z laureatami konkursu.

 

Kawiarnia Fotograficzna Katowice gościła nas wieczorem na czytaniu sztuki Ewy Mikuły „Zrób sobie mural” – inspirowanej życiem Noblistki.


Serdecznie dziękujemy wszystkim zaangażowanym w naszą katowicką wyprawę szlakiem miejsc związanych z Marią Goeppert-Mayer. Szczególne podziękowania składamy Pani Bożenie Kubiak – anglistce z I LO w Katowicach – dzięki której osobistemu zaangażowaniu Noblistka z Katowic jest przywracana lokalnej pamięci.

Do trzech razy sztuka – wyścig Ireny Joliot-Curie po Nagrodę Nobla

Irena Joliot-Curie, b.d., Muzeum Marii Skłodowskiej-Curie w Warszawie

Im dalej eksperyment jest od teorii, tym bliżej Nagrody Nobla.

Irena Joliot-Curie

 

Irena w Instytucie Radowym w Paryżu, 1942, reprodukcja pocztówki z Musée des artes et métiers

Odkrywca neutronu sir James Chadwick powiedział o niej:

Urodziła się w czasach tworzenia nauki o radioaktywności, gdy jej rodzice dokonywali wielkich odkryć, dorastała z radioaktywnością, a całe życie zawodowe poświęciła jej badaniu. Nosiła zaszczytne imię, do którego dodała blasku poprzez wielki wkład o dużej doniosłości w zakresie promieniotwórczości oraz rozwoju fizyki jądrowej… W ciągu tych lat kontynuowała i opublikowała prace nad różnymi aspektami promieniotwórczości, jednocześnie jej zapał do badań naukowych był taki, że ani obowiązki administracyjne, ani też pogarszający się stan zdrowia nie mógł powstrzymać jej z dala od laboratorium. Jej rodzice mieli zarówno silne osobowości jak i niezależne umysły i Madame Joliot-Curie odziedziczyła wiele cech z ich charakterów, jak również ich naukowy geniusz. Miała silną osobowość, była naturalna, bezpośrednia i samowystarczalna.

Irena Joliot-Curie dała się poznać jako genialna uczona, która potrafiła dumnie nosić nazwisko rodziców. Warto pamiętać, że jej prace doprowadziły do odkrycia neutronu, pozytonu (dodatniego elektronu), a także przeprowadziła reakcję rozszczepienia jądra atomowego. W 1935 roku, jako druga kobieta w historii, otrzymała Nagrodę Nobla z chemii za prace nad syntezą nowych pierwiastków promieniotwórczych. Sądzę, że mogła otrzymać kolejną Nagrodę Nobla, na którą z pewnością zasługiwała…

Lekcja pierwsza

Fryderk i Irena Joliot-Curie, 1936, NAC sygn. 1-E-3967

Historia wyścigu Ireny Joliot-Curie po Nagrodę Nobla rozpoczyna się w 1928 roku, kiedy Walther Bothe zapoczątkował bombardowanie pierwiastków lekkich cząstkami alfa. Uczony wraz ze swoim studentem Herbertem Beckerem zauważyli, że w wyniku bombardowania cząstkami alfa atomów boru, magnezu lub glinu, następuje emisja wysokoenergetycznego promieniowania gamma, co było zgodne z przewidywaniami. Niespodziewanie jednak zaobserwowali emisję promieniowania gamma emitowanego przez bombardowane atomy litu i berylu. Było to zaskakujące, bowiem atomy tych pierwiastków były zbyt małe, ażeby pod wpływem cząstek alfa mogły ulec rozbiciu. W komunikacie stwierdzili, że promieniowanie emitowane przez bombardowane cząstkami alfa atomy berylu ma większą energię niż cząstki alfa oraz że podczas reakcji nie następowała emisja protonów, a nadmiar energii promieniowania gamma pochodzi z rozpadu jądra. Badanie niemieckich uczonych zaintrygowały Irenę i jej męża Fryderyka Joliot-Curie. Uczona wspominała po latach – dysponowanie wielką ilością polonu pozwoliło Fryderykowi Joliot i mnie wykonać badania, które doprowadziły do odkrycia neutronu i sztucznej promieniotwórczości.

Irena w grudniu 1931 roku na posiedzeniu Francuskiej Akademii Nauk ogłosiła, że w wyniku przeprowadzonych eksperymentów może stwierdzić, iż energia badanego promieniowania jest aż trzykrotnie wyższa niż energia bombardujących cząstek alfa. Natomiast przepuszczając promieniowanie berylowe przez parafinę i celofan zauważyła, że wybija ono protony (atomy wodoru pozbawione elektronu). Było to niezwykle dziwne, bowiem promieniowanie berylowe zderzało się z jądrami atomowymi wodoru, tak jak dwie kule bilardowe! Mogło ono działać na maleńkie i lekkie elektrony, ale nie na protony. 18 stycznia 1932 roku małżonkowie Joliot-Curie opublikowali artykuł Emisja protonów o dużej prędkości z zawierającego wodór materiału napromieniowanego bardzo przenikliwym promieniowaniem gamma. W pracy zgodzili się z Niemcami, że promieniowanie berylowe pomimo ogromnej przenikliwości jest wysokoenergetycznym promieniowaniem gamma.

Irena i Fryderyk w swoim laboratorium w Paryżu, grudzień 1932, NAC sygn. 1-E-3968

Kiedy pracujący w Laboratorium Cavendisha na Uniwersytecie Cambridge James Chadwick przeczytał ich doniesienia, nie uwierzył w wyniki uzyskane w paryskim laboratorium. Chadwick zreferował prace Ireny Ernestowi Rutherfordowi. Po latach uczony pisał: Gdy opowiedziałem mu o obserwacjach Curie-Joliot i ich poglądach na ten temat, dostrzegłem jego rosnące zdziwienie, wreszcie wybuchnął: »Nie wierzę w to«. […] Oczywiście, Rutherford zgodził się, że należy wierzyć obserwacjom, ale wyjaśnienie to zupełnie inna sprawa. Kilka lat wcześniej Rutherford w słynnym Wykładzie Bakeriańskim przewidywał istnienie cząstki o masie zbliżonej do protonu, jednak pozbawionej ładunku. Irena i Fred nie zapoznali się z treścią wykładu. Siostrzeniec Lise Meitner, Otto Rober Frisch pisał:

Powiedziano mi, że Rutherford później spotkał Joliota i zapytał go: »Nie zdajesz sobie sprawy, że miałeś w ręce neutrony, które omawiałem w moim wykładzie Bakeriańskim w 1920 roku?« Joliot odpowiedział: »Nigdy nie czytałem tego wykładu; myślałem, że to będzie zwykły pokaz krasomówstwa, a nie nowych pomysłów«.

 

James Chadwick (1891–1974), [za:] https://www.nobelprize.org/prizes/physics/1935/chadwick/biographical/

James Chadwick rozpoczął eksperymenty 7 lutego 1932 roku. Zacząłem bez żadnych zbędnych założeń, choć oczywiście myślałem o neutronie. Byłem prawie pewien, że obserwacji Curie-Joliot nie da się wyjaśnić, odwołując się do czegoś w rodzaju zjawiska Comptona […] – wspominał. Uczony potwierdził wyniki francuskich kolegów, ale zmodyfikował ich eksperymenty. Zamiast parafiny i celofanu, promieniowanie berylowe kierował na płytki z litu, berylu, boru czy węgla. W każdym przypadku po zderzeniu promieniowania z folią, Chadwick obserwował emisję protonów. Wniosek nasuwał się sam: promieniowanie berylowe nie mogło mieć natury fali elektromagnetycznej lecz cząstki pozbawionej ładunku! 17 lutego 1932 roku James Chadwick przedstawił wyniki eksperymentów w „Nature” w artykule Możliwe istnienie neutronu. W kolejnym artykule zatytułowanym Istnienie neutronu już bez wątpliwości opisał nową cząstkę elementarną. To właśnie za to odkrycie James Chadwick otrzymał w 1935 roku Nagrodę Nobla z fizyki.

 

 

Lekcja druga

Teraz małżonkowie Joliot-Curie mając doskonały pocisk w ręku rozpoczęli prace z i nad neutronem. Bombardowali nim różne substancje, a wyniki zderzeń rejestrowali na fotografiach wykonywanych w komorze Wilsona. Na jednej z nich ujrzeli tor ruchu elektronu zakrzywiony w kierunku bieguna ujemnego pola magnetycznego zamiast do dodatniego. W kwietniu 1932 roku napisali, że kilka elektronów przechodzących przez komorę Wilsona, zostawiało ślady mające taki sam wygląd jak tory elektronów, tyle że wykazywały przeciwne krzywizny względem pozostałych. W miedzy czasie postanowili poradzić się Rutherforda i Bohra. Jednak jak się wydaje pierwszy z nich dyplomatycznie uchylił się od odpowiedzi, drugi zaś nie do końca umiał wyjaśnić dziwne zachowanie elektronów. Tymczasem młody fizyk z Kalifornijskiego Instytut Technologicznego Carl David Anderson badając za pomocą komory Wilsona umieszczonej w bardzo silnym polu magnetycznym promieniowanie kosmiczne spostrzegł nietypowy tor ruchu cząstek – ślad o długości pięciu centymetrów, przypominający włos, zakrzywiony w kierunku

Irena i Fryderyk, ok. 1937, NAC sygn. 1-E-3965

ujemnego bieguna magnesu. Co ciekawe wykonał 1300 fotografii, a jedynie na 15 zaobserwował dziwne krzywizny. Anderson w „Science” napisał, że konieczne wydaje się powołanie do życia dodatnio naładowanej cząstki o masie porównywalnej do

elektronu. Badacz odkrył pozyton czyli dodatni elektron. Córka Ireny i Fryderyka Helena Langevin-Joliot wspomina, że istnienie pozytonów wkrótce zostało potwierdzone nie tylko w promieniowaniu kosmicznym. Kilku fizyków, zwłaszcza Joliot-Curie, pamiętało dziwne trajektorie elektronów, przypisywane do elektronów […] odbijających się od ścian komory mglistej.

 

Irena i Fred po zapoznaniu się z praca Andersona wrócili do laboratorium, powtórzyli jego eksperymenty i na jednym ze zdjęć spostrzegli dwa tory: jeden odgięty w kierunku bieguna dodatniego i drugi do ujemnego. Odkryli tworzenie się pary pozyton–elektron. Powstawanie pary antycząstka–cząstka jest możliwe dzięki kwantom promieniowania gamma o wystarczająco dużej energii. Uczeni napisali: mamy tu po raz pierwszy do czynienia z przekształcaniem promieniowania elektromagnetycznego w materię. […] gdy foton gamma o wysokiej energii napotka ciężkie jądro, to w następstwie kolizji jest przekształcany w dwa elektrony o przeciwnych znakach. Maria Skłodowska-Curie zasugerował im, aby zjawisko nazwali materializacją elektronów. Niestety było to za mało na Nagrodę Nobla. Carl David Anderson za odkrycie pozytonu otrzymał Nagrodę Nobla z fizyki w 1936 roku. Wówczas Irena i Fryderyk Joliot-Curie od roku będą już laureatami tej prestiżowej nagrody.

Lekcja trzecia

Lise Meitner w laboratorium, ok. 1930, Archiv der Max-Planc-Gesellschaft, Berlin

W dniach 22–29 października 1933 roku w Brukseli odbyła się siódma konferencja Solvaya Struktura i właściwości jądra atomowego. Poza Marią Curie zaproszono także Lise Meitner i Irenę Joliot-Curie. Małżonkowie Joliot zreferowali wyniki eksperymentów polegających na bombardowaniu cząstkami alfa wysyłanymi z polonu różnych pierwiastków w tym aluminium, fluoru oraz sodu. Według uczonych powinny powstać odpowiednio izotopy: fosforu, sodu oraz glinu. Tymczasem w reakcji glinu z cząstkami alfa powstawał stabilny izotop krzemu, a w komorze Wilsona obok śladów neutronów pojawiły się ślady pozytonów. Podczas wystąpienia zatytułowanego Promieniowanie przenikliwe z atomów bombardowanych cząstkami alfa Fred opowiedział o badaniach nad neutronem, pozytonem oraz omówił eksperymenty i zdjęcia z komory Wilsona. Skomentował także najnowsze wyniki badań związane z bombardowaniem glinu i emisją neutronów oraz pozytonów. Eksperymenty małżonków skrytykowała m. in. Lise Meitner, która twierdziła, że w podobnych badaniach nie zaobserwowała obecności neutronów. Debiut na międzynarodowej scenie fizyki jądrowej był dla Joliotów dramatyczny. Fred wspominał:

Podana przez nas wiadomość wywołała żywą dyskusję. Panna Meitner oświadczyła, że robiła analogiczne doświadczenia, lecz nie uzyskała takich samych wyników. W końcu znaczna większość obecnych na zjeździe fizyków nabrała przekonania, że nasze doświadczenia nie były ścisłe. Wyszliśmy z posiedzenia z bardzo przykrym uczuciem. Wówczas przystąpił do nas profesor Bohr i biorąc moją żonę i mnie na bok, oświadczył, że uważa nasze wyniki za bardzo ważne. Wkrótce potem także Pauli zwrócił się do nas z kilku słowami otuchy.

VII Konferencja Slovayowska w Brukseli, październik 1933, Domena Publiczna

Po zakończeniu konferencji Lise Meitner w Berlinie oraz Joliot-Curie w Paryżu powtórzyli eksperymenty. Okazało się, że to Irena i Fred mieli rację! Lise należy oddać honor, gdyż napisała do Paryża i przyznała, że podczas obrad w Brukseli nie miała racji.

Irena i Fryderyk Joliot-Curie wykonali doświadczenia, w których postanowili wykazać, że neutrony i pozytony powstają w wyniku bombardowania atomów glinu cząstkami alfa o bardzo dużej energii emitowanymi przez polon. Kiedy odcięli źródło promieniowania (polon) ze zdziwieniem zauważyli, że aluminium nadal emitowało pozytony, które widzieli w komorze Wilsona i rejestrowali licznikiem Geigera. Aluminium stało się radioaktywne! Powtórzyli eksperyment, sprawdzili liczniki. Aluminium było radioaktywne! Po bombardowaniu tarczy cząstkami alfa i odłączeniu ich źródła materiał stawał się radioaktywny. Irena i Fryderyk Joliot-Curie odkryli sztuczną radioaktywność! Fred wspominał:

Nigdy nie zapomnę, jak wielka ogarnęła ją radość, gdy razem z Ireną pokazaliśmy jej w małej szklanej probówce pierwszy sztuczny pierwiastek promieniotwórczy. Ciągle mam przed oczami, jak ujmuje w swoje palce (które były spalone od radu) tę małą próbówkę zawierającą ów promieniotwórczy pierwiastek, którego aktywność wciąż jeszcze była bardzo mała. Aby zweryfikować to, co jej powiedzieliśmy, przysunęła probówkę w pobliże licznika Geigera-Műllera. Usłyszała jak wskaźnik licznika postukuje z dużą prędkością. Była to bez wątpienia jedna z najszczęśliwszych chwil w jej życiu. W kilka miesięcy później Maria Curie zmarła na białaczkę.

Po około dwóch i pół minutach natężenie promieniowania emitowanego przez pierwiastek umieszczony w probówce spadło o połowę. Podczas bombardowania aluminium cząstkami alfa powstał promieniotwórczy, nie występujący w przyrodzie izotop fosforu-30 i neutron. Fosfor-30 jako nietrwały izotop emitował z jądra pozyton (dodatni elektron) i przekształcał się w stabilny izotop krzemu-30. Cała trudność polegała na dowiedzeniu, że w trakcje reakcji jądrowej powstawał fosfor. Tego dowodu dostarczyła Irena.

Najpierw pokryła folię aluminiową niewielką ilością naturalnie występującego fosforu (naturalnie występujący izotop fosforu ma takie same właściwości chemiczne jak powstający radioaktywny izotop – nie można więc ich rozróżnić chemicznie, a jedynie metodami fizycznymi), a następnie bombardowała ją cząstkami alfa. Później uczona umieściła folię w szczelnie zamkniętym naczyniu wypełnionym kwasem solnym. Glin przereagował z kwasem, a powstający w czasie reakcji wodór reagował z fosforem tworząc lotną fosfinę, która przechodziła do cienkiej szklanej rurki. Gaz zbierał się w odwróconej do góry dnem próbówce wypychając z niej wodę. Kiedy Irena przyłożyła do probówki licznik Geigera, usłyszała charakterystyczny trzask. Fryderyk Joliot powiedział – Spóźniliśmy się z neutronem, spóźniliśmy się z pozytonem, ale tym razem zdążyliśmy. W ciągu kilku kolejnych dni Irena i Fryderyk powtórzyli doświadczenie bombardując cząstkami alfa folię z boru i magnezu otrzymując odpowiednio izotopy azotu-13 i krzemu-27. Azot-13 po czternastu minutach przekształcał się w izotop węgla-13, a krzem-27 po dwóch i pół minutach w izotop glinu-27.

Irena Joliot-Curie odbiera Nagrodę Nobla z rąk króla Szwecji Gustawa V, 11 grudnia 1935, NAC sygn. 1-E-3969

15 stycznia 1934 roku na posiedzeniu Académie des Sciences, Jean Perrin zaprezentował komunikat Ireny i Fryderyka Nowy typ radioaktywności. 29 stycznia ukazała się kolejna praca ich autorstwa Chemiczna separacja nowych pierwiastków emitujących pozytony. 10 lutego w numerze „Nature” Joliot-Curie opublikowali kolejną pracę Sztuczna produkcja nowego rodzaju radiopierwiastków. Irena wspominała:

Odkrycie sztucznej promieniotwórczości […] otworzyło przed nauką o promieniotwórczości nowe perspektywy. Obecnie znamy setki sztucznych radiopierwiastków, wytwarzanych przez przemiany atomów trwałych lub słabo promieniotwórczych, a badania większości z nich są zaledwie rozpoczęte. Środkami działania nowej dziedziny nauki były początkowo promieniowanie naturalnych pierwiastków promieniotwórczych oraz cząstki sztucznie przyspieszone w rurach wysokiego napięcia lub za pomocą cyklotronu.

W grudniu 1935 roku Irena i Fryderyk Joliot-Curie pojechali do Sztokholmu odebrać Nagrodę Nobla z chemii. Irena została drugą kobietą wyróżnioną tą nagrodą. Powtórzyła sukces swojej wybitnej matki. Za kilka lat miała okazję otrzymać kolejną nagrodę…

 

 

 

Bibliografia

[1] T. Pospieszny, Radowa księżniczka. Historia Ireny Joliot-Curie, Novae Res, Gdynia, 2017.

[2] R. McKown, She lived for science. Irène Joliot-Curie, Macmillan & Co Ltd., London, 1962.

[3] F. Joliot, I. Curie, Artificial Production of a New Kind of Radio-Element, „Nature”, 1934, nr 133, ss. 201–202.

[4] I. Joliot-Curie, Nobel Lecture: Artificial Production of Radioactive Elements. Nobelprize.org. Nobel Media AB 2014. Web.; http://www.nobelprize.org/nobel_prizes/chemistry/laureates/1935/joliot-curie-lecture.html.

[5] W. Conkling, Radioactive! How Irène Curie & Lise Meitner revolutionized science and changed the world, Algonquin Young Readers, USA, 2016.

[6] E. T. Crossfield, Irène Joliot-Curie: Following in Her Motherʼs Footsteps, [w]: A Devotion to Their Science: Pioneer Women of Radioactivity, red.: M. F. Rayner-Cnaham.

[7] P. Biquard, Frédéric Joliot-Curie – The Man and his Theories, Souvenir Press, London 1965.

[8] J. Chadwick, Possible Existence of a Neutron, „Nature”, 1932, nr 129, s. 312.

[9] J. Chadwick, The Existence of a Neutron, „Proceedings of the Royal Society of London”, 1932, A136, ss. 692–708.

[10] C. D. Anderson, The Apparent Existence of Easily Detectable Positives, „Science”, 1932, nr 76, ss. 238–239.

[11] C. D. Anderson, The Positive Electron, „Phisical Review”, 1933

Szczecin — Piękniejsza Strona Nauki dla uczniów z województwa zachodniopomorskiego

…młodzi ludzie, którzy mają niezwykle chłonny umysł mogą wyciągnąć dużo informacji z życia Marii Skłodowskiej-Curie i przede wszystkim poznać fizykę i chemię, które nie są trudne, a niezwykle fascynujące…

(Tomasz Pospieszny)

 

Dzięki patronatowi na działania edukacyjne związane z projektem Piękniejsza Strona Nauki, udzielonemu Ewelinie Wajs przez zachodniopomorskiego kuratora oświaty Panią Magdalenę Zarębską-Kuleszę, spędziliśmy dwa dni w I Liceum Ogólnokształcącym im. Marii Skłodowskiej-Curie w Szczecinie. W zabytkowej auli I LO spotkaliśmy się z ponad 800 uczniami szkół gimnazjalnych i średnich z terenu województwa zachodniopomorskiego.

Od Pani Ewy Budziech – dyrektor I Liceum Ogólnokształcącego – Tomasz Pospieszny otrzymał pamiątkowy medal, wybity na 70. lecie szkoły przez Mennicę Państwową.

 

Składamy gorące podziękowania Pani kurator Magdalenie Zarębskiej-Kuleszy, Pani dyrektor Wydziału Informacji i Promocji kuratorium Małgorzacie Duras oraz Pani dyrektor I LO Ewie Budziech.

Autorem zdjęć jest Pan Daniel Wróbel z Kuratorium Oświaty w Szczecinie.

Plakat zaprojektowała Ewelina Wajs.

Relacja z cyklu wykładów na stronie kuratorium.

Relacja redaktora Grzegorza Gibasa w Radiu Szczecin.