104. rocznica urodzin Rosalind Franklin

 

Jaka jest korzyść z wykonywania tej całej pracy, jeśli nie czerpiemy z niej radości?

(Rosalind Franklin)

Rosalind Franklin, 1946, National Portrait Gallery, sygn. NPGx 76928
Rosalind Franklin, 1946, National Portrait Gallery, sygn. NPGx 76928

Historia odkrycia struktury kwasu deoksyrybonukleinowego (DNA) wiąże się nierozerwalnie z nazwiskami Jamesa D. Watsona (ur. 1928) i Francisca Cricka (1916–2004). Mało kto wie, że ich praca nie byłaby możliwa bez wyników eksperymentalnych, które otrzymała jedna z najwybitniejszych krystalografów angielskich Rosalind Elsie Franklin. To właśnie dzięki jej przenikliwości umysłu i precyzyjnym badaniom poznaliśmy nie tylko tajemnicę życia związaną z DNA, ale także strukturę kwasu rybonukleinowego (RNA) czy wirusów.

 

 

***

 

Rosalind w wieku 3 lat, ok. 1923, fotografia z Kolekcji Jennifer Glynn, [za:] U.S. Library of Medicine
Przyszła uczona urodziła się 25 lipca 1920 roku w Londynie w zamożnej i wpływowej rodzinie żydowskiej. Ojciec Rosalind, Ellis Arthur Franklin (1894–1964), wykładał w miejskim College’u dla chłopców elektryczność, magnetyzm, a także historię Wielkiej Wojny. Matka, Muriel Frances Waley (1894–1976), była raczej skupiona na prowadzeniu domu oraz wychowywaniu dzieci: najstarszego Davida oraz młodszych od Rosalind Colina, Rolanda i Jenifer. Ponieważ jej siostra była młodsza od Ros (uczona lubiła, aby tak ją nazywać, nie cierpiała zdrobnienia Rosy, którego używali jej koledzy z uniwersytetu) dziewięć lat wychowywała się ona głównie wśród braci. Przejęła od nich wiele cech między innymi zamiłowanie do rywalizacji, sportu czy fotografii. Warto zauważyć, że członkowie rodziny Franklinów byli zaangażowani politycznie, np. jej wuj Herbert Samuel był ministrem spraw wewnętrznych w 1916 roku i pierwszym praktykującym Żydem, który był członkiem w brytyjskim gabinecie. Franklinowie angażowali się społecznie i byli wrażliwi na ludzkie nieszczęście. Podczas drugiej wojny światowej pomagali znaleźć mieszkanie oraz pracę dla żydowskich uchodźców z kontynentu, którzy uciekli przed nazistami. Sami zaopiekowali się dwójką żydowskich dzieci i zapewnili im schronienie we własnym domu.

 

12-letnia Rosalind z rodzeństwem, ok. 1923, fotografia z Kolekcji Jennifer Glynn, [za:] U.S. Library of Medicine
Od wczesnego dzieciństwa Franklin wykazywała wyjątkowe zdolności do nauki. Fascynował ją świat i zjawiska przyrodnicze. Będąc na spacerze z rodzicami ciągle zadawała pytania. Kiedy rodzice zaprowadzili ją do biblioteki odkryła świat nauki, który zafascynował ją bez reszty. Mając sześć lat rozpoczęła naukę w prywatnej szkole dziennej w zachodnim Londynie w Norland Place School. Jej ciotka Helen Bentwich w iście do męża pisała: Rosalind jest niezwykle mądra – cały czas dla własnej przyjemności rozwiązuje zadania z arytmetyki niezmiennie otrzymując prawidłowe wyniki. Od wczesnych lat wykazywała wątpliwości względem religii. Już jako mała dziewczynka pytała matkę: W każdym razie, skąd wiesz, że On [Bóg] nie jest Nią?

Nie skupiała jednak całej uwagi na nauce. Zafascynowała się sportem zwłaszcza krykietem i hokejem. W wieku dziewięciu lat przyjęto ją do szkoły z internatem Lindwood School for Young Ladies w Sussex. Było to spowodowane także częstymi kłopotami zdrowotnymi dziewczynki. Zmiana klimatu miała sprzyjać poprawie zdrowia. W gruncie rzeczy przyszła uczona nauczyła się ignorować ból i choroby. Dwa lata później przeniosła się do szkoły dla dziewcząt w St. Paul w zachodnim Londynie. Była to jedna z nielicznych szkół dla dziewcząt w Londynie, w której nauczano fizyki i chemii. Nie trudno odgadnąć, że była najlepsza z nauk ścisłych, ale przodowała także w studiowaniu łaciny, niemieckiego, francuskiego oraz w sporcie. Ros była frankofilką i przez całe życie rozwijała swoje pasje związane z kulturą i językiem francuskim. Uważała francuski styl życia za znacznie lepszy od angielskiego. W liście do matki napisała: Jestem pewna, że zawsze będę mogła szczęśliwie wędrować po Francji, kocham [tych] ludzi, [ich] kraj i jedzenie.

Jej jedyną słabą stroną była muzyka. Nauczyciel tego przedmiotu uważał nawet, że może ona mieć jakieś kłopoty ze słuchem spowodowane infekcjami migdałków. W 1938 roku z wyróżnieniem zdała maturę i zdobyła stypendium uniwersyteckie. Na prośbę ojca przekazała je uzdolnionemu uczniowi uchodźcy. Jak się wydaje pieniądze w jej życiu nigdy nie odgrywały większej roli. Utrzymywała się ze skromnego stypendium, a później pensji i nigdy nie pozwalała ojcu, aby jej pomagał finansowo. Była świetnym organizatorem. Podróżując po Europie czy Stanach Zjednoczonych zawsze wybierała trzecią klasę komunikacji publicznej.

Rosalind w schronisku podczas wędrówki po Alpach, fot. Vittorio Luzzati, ok. 1949, fotografia z Kolekcji Jennifer Glynn, [za:] U.S. Library of Medicine
Po maturze Franklin rozpoczęła naukę w Newnham College w Cambridge, gdzie studiowała chemię w Natural Sciences Tripos. Tutaj poznała i zaprzyjaźniła się ze specjalistą z zakresu spektroskopii Billem Price’m (1909–1993). Jego prace okazały się później bezcenne w udowodnieniu tworzenia wiązań wodorowych pomiędzy parami zasad azotowych w DNA. Rosalind była niezwykle pilną studentką, osiągającą bardzo dobre wyniki w nauce. Miała spore szanse na uzyskanie stypendium. Niestety utrudniły to skomplikowane relacje z późniejszym laureatem Nagrody Nobla z chemii profesorem Ronaldem Norrishem (1897–1978). Norrish był uparty, apodyktyczny i niezwykle wrażliwy na krytykę, nie podzielał też entuzjazmu Franklin względem równouprawnienia kobiet w nauce i spowalniał realizację ambicji naukowych wyjątkowo zdolnej studentki. Sytuacja stawała się napięta i bardzo niemiła dla młodej uczonej. W 1941 roku Franklin z wyróżnieniem zdała egzaminy końcowe, które jednocześnie przyjęto jako licencjat (w Cambridge przyznawano kobietom licencjaty i magisterium od 1947 roku; wcześniejszym absolwentkom przyznano je z mocą wsteczną). Franklin zrezygnowała z dalszej pracy w laboratorium Norrisha i zatrudniła się jako asystentka w brytyjskim Stowarzyszeniu Badań nad Wykorzystywaniem Węgla (BCURA). Jej badania polegały głównie na określeniu mikrostruktury rożnych próbek węgla. Uczona badała porowatość węgla za pomocą helu, aby określić jego gęstość. Odkryła związek pomiędzy drobnymi przewężeniami w porach węgla i przepuszczalnością porowatej przestrzeni. Jej prace przyczyniły się między innymi w przemyśle paliwowym, a także w produkcji masek gazowych. Badania te stały się podstawą pracy doktorskiej Franklin pt. Chemia fizyczna stałych koloidów organicznych ze szczególnym uwzględnieniem węgla, którą obroniła w 1945 roku. Jeden z jej profesorów powiedział, że jej praca wprowadziła porządek w dziedzinie, która wcześniej była w chaosie. Wyniki uzyskanych prac zostały publikowane w pięciu artykułach, które wciąż są regularnie cytowane.

Franklin w trakcie wspinaczki w Norwegii, ok. 1940, fotografia z Kolekcji Jennifer Glynn, [za:] U.S. Library of Medicine. Rosalind uwielbiała podróże. Wakacje spędzała zazwyczaj zwiedzając Europę.
W czasie wojny Franklin poznała Adrienne Weill, byłą studentkę Marii Skłodowskiej-Curie. Weill wywarła ogromny wpływ na życie Rosalind pomagając jej między innymi w znajomości francuskiego. W tym czasie uczona wraz ze swoją kuzynką Irene zgłosiła się na ochotnika do patrolowania okolic narażonych na naloty.

Po drugiej wojnie światowej Franklin w liście do Weill pisała: Jeśli usłyszysz o kimkolwiek potrzebującym usług chemika fizycznego, który niewiele wie o chemii fizycznej, ale dość dużo o dziurach w węglu, powiadom mnie jak najszybciej. Dzięki pomocy przyjaciółki otrzymała posadę w Paryżu w Narodowym Centrum Naukowo-Technicznym (CNRS). To właśnie tutaj Rosalind Franklin nauczyła się praktycznych aspektów zastosowania krystalografii rentgenowskiej do badania substancji amorficznych. Technika ta stosowana była z dużym powodzeniem przy badaniu związków organicznych. Początkowo zastosowała tę metodę do badania grafitu (odmiany alotropowej węgla). Po czterech latach pracy w laboratorium w Paryżu otrzymała upragnione stypendium i zgodę odpowiednich władz, po czym przeniosła się do King’s College w Londynie. W styczniu 1951 roku wróciła do Londynu i na prośbę Sir Johna Randalla (1905–1984), dyrektora King’s College rozpoczęła badania nad DNA.

DNA jako cząsteczka fascynował uczonych od dawna. Pobudzał do intelektualnej przygody, każdego kto marzył o międzynarodowej sławie w świecie chemii czy biologii. DNA został wyizolowany przez szwajcarskiego lekarza Friedricha Mieschera (1844–1895) w 1869 roku. W 1878 Albrecht Kossel (1853–1927) wyizolował niebiałkowy składnik, a następnie wyizolował pięć podstawowych zasad azotowych (puryny – adeninę i guaninę oraz pirymidyny – cytozynę, tyminę i uracyl). W 1909 roku Phoebus Levene (1869–1940) zidentyfikował nukleotydową jednostkę składającą się z zasady azotowej, cukru (deoksyrybozy w DNA lub rybozy w RNA) i fosforanowej. Zasugerował on, że DNA składa się z szeregu czterech jednostek nukleotydowych połączonych ze sobą grupami fosforanowymi. W 1937 roku William Astbury (1898–1961) opracował pierwsze dyfraktogramy rentgenowskie, które wykazały, że DNA ma strukturę regularną. Nikt jednak nie wiedział jaką DNA ma konkretnie budowę. W latach 1951–1953 Erwin Chargaff (1905–2002) ogłosił tzw. reguły Chargaffa, w myśl których ilość zasad pirymidynowych jest równa ilości zasad purynowych. Ponadto ilość adeniny jest równa ilości tyminy, ilość guaniny jest równa ilości cytozyny.

Franklin w trakcie letniej podróży po Toskanii, fot. Vittorio Luzzati, ok. 1950, fotografia z Kolekcji Jennifer Glynn, [za:] U.S. Library of Medicine
Maurice Wilkins, b.d., The Nobel Foundation Archive, [za:] https://www.nobelprize.org/prizes/medicine/1962/summary/
Randall poprosił Franklin, aby zajęła się badaniem DNA, mimo iż wiedział, że problemem tym zajmuje się Maurice Wilkins (1916–2004). Historycy nauki wskazują, że antagonizmy pomiędzy Wilkinsem i Franklin wynikały z nieporozumienia i niedopatrzenia Randalla, który nie poinformował żadnej z zainteresowanych stron o pracach nad DNA. Uczona wraz ze swoim doktorantem Raymondem Goslingiem (1926–2015) użyła nowej lampy rentgenowskiej z precyzyjnym ogniskiem i mikrokamery zamówionej wcześniej przez Wilkinsa. Sama jednak niezwykle starannie dopracowała i dostosowała ją do swoich potrzeb. Kiedy Wilkins zapytał o technikę, Franklin miała mu odpowiedzieć zdawkowo i dość chłodno. Uczona była postrzegana jako silna, asertywna i niezależna kobieta. Wyrażała swoje poglądy stanowczo i konkretnie, przez co nie zawsze była lubiana. Jednak pod pozornym chłodem kryła się wrażliwa kobieta. Potrafiła także świetnie kierować grupą, czego dowodem są jej liczne zespołowe publikacje. Pomimo wszechobecnej dyskryminacji kobiet Franklin prowadziła badania w zakresie rentgenografii strukturalnej. W listopadzie 1951 roku uczona zanotowała:

Wyniki sugerują, że to struktura helikalna (która musi być bardzo ściśle upakowana) zawierająca 2, 3 lub 4 współosiowe łańcuchy kwasu nukleinowego na jednostkę helikalną i posiada w pobliżu grupy fosforanowe ulokowane na zewnątrz.

James Watson, b.d., The Nobel Foundation Archive, [za:] https://www.nobelprize.org/prizes/medicine/1962/summary/
Franklin wraz z Goslingiem szybko doszli do wniosku, że DNA istnieje w dwóch formach – przy dużej wilgotności włókna kwasu są długie i cienkie, zaś kiedy jest suchy włókna są krótkie i grube. Uczona nazwała je formami B i A. Konflikt pomiędzy stanowczą i dynamiczną Franklin oraz cichym i skromnym Wilkinsem narastał. James Watson wspominał:

Niemal od chwili pojawienia się jej w laboratorium obydwoje działali sobie na nerwy. Konflikt był tak poważny, że wymagał radykalnych rozwiązań – odejścia Rosy z laboratorium bądź przywołania jej do porządku.

W końcu Randall zdecydował, że Franklin skupi się na formie A-DNA, zaś Wilkins na formie B-DNA. Na sukcesy nie musiała długo czekać. Słynne dziś zdjęcie 51 wykonane prze Franklin uważane jest przez wielu za najpiękniejsze zdjęcie rentgenowskie jakie kiedykolwiek wykonano. W styczniu 1953 roku, po uprzednich wątpliwościach, Franklin doszła do wniosku, że obie formy DNA są strukturami helikalnymi. Wydaje się, że temat całkowicie pochłoną uczoną. Według opinii jej siostrzeńca Stephena zainteresowanie [uczonej] […] kwasami nukleinowymi zaczęło się wcześnie. Pod koniec 1939 roku, gdy Rosalind była dziewiętnastoletnią studentką w Newnham College w Cambridge, […] sporządziła w swoim skoroszycie szkic spekulacji o formie kwasu nukleinowego. Biografka Rosalind, Brenda Maddox […] odnotowała, że forma „przedstawia helikalną strukturę”, a uczona zanotowała: „Geometryczne podstawy dziedziczenia?”

Francis Crick, b.d., The Nobel Foundation Archive, [za:] https://www.nobelprize.org/prizes/medicine/1962/summary/
W styczniu 1953 roku Franklin zaczęła pisać serię artykułów. Wynika z tego jasno, że jej prace były gotowe wcześniej niż prace Jamesa D. Watsona i Francisca Cricka, którzy swój model budowali w oparciu o… fotografię wykonaną przez Franklin. Wilkins za pośrednictwem Maxa Perutz’a (1914–2002) i cichą zgodą się Williama Bragga (1890–1971) przekazał zdjęcie wykonane przez Franklin Watsonowi i Crickowi. Nie ma najmniejszej wątpliwości, że dzięki zdjęciu wykonanym przez Franklin Watson i Crick zbudowali swój słynny model DNA. Watson wspominał – Kiedy tylko zobaczyłem to zdjęcie, szczęka mi opadła, a puls raptownie przyspieszył. Sam Wilkins po latach przyznał – Być może powinienem był poprosić Rosalind o zgodę. Cóż…

Do 28 lutego 1953 roku Watson i Crick uznali, że rozwiązali problem na tyle, że Crick w pubie publicznie stwierdził iż wraz z Watsonem znaleźli sekret życia. Watson i Crick zakończyli budowę swojego modelu 7 marca 1953 roku. Wyniki pracy opublikowali w prestiżowym Nature 25 kwietnia 1953 roku. Stephen Franklin twierdzi, że gdyby [Franklin] pozostała w King’s, nie ma wątpliwości, że […] poprawnie ukończyłaby analizę struktury w pierwszej połowie 1953 roku bez żadnego wkładu Cricka lub Watsona, oni zaś nie zrobiliby tego na początku 1953 roku bez pracy Rosalind.

Konflikt z Wilkinsem, zła atmosfera w pracy i brak akceptacji względem uczonej, spowodował, że pod koniec swojej kariery naukowej przeniosła się do Birkbeck College. Jej siostrzeniec wspominał, że Rosalind była tak niezadowolona z [pracy w] King’s College, że wynegocjowała przeniesienie do Birkbeck [College], innej uczelni na Uniwersytecie Londyńskim. Tam w ciszy i spokoju, z dala od niezdrowej konkurencji oddała się pracy związanej z wirusologią. Szczególnie zainteresowała się wirusem mozaiki tytoniowej.

Laboratorium Rosalind Franklin w Birkbeck College (sfotografowane krótko po jej śmierci). Mieściło się na piątym piętrze zniszczonej przez bomby XVIII-wiecznej kamienicy przy Torrington Square – w dawnych kwaterach dla służby. Aparatura rentgenowska znajdowała się w piwnicy, fot. John Finch, ok. 1958, fotografia z Kolekcji Jennifer Glynn, [za:] U.S. Library of Medicine
Rosalind Franklin nigdy nie wyszła za mąż, zdaje się, że unikała bliższych kontaktów damsko-męskich. Była oddana pracy i nauce, chociaż podobno pod koniec życia się zakochała. James Watson w swojej książce pisał:

Zdecydowanie nie starała się podkreślać swej kobiecości. Choć miała dość ostre rysy, nie była zupełnie nieatrakcyjna, mogłaby się nawet podobać, gdyby wykazała choć niewielkie zainteresowanie kwestią swego wyglądu zewnętrznego. Nie poświęcała temu jednak najmniejszej uwagi. Nigdy nie używała kredki do ust, która mogłaby podkreślić czerń jej prostych włosów, a w 31. roku życia nosiła stroje odzwierciedlające całkowity brak fantazji właściwy młodej angielskiej intelektualistce.

Sądzę, że jej oddanie nauce wynikało jednak z przekonania, że nie można poświęcić się kilku sprawom jednocześnie. Kiedy jej koleżanka wróciła po porodzie do pracy Franklin powiedziała, że to nie w porządku w względem dziecka. Nie można robić źle dwóch rzeczy – powiedziała kiedyś.

Rosalind Franklin podczas pracy, ok. 1955, fotografia z Kolekcji Jennifer Glynn, [za:] U.S. Library of Medicine
W połowie 1956 roku, podczas podróży służbowej do Stanów Zjednoczonych uczona zaczęła odczuwać pewne fizyczne dolegliwości. W Nowym Jorku nabrzmiał jej brzuch tak bardzo, że miała trudność w zapięciu spódnicy. Po powrocie do Londynu poddała się badaniom. Okazało się, że ma dwa duże guzy w jamie brzusznej. Po operacji spędzała czas z przyjaciółmi, którzy wspierali ją w trudnej rekonwalescencji. Dużo czasu spędzała także z rodzicami. W trakcie leczenia nowotworu Franklin kontynuował pracę. W 1956 roku opublikowała siedem artykułów, a rok później kolejnych sześć. W sumie w ciągu czterech lat pracy w Birkbeck College Franklin była współautorką siedemnastu prac naukowych poświęconych wirusom. Trzy z nich ukazały się już po jej śmierci.

Choroba powróciła pod koniec 1957 roku. W styczniu 1958 roku wróciła do pracy. Niestety 30 marca poczuła się bardzo źle. Jej przyjaciółka Anne Sayre wspominała:

Walczyła ze śmiercią uparcie i z odwagą, planowała życie, kiedy plany były już kpiną. Umarła tak, jak żyła, z pasją do życia, z którego nigdy nie zrezygnowała. 16 kwietnia 1958 roku, w wieku trzydziestu siedmiu lat, Rosalind Franklin przegrała bitwę.

Przyczyną śmierci był zaawansowany rak jajnika z przerzutami. Została pochowana w 17 kwietnia 1958 roku.

***

Rok po jej śmierci Watson, Crick i Wilkins otrzymali Nagrodę Collinsa Warrena. Dwa lata po jej śmierci przyznano im Nagrodę Laskera. Cztery lata po jej śmierci otrzymali Nagrodę Nobla z medycyny. Podczas noblowskiego wykładu jedynie Wilkins wspomniał uczoną. Watson i Crick nie wspomnieli o Rosalind Franklin świadomie skazując ja na zapomnienie.

***

Wiara Rosalind Franklin w naukę i postęp były drogowskazem w jej życiu. W liście do ojca pisała: Nauka i życie codzienne nie mogą i nie powinny być rozdzielane. Nauka, dla mnie, daje częściowe wyjaśnienie życia… Nie akceptuję twojej definicji wiary, tj. wiary w życie po śmierci… Twoja wiara opiera się na przyszłości Twojej i innych jednostek, moja na przyszłości i losie naszych następców. Wydaje mi się, że Twoja jest bardziej samolubna… […] Nie widzę powodu, aby wierzyć, że twórca protoplazmy lub materii pierwotnej, jeśli taki istnieje, ma powody, by interesować się naszą nieistotną rasą w maleńkim zakątku wszechświata.

 

Zalecana literatura:

  1. B. Maddox, Rosalind Franklin: The Dark Lady of DNA, Harper Perennial, 2002.
  2. B. Maddox, The double helix and the ‘wronged heroine’, Nature, vol. 421, 2003, str. 407–408.
  3. J. Glynn, My Sister Rosalind Franklin, Oxford University Press, 2012.
  4. A. Sayre, Rosalind Franklin and DNA, W. W. Norton & Company 2000.
  5. S. Franklin, My aunt, the DNA pioneer, http://news.bbc.co.uk/2/hi/science/nature/2895681.stm
  6. J. Watson, Podwójna helisa. Historia odkrycia struktury DNA, Prószyński i S-ka, 1996.
  7. F. Crick, Szalona pogoń. W poszukiwaniu tajemnicy życia, Marabut, 1996.

Róża – 90. rocznica śmierci Marii Skłodowskiej-Curie

Rok 1934 był ostatnim w życiu Marii Skłodowskiej-Curie. Kilka lat wcześniej – być może kierowana dziwnym przeczuciem nadchodzącego kresu – uczona napisała:

Kiedy mi mówią o »moich wspaniałych pracach«, wydaje mi się, jakbym już umarła, jak gdybym siebie samą widziała na marach i wydaje mi się, iż usługi, które im mogę jeszcze oddać, nic ich nie obchodzą. Że byłoby im znaczne wygodniej mnie chwalić, gdybym nie żyła.

 

Maria Skłodowska-Curie. Był to ulubiony portret Maniusi Skłodowskiej, córki Józefa Skłodowskiego, brata Marii. Dzięki uprzejmości dr. inż. Piotra Chrząstowskiego.

Jednak jak zawsze starała się żyć intensywnie. Intensywnie na ile mogła. Wstawała przed ósmą rano, zjadała w śniadanie, zakładała kapelusz, płaszcz, brała swoją starą teczkę wychodziła przed kamienicę i czekała na samochód. Nadal pracowała eksperymentalnie, chociaż z coraz większą trudnością, prowadziła wykłady z fizyki i kierowała katedrą fizyki na Sorbonie. Przygotowywała materiały do książki i publikacji. Stan zdrowia zaczynał jednak się pogarszać. Doskwierało jej permanentne zmęczenie, reumatyzm nękający ramię, bezustanne szumy w uszach, kłopoty ze wzrokiem. Już w 1920 roku w liście do siostry Bronisławy Dłuskiej pisała:

Osobiste moje kłopoty przedstawiają się tak przede wszystkim, że źle jest z moimi oczami. Oczy są bardzo osłabione i radziłam się co do nich lekarza, prawdopodobnie nie wiele można im dopomóc. Co do uszu, to dokucza mi szum prawie nieustanny, a przynajmniej bardzo częsty – nieraz bardzo silny. Bardzo mnie niepokoją te objawy, bo mi to może prace utrudnić, a może i uniemożliwić. Może być, że jest jaki związek z radem, ale niepodobna mieć o tym opinię. Tylko proszę Cię, nie mów o tym nikomu.

Prawdopodobnie przez kłopoty ze wzrokiem poślizgnęła się i upadła w laboratorium w wyniku czego złamała nadgarstek. W grudniu 1933 roku zaczęła narzekać na bóle brzucha. Szczegółowe badania wykazały, że ma duży kamień w woreczku żółciowym. Maria nie zgodziła się jednak na operację lecz zastosowała drakońską dietę. Wkrótce jednak poczuła się na tyle dobrze, że pojechała do Ireny i Fryderyka Joliot-Curie przebywających w Sabaudii. Po latach Irena wspominała:

W 1934 r. kilka miesięcy przed śmiercią matka pojechała z nami na sporty zimowe do Notre Dame de Bellecombe. Mój mąż, nasza siedmioletnia wówczas córeczka i ja jeździliśmy na nartach. Matka ślizgała się ze mną i z moją córeczką i chodziła na rakietach śnieżnych. Pamiętam, że pewnego wieczoru z niepokojem oczekiwałam jej powrotu. Wróciła już po zmroku z dalekiego spaceru do miejsca, z którego widać było Mont Blanc w zachodzącym słońcu.

Maria Skłodowska-Curie w towarzystwie Ireny, Fryderyka, Piotra Augera Georges’a Gricouroff’a i jego siostry, Notre-Dame de Bellecombe, 1934, [za:] „Korespondencja Marii Skłodowskiej-Curie z córką Ireną. 1905–1934 wybór”, PIW, Warszawa 1978.
19 lutego 1934 roku w liście do Ewy Maria pisała, że miała piękną pogodę w Notre-Dame de Bellecombe, ale nie mogła jeździć na nartach z powodu nieustannie bolącego nadgarstka. Na Wielkanoc przyjechała do Paryża Bronisława. Siostry razem spędziły wspólne pięć tygodni. Pojechały do Montpellier, aby odwiedzić Jakuba Curie. Kiedy się żegnały na dworcu nie sądziły, że widzą się po raz ostatni. 26 marca 1934 roku w liście do Ireny, Maria pisała o swojej ostatniej woli:

Sporządziłam tymczasowe oświadczenie na piśmie, mające ważność testamentu, co do grama radu, zapakowałam to razem z dokumentami z Ameryki i czerwonym atramentem napisałam na wierzchu pakiecika, co zawiera. Wszystko razem znajduje się w szafce w pokoju bawialnym, pod szufladkami zamykanymi na klucz, tam gdzie jest teczka z ważnymi listami, którą wręczył mi Fred.

Cztery dni później, Irena odpisała matce w nieco żartobliwym tonie:

Mimo dokumentu sporządzonego w odniesieniu do radu mam nadzieję, że nie będziesz się czuła zwolniona z obowiązku zachowania ostrożności i jeździła samochodem po drogach wijących się zbyt dużymi zygzakami, pod pretekstem, że przejeżdżasz przez Masyw Centralny, Pireneje lub Alpy Nadmorskie.

Rękopis „Testamentu Radowego” Marii Skłodowskiej-Curie, [za:] „Marie Curie. Une femme dans son siecle”, Paris 2017, s. 228
Maria nie zwalniała tempa pracy. Miała plany zawodowe i osobiste. 8 maja napisała do Broni, że odczuwa potrzebę posiadania domu z ogrodem i gorąco pragnę, aby ten projekt doszedł do skutku. Kosztorys udało się obniżyć, odpowiednio do moich środków materialnych, wkrótce więc będzie można kłaść fundamenty. Nie doczekała jednak budowy nowego domu.

W maju 1934 roku Maria była ostatni raz w laboratorium. Mam gorączkę, wrócę do domu powiedziała. Przechodząc przez ogród, który sama zaprojektowała i o który od lat dbała zobaczyła chorą różę. Jerzy ten krzak jest wyraźnie chory, trzeba się nim teraz zająć! […] Jerzy, proszę zaopiekować się tą różą… – poprosiła ogrodnika.

Niestety sama Maria również była już poważnie chora. Temperatura ciała była podwyższona i wciąż się utrzymywała. Miała nieustanne dreszcze. Lekarze zdiagnozowali grypę, później bronchit. Zaproponowali, aby wyjechała do sanatorium. Wraz z Ewą Maria odbyła długą, ostatnią podróż do Sancellemoz. Podczas podróży snuła plany związane z Instytutem Radowym w Paryżu i w Warszawie. Mówiła, że ostatnie odkrycie Ireny i Freda zapewne przyniesie im Nagrodę Nobla. W Sancellemoz została jeszcze raz gruntownie przebadana. Zalecono nowe terapie, zaaplikowano leki. Z nikłym uśmiechem mówiła – Może być, że się trudzimy całkiem niepotrzebnie… W końcu lekarze znaleźli prawdziwą przyczynę osłabienia Madame Curie – anemia złośliwa o przebiegu piorunującym. Ewa nigdy nie okazała słabości przy matce i nie dała poznać po sobie, że wie iż to koniec. Płakała na korytarzu. W listach do rodziny w Polsce regularnie opisywała stan zdrowia matki. 6 czerwca informowała Józefa Skłodowskiego, że jest źle, że matka cierpi na jakąś chorobę z gorączką, dreszczami i bólem głowy. Brat chciał przyjechać do siostry w kolejnym tygodniu i rozpoczął starania o paszport i bilety. Jednakże w liście z 11 czerwca Ewa prosiła, aby jednak nie przyjeżdżał. Obawiała się, że obecność rodzeństwa uzmysłowi Marii, że odchodzi. Dziesięć dni później, 21 czerwca, prosiła Józefa i Bronkę, żeby przyjechali do Marii. Dłuska wyjechała 3 lipca, Skłodowski chciał wyjechać między 10 a 15 lipca. W ostatniej niemal chwili 2 lipca do sanatorium przyjechała Irena i Fred. Zawsze opanowana i spokojna starsza córka uczonej nie miała siły by patrzeć jak odchodzi jej ukochana matka.

Ewa wspominała, że Maria Skłodowska-Curie sama sprawdzała termometr i nie było możliwości, aby ją oszukać. 3 lipca 1934 roku temperatura nagle spadła. To nie lekarstwa mi pomogły, ale te góry – ta przestrzeń – powietrze – powiedziała do Ewy. Czasami szeptała: Paragrafy… tytuły rozdziałów… Wszystkie jednakowymi czcionkami… Myślałam nad tą książką. Kilka godzin przed śmiercią próbowała resztkami sił zamieszać herbatę i patrząc na łyżeczkę i pytała – Czy to jest z radu, czy z mezotoru? Później zdoła jeszcze zaprotestować przed zrobieniem zastrzyku – Nie chcę. Chcę, żeby zostawiono mnie w spokoju. Szeptem powiedziała kilka niezrozumiałych słów. W końcu o świcie, kiedy słońce wzeszło i rozświetliło pokój, znalazło cichutką postać na łóżku i rzuciło jasne błyski na jej głowę i twarz. Po raz ostatni słońce oświetliło twarz Wielkiej Uczonej. Maria Skłodowska-Curie odeszła o godzinie czwartej rano 4 lipca 1934 roku.

Ewa napisała:

Biało ubrana, z białymi włosami, z twarzą zastygłą w wyrazie powagi i męstwa, jak twarz bojownika z odkrytym wyniosłym czołem – jest w tej chwili najwyższym symbolem piękna i szlachetności.

Jej szorstkie, stwardniałe ręce, głęboko poparzone przez rad, straciły wreszcie zwykły tick nerwowy. Leżą, sztywno wyciągnięte na prześcieradle, w straszliwym bezruchu. Ręce, które tak pracowały.

Nazajutrz, 5 lipca świat dowiedział się o śmierci Madame Curie. Oficjalny komunikat głosił: Maria Curie zmarła w Sancellemoz dnia 4 lipca r. 1934, na skutek anemii złośliwej aplastycznej o przebiegu gwałtownym, gorączkowym. Szpik kostny nie zareagował prawdopodobnie dlatego, że zaszły w nim zmiany, spowodowane długoletnim wpływem promieni.

Hołd Jej pamięci składali naukowcy, pisarze, politycy, studenci.

Zjazd fizyków w Rzymie, od lewej: Robert Millikan, Maria Skłodowska-Curie, Arthur Compton, Guglielmo Marconi, Jean Perrin i Niels Bohr, 1931, [za:] https://www.insidescience.org/file/mariecurieotherscientistsjpg
Niels Bohr w liście do Ireny napisał:

Musi dla Pani być wielkim ukojeniem myśl o radości, jaką sprawiły Pani Curie wspaniałe odkrycia, których dokonaliście Państwo w ostatnich latach. Były one ukoronowaniem wielkiego dzieła jej życia.

Maria Skłodowska-Curie i Albert Einstein nad Jeziorem Genewskim, lipiec 1924, Domena publiczna

Albert Einstein powiedział:

Miałem to szczęście, że przez dwadzieścia lat łączyły mnie z panią Curie więzy wzniosłej i niczym niezmąconej przyjaźni. Podziwiałem coraz bardziej jej wielkość jako człowieka. Jej siła, czystość charakteru, surowość wymagań wobec siebie samej, obiektywizm, nieskazitelne poglądy, wszystkie te cechy były tak wysokiego gatunku, że rzadko spotyka się je razem, połączone u jednej osoby. Stale uważała, że jest w służbie społeczeństwa, a jej wyjątkowa skromność nie dopuszczała pochlebstw.

 

Prezydent RP Ignacy Mościcki sadzi pamiątkowe drzewo w ogrodzie Instytutu Radowego w Warszawie, 29 maja 1932, Narodowe Archiwum Cyfrowe sygn. 1–N–818–5

Prezydent RP Ignacy Mościcki w kondolencjach wysłanych Irenie Joliot-Curie napisał:

Polska traci w ś.p. Pani Curie-Skłodowskiej nie tylko uczoną, która imię swej ojczyzny wsławiła w całym świecie, ale i wielką obywatelkę, zawsze przez całe życie czujnie stojącą na straży interesów swojego narodu.

André Broca – jeden z studentów Marii – napisał: Myśl o tym, że wejdę do jej gabinetu i nie znajdę jej za stertą starannie poukładanych papierów, sprawiła, że płakałem jak dziecko. Inny student dodał: Jak wyobrazić sobie Instytut bez niej? I tę słynną klatkę schodową, gdzie tak rozmawiała z nami oparta o poręcz, z nieco pochylonym szerokim czołem i rękoma w ustawicznym ruchu. To w tym Instytucie […] pani Curie pierwszy raz odezwała się do mnie, z takim ciepłem i zrozumieniem […] Wydaje mi się, że nadal ją widzę w piwnicy, kiedy rozważa zalety kalorymetru; […] albo w czasie ostatniej Wigilii w laboratorium […], kiedy tak dużo rozmawialiśmy o przyszłości fizyki teoretycznej we Francji. Im więcej wspomnień ożywa w mej pamięci […], tym trudniej jest mi wyobrazić sobie bez niej ten budynek, w którym nadwerężała swe siły i zdrowie. I wydaje mi się, że kamienie i cegły się rozpadną.

Grób rodziny Curie na cmentarzu w Sceaux pod Paryżem, b.d., [za:] E. Curie, „Maria Curie”, Wydawnictwo J. Przeworskiego, Warszawa 1938.
W piątek, 6 lipca 1934 roku, w gronie najbliższej rodziny i przyjaciół trumnę z ciałem Marii Skłodowskiej-Curie złożono w grobie na cmentarzu w Sceaux. Spoczęła obok Piotra Curie. Podczas ceremonii pogrzebowej nie przemawiano. Pochowano Ją tak jak żyła – cicho i skromnie. Bronia i Józef nie uzgadniając tego z sobą przywieźli z Polski garść ziemi, którą rzucili na trumnę siostry.

Maria Skłodowska-Curie na tarasie Instytutu Radowego w Paryżu, 1923, [za:] S. Quinn, „Życie Marii Curie”, Prószyński i S-ka., Warszawa 1997.
Pomnik Marii Skłodowskiej-Curie na Skarpie Warszawskiej, 2019, fot. Ewelina Wajs-Baryła

 

Róża posadzona przez Marię Skłodowską-Curie po dziś dzień rośnie przy Instytucie Radowym w Paryżu pod balkonem Laboratorium Curie…

Tomasz Pospieszny

 

 

105. rocznica założenia Polskiego Towarzystwa Chemicznego

 

Dnia 29 czerwca 1919 roku z inicjatywy Leona Marchlewskiego (wybitnego biochemika), Stanisława Bądzyńskiego (chemika i fizjologa) oraz przyszłego Prezydenta RP Ignacego Mościckiego (chemika, ale i wynalazcy) zostało założenie Polskie Towarzystwo Chemiczne w Warszawie.

Maria Skłodowska-Curie została wpisana na listę współzałożycieli. W liście z 7 czerwca 1919 roku prof. Wojciech Świętosławski napisał do noblistki:

Wielce Szan. Pani,

            Z inicjatywy prof. Marchlewskiego odbyły się w Warszawie, Krakowie i Lwowie posiedzenia w sprawie organizacji Polskiego Towarzystwa Chemicznego, które by skupiło wszystkich chemików Polaków, pracujących zarówno na polu naukowym, jak też w technice i pedagogii. W dn. 29 VI ma się odbyć w gmachu chemicznym Politechniki Warszawskiej zjazd członków założycieli tego Towarzystwa.

            W imieniu Komisji Organizacyjnej mam zaszczyt prosić Wielce Szan. Panią o rozpatrzenie załączonego przy niniejszym projektu statutu Towarzystwa oraz o przybycie na zebranie członków założycieli Towarzystwa w dn. 29 VI. W razie niemożliwości i przybycia może W. Szan. Pani zechce zgłosić listownie swą zgodę na wpisanie W. Szan. Panią na listę członków założycieli Polskiego Towarzystwa Chemicznego.

            Za Sekretariat Komisji Organizacyjnej:

                                                                            Dr Wojciech Świętosławski

Pozostaję z głębokim szacunkiem i poważaniem.

 

[Za]: K. Kabzińska, M. H. Malewicz, J. Piskurewicz, J. Róziewicz, Korespondencja polska Marii Skłodowskiej-Curie. 1881–1934, Instytut Historii Nauki PAN, Polskie Towarzystwo Chemiczne, Warszawa 1994, s. 132.

Prapremiera autobiografii Marii Skłodowskiej-Curie!


Dołączcie Państwo do nas i zanurzcie się razem z nami w fascynującym świecie Marii Skłodowskiej-Curie, poznając jej życie i pracę z perspektywy, jakiej jeszcze nie było!

Serdecznie Państwa zapraszamy na wyjątkowe przedpremierowe spotkanie z książką „O swojem życiu i pracach” — „Wyjątki ze wspomnień o Piotrze Curie” Marii Skłodowskiej-Curie!
📆 | 19 czerwca 2024 roku
⏰ | 19.30
📍 | Dom Sztuki na warszawskim Ursynowie
🚇 | Stacja metra „Ursynów”
🎙️ | Spotkanie poprowadzi Wojtek Szot
🔴 To niezwykłe wydarzenie będzie okazją do poznania pierwszego polskiego wydania krytycznego autobiografii jednej z najwybitniejszych Uczonych w historii.
🔴 Autorami opracowania naukowego są Tomasz Pospieszny, Ewelina Wajs-Baryła i Piotr Chrząstowski – autorzy książek z serii „Maria Skłodowska-Curie”.
🔴 Spotkanie jest dedykowane wszystkim, którzy pragną zgłębić życie i pracę Marii Skłodowskiej-Curie, dwukrotnej laureatki Nagrody Nobla i pionierki w dziedzinie fizyki i chemii.
🟡 W programie:
🟠 Prezentacja książki.
🟠 Spotkanie z autorami komentarza naukowego i Piotrem Chrząstowskim (prawnukiem Józefa Skłodowskiego), którzy podzielą się osobistymi wspomnieniami oraz kulisami powstawania tego unikalnego wydania.
🟠 Czytanie wybranych fragmentów książki.
🟠 Dyskusja z uczestnikami spotkania i zaproszonymi ekspertami.
🟠 Sesja pytań i odpowiedzi – o życiu i pracy Marii Skłodowskiej-Curie.
🟡 Dlaczego warto wziąć udział?
🟢 Dowiecie się Państwo więcej o życiu i osiągnięciach Marii Skłodowskiej-Curie od badaczy jej spuścizny i członka rodziny Skłodowskich.
🟢 Poznacie Państwo kulisy powstawania tej wyjątkowej publikacji, która otrzymała patronaty m.in. Muzeum Marii Skłodowskiej-Curie w Warszawie i Musée Curie w Paryżu.
🟢 Dostępna będzie pełna oferta książek Wydawnictwa Sophia w atrakcyjnych cenach.
🟡 Współwydawcą książki jest Polskie Towarzystwo Chemiczne.

130. rocznica urodzin Marietty Blau

 

 

 

29 kwietnia 1894 roku w Wiedniu przyszła na świat jedna z najwybitniejszych fizyczek XX wieku – Marietta Blau. Uczona położyła podwaliny pod współczesną fizykę cząstek elementarnych. Do jej największych osiągnięć naukowych należy opracowanie niezwykle przydatnej metody wykorzystującej klisze fotograficzne do detekcji cząstek. Dzięki jej badaniom i pomysłowości po raz pierwszy zastosowano fotograficzne emulsje jądrowe, które były użyteczne do obrazowania i dokładnego pomiaru własności cząstek takich jak cząstki alfa czy protony, a także badania zdarzeń jądrowych o wysokiej energii. Jako pierwsza Blau użyła emulsji jądrowych do wykrywania neutronów. Dodatkowo stworzyło to metodę dokładnego badania reakcji wywołanych przez zjawiska promieniowania kosmicznego. Jej prace znacznie przyspieszyły rozwój fizyki cząstek. Warto zaznaczyć, że na przykład z kształtu toru pozostawionego przez cząstkę można wyznaczyć jej pęd – te cząstki, które mają duży pęd poruszają się po liniach prostych, natomiast cząstki o małym pędzie po zwartych spiralnych. Znajomość pędu i pewnego rodzaju promieniowania emitowanego przez naładowane cząstki można wyznaczyć ich masę. Właśnie pod takie badania podwaliny położyła swoim geniuszem Marietta Blau. Niestety nigdy nie otrzymała Nagrody Nobla, chociaż była nominowana cztery razy do nagrody z fizyki i raz z chemii. Za użycie światłoczułej emulsji oraz wytworzenie emulsji jądrowej, dzięki której można badać procesy jądrowe otrzymał w 1950 roku Nagrodę Nobla z fizyki Cecil Powell. Profesor Ruth Lewin Sime podkreśla, że gdyby Blau otrzymała Nagrodę Nobla z Powellem w 1950 roku (Wambacher zmarła w kwietniu tego roku), zapewniłoby jej to miejsce w historii nauki. Ponieważ jednak nie dzieliła z nim nagrody, ona i jej praca zostały całkowicie zapomniane.

Trudno się nie zgodzić z opinią, że uczona jest najbardziej tragiczną postacią w historii wokół promieni kosmicznych. Jej życie i twórczość charakteryzowały przeciwności losu, ale jej osiągnięcia i wyniki pracy przewyższają osiągnięcia wielu innych osób, którym przyznano Nagrodę Nobla w kontekście promieni kosmicznych.

Niestety życie nie szczędziło i innych upokorzeń uczonej – dyskryminowano ją jako kobietę, a także jako Żydówkę. Utrudniano rozwój kariery naukowej, często pracowała bez żadnego wynagrodzenia. Jej najbliższa uczennica i współpracownica Hertha Wambacher jako zatwardziała nazistka zdradziła ją i ukradła jej wyniki badań. Marietta Blau spędziła wiele lat na emigracji w Meksyku i Stanach Zjednoczonych, żyjąc samotnie i oddając się nauce. Pod koniec życia miała znaczne kłopoty ze wzrokiem.

Marietta Blau zmarła w południe, 27 stycznia 1970 roku na chorobę nowotworową. Zgodnie z ze swoim życzeniem została skremowana, a urnę złożono w grobie ojca na centralnym cmentarzu Wiednia. Jej życie było poświęcone nauce, a [ona] była pełna dobroci i miłosierdzia – powiedział brat uczonej.

 

Jedna z plansz naszej wystawy poświęcona jest Marietcie Blau. Kliknięcie w poniższy obrazek pozwala na pobranie planszy w formacie pdf.

170. rocznica urodzin Herthy Ayrton

/   Tomasz Pospieszny   /

Osobiście nie zgadzam się z tym, żeby w ogóle wprowadzać problem płci w nauce. Perspektywa, zgodnie z którą rozpatruje się tę kwestię, jest zupełnie błędna i pozbawiona sensu merytorycznego. Kobieta po prostu albo jest dobrym naukowcem, albo nie; w każdym przypadku powinna jednak mieć równe szanse, a jej prace należy studiować z punktu widzenia naukowego, a nie perspektywy płci.

Hertha Ayrton

14 marca 1909 roku w liście do „Westminster Gazette” Hertha Ayrton napisała, że „błędy są niezwykle trudne do naprawienia, ale błąd, związany z przypisaniem sukcesu mężczyźnie, za – tak naprawdę – pracę wykonaną przez kobietę, ma więcej żyć niż kot”. Wiedziała co pisze, bowiem przez wiele lat jej praca i osoba była nieuznawana w zdominowanym przez mężczyzn świecie inżynierii i nauk ścisłych.

Portsea na przełomie XIX i XX wieku, domena publiczna

Phoebe Sarah Hertha nazywana przez rodzinę Sarah urodziła się 28 kwietnia 1854 roku na wyspie Portsea u południowego wybrzeża Anglii, w hrabstwie Hampshire. Była trzecią córką z ośmiorga dzieci Żyda polskiego pochodzenia, imigranta z Polski pod carskim zaborem rosyjskim i zegarmistrza Leviego Marksa oraz krawcowej Alice Theresy Moss, której rodzice byli polskimi uchodźcami. Ojciec Herthy był również synem polskiego karczmarza i uciekł do Anglii przed żydowskimi prześladowaniami pod carskimi rządami. Niestety zdrowie Leviego, prawdopodobnie podkopane przez młodzieńcze doświadczenia, nigdy nie było dobre. Wykupił licencję na sprzedawanie swoich towarów jako domokrążca, jednak nie odnosił żadnych sukcesów w interesach. Ojciec Herthy zmarł w 1861 roku, pozostawiając ciężarną żonę i siedmioro dzieci w poważnej sytuacji finansowej. Hertha musiała szybko dojrzeć. Przejęła częściowo obowiązki matki, opiekując się młodszym rodzeństwem. Kiedy skończyła dziewięć lat, przeniosła się do ciotek, które prowadziły szkołę. Tutaj bardzo szybko uwidocznił się jej talent do nauk ścisłych. Naukę kontynuowała w prywatnej szkole w północno-zachodnim Londynie, prowadzonej przez ciotkę ze strony matki Miriam i jej męża Alphonseʼa Hartoga, dzięki którym poznała niezwykle uzdolnionych kuzynów. Od nich uczyła się między innymi muzyki, łaciny i matematyki. W szkole przyszła uczona nauczyła się, między innymi od swojego wuja Alphonseʼa, płynnie języka francuskiego. Po zajęciach szkolnych udzielała korepetycji. W ten sposób zarobione pieniądze wysyłała matce, aby pomóc matce i rodzeństwu. Uchodziła za ładną dziewczynę była niska, miała przenikliwe szarozielone oczy i kruczoczarne włosy. Jednak Hertha absolutnie nie zwracała uwagi na swój wygląd i zalotników. Od młodzieńczych lat była niezależna, bardzo uparta i wyzwolona. Kiedy została niesprawiedliwie oskarżona o jakieś wykroczenie, przez kilka dni prowadziła strajk głodowy. Mając szesnaście lat zdecydowała, żeby nie nazywać jej Sarah lecz Hertha na cześć bogini ziemi z wiersza Algernona Charlesa Swinburneʼa. Oczywiście na kształtowanie się osobowości Herthy mieli wpływ jej przyjaciele. Jedną z jej najlepszych przyjaciółek była kuzynka Florence Nightingale – Barbara Leigh Smith (po mężu Bodichon) – walcząca feministka i wybitna postaci ruchu na rzecz emancypacji kobiet oraz jedna z założycieli Girton College w Cambridge.

 

Barbara Leigh Smith Bodichon (1827–1891), National Portrait Gallery St. Martin’s Place London WC2H OHE, CC–BY 3.0

 

Smith zachęcała Herthę, aby starała się o stypendium na studia. Przyszła uczona nie otrzymała stypendium jednak w 1876 roku została przyjęta do collegeʼu i rozpoczęła studiowanie matematyki i fizyki. Jednym z jej mistrzów był fizyk zajmujący się elektrycznością Richard Glazebrook, uczeń Jamesa Clerka Maxwella. Najprawdopodobniej to on zachęcił i zainteresował Herthę właśnie tym tematem.

 

Richard Tetley Glazebrook (1854–1935), National Portrait Gallery St. Martin’s Place London WC2H OHE, CC–BY 3.0

 

Niestety po pierwszym semestrze podupadła na zdrowiu i musiała na rok opuścić Cambridge. Roczna przerwa w nauce spowodowała znaczne zaległości, przez co Hertha miała znaczne kłopoty z nadrobieniem materiału. Należy jednak dodać, że mimo zaległości Hertha rozwijała się naukowo oraz wykazywała znaczne zdolności w kierunku technicznym. Jako pierwsza zaprojektowała i zbudowała sfigmomanometr czyli aparat do pomiaru ciśnienia tętniczego krwi. Był to pierwszy z jej wielu sukcesów, które miały nadejść. Podczas studiów prowadziła także chór, założyła straż pożarną i klub matematyczny. Co warte podkreślenia w 1880 roku ukończyła studia, lecz uczelnia nigdy nie dała jej dyplomu lecz certyfikat. Jako ostatni brytyjski uniwersytet Cambridge „uległˮ dopiero w 1948 roku, kiedy to przyznał stopnie naukowe kobietom! W 1881 roku zdała egzamin zewnętrzny na Uniwersytecie Londyńskim, który przyznał jej licencjat z nauk ścisłych.

Po opuszczeniu Cambridge Hertha i jedna z jej koleżanek z roku wynajęły mieszkanie w Londynie, gdzie prowadziły prywatne lekcje. Była bardzo zaangażowana w prace matematyczne i fizyczne. Miała niezwykły zmysł konstruktorski – w tym czasie wynalazła na przykład przyrząd kreślarski służący do pomniejszania i powiększania figur, który znalazł zastosowanie w pracowniach architektonicznych i inżynieryjnych. Była też autorką licznych rozwiązań problemów matematycznych. Wiele z jej pomysłów zostało opatentowanych: w sumie była autorką 26 patentów – pięciu z matematyki, trzynastu związanych z lampami łukowymi i elektrodami, reszta dotyczyła rozwiązań związanych na napędami powietrza.

 

William Edward Ayrton (1847–1908), National Portrait Gallery St. Martin’s Place London WC2H OHE, CC–BY 3.0

 

Przez kolejne dwa lata przygotowywał się także do egzaminów na uniwersytet, aby studiować fizykę stosowaną. Zapisała się na kurs uzupełniający w Finsbury Technical College, który prowadził William Edward Ayrton. Uczony przyszedł na świat 14 września 1847 roku w Londynie. Był syn adwokata, studiował matematykę na University College w Londynie i elektryczność w Glasgow u Williama Thomsona (Lorda Kelwina). Uchodził za pioniera nauczania fizyki i elektrotechniki. Przez kilka lat pracował za granicą między innymi w Indiach (1868–1872) i Japonii (1873–1897). Po powrocie do Londynu został mianowany wykładowcą w kilku uczelniach technicznych, w tym Finsbury. To spotkanie miało zmienić życie Herthy.

Ayrton, który dwa lata wcześniej owdowiał oświadczył sie Herthcie i w 1885 roku para zawarła związek małżeński. Miss Herthon zaadoptowała córkę Edwarda z pierwszego małżeństwa Edith (1879–1945), późniejszą pisarkę i aktywistkę. Rok później para doczekała się kolejnej córki Barbary (1886–1950) znanej sufrażystki, która imię otrzymała na cześć Barbary Leigh Smith.

 

Hertha Ayrton, ©The Institute of Engineering and Technology, IET Archives UK 108 IMAGE 1/1/0020

 

Hertha zatrudniła gosposię, co umożliwiło jej rozpoczęcie pracy naukowej u boku męża. Początkowo pomagała Edwardowi w eksperymentach nad wynalezieniem stabilnego i cichego źródła światła. Kiedy Edward wyjechał służbowo za granicę, a Hertha przebywała poza domem doszła do tragedii. Ich wspólna praca została zniszczona, gdy gosposia sądząc, że papiery z notatkami uczonych są przeznaczone do zniszczenia spaliła je w kominku. Wkrótce Hertha zaczęła przeprowadzać własne eksperymenty w domu, podczas gdy jej mąż opiekował się ich córkami. Praca ta doprowadziła uczoną do kilku ważnych odkryć. W pierwszej kolejności skupiła się nad problemem migotania i syczenia powstającym podczas oświetlenia łukowego. Stwierdziła, że problemem są pręty węglowe, które po podłączeniu do nich źródła prądu ulegają dziurawieniu poprzez ulatnianie się węgla. Przez powstające otwory w prętach przechodziło powietrze powodując charakterystyczny świst. Hertha zmieniła kształt prętów oraz zauważyła relacje pomiędzy spadkiem napięcia i długością łuku oraz przepływem prądu elektrycznego. W latach 1895–1896 wyniki prac opublikowała w dwunastu artykułach naukowych w czasopiśmie „The Electricanˮ. W 1899 roku jako pierwsza kobieta otrzymała członkostwo w prestiżowej instytucji zrzeszającej inżynierów elektryków. Była również pierwszą kobietą, która odczytała własną pracę naukową w Royal Society w Londynie. Jedna z gazet pisała:

Damy uczestniczące w tym wydarzeniu z wielkim zdumieniem przyjęły to, że przedstawicielka ich własnej płci kierowała pokazami sprawiającymi wrażenie najbardziej niebezpiecznych ze wszystkich Pani Ayrton natomiast w ogóle nie wyglądała na przestraszoną.

 

Hertha Ayrton, [za:] E. Sharp, „Hertha Ayrton, 1854-1923, a memoir”, London 1926.

Hertha zaczęła prowadzić wykłady związane z jej badaniami i cieszyła się znaczną popularnością zarówno w kraju jak i za granicą.  W1900 roku została zaproszona na Międzynarodowy Kongres Elektryczny odbywający sie w Paryżu, gdzie po francusku wygłosiła odczyt na temat swoich badań nad łukiem elektrycznym. W 1902 roku otrzymała nominację członkowską do londyńskiego Towarzystwa Królewskiego, jednak prawnik towarzystwa orzekł, że Hertha jako kobieta jest niewybieralna, bowiem jako kobieta zamężna nie stanowiła samodzielnego podmiotu prawnego!! Pierwszą kobietę wybrano dopiero w 1946 roku. Uczona podczas udzielonego wywiadu powiedziała:

Osobiście nie zgadzam się z tym, żeby w ogóle wprowadzać problem płci w nauce. Perspektywa, zgodnie z którą rozpatruje się tę kwestię, jest zupełnie błędna i pozbawiona sensu merytorycznego. Kobieta po prostu albo jest dobrym naukowcem, albo nie; w każdym przypadku powinna jednak mieć równe szanse, a jej prace należy studiować z punktu widzenia naukowego, a nie perspektywy płci.

 

Okładka książki: H. Ayrton, „The Electric Arc”, The Electrician Printing and Publishing Company, London, 1902

W 1902 roku ukazała się jej książka pt. The Electric Arc, która podsumowywała wyniki jej pracy. W latach 1904–1908 uczona pracowała nad projektowaniem elektrycznych reflektorów dla Royal Navy. Niestety jej prace w większości przypisano Edwardowi, chociaż ten protestował i zawsze podkreślał udział Herthy w pracach naukowych. Jej prace zostały docenione w 1906 roku, gdy przyznano jej Medal Hughesa Towarzystwa Królewskiego „za oryginalne odkrycie w dziedzinie nauk fizycznych, a w szczególności dotyczące generowania, magazynowania i wykorzystywania energii elektrycznej”. Została też przyjęta na pełnoprawną członkinię Institution of Electrical Engineers.

Do jej przyjaciółek należała między innymi Maria Skłodowska-Curie. Uczone poznały się w 1903 roku w Londynie, gdzie państwo Curie prezentowali swoje wyniki badania nad radem w londyńskim Królewskim Towarzystwie. Przyjaźń obu kobiet była na tyle trwała, że Maria znalazła w 1912 roku schronienie w domu Ayrton po wybuchu skandalu związanego z tzw. aferą Langevina.

 

Mill House w Highcliffe, wynajęty przez Herthę Ayrton na wspólny pobyt z Marią Skłodowską i jej córkami latem 1912 roku, [za:] http://www.dorsetlife.co.uk

Podczas pierwszej wojny światowej Hertha przekonała Biuro Wojenne do wykorzystania jej wynalazku, który mógł rozproszyć chmury gazów bojowych. Wkrótce ponad sto tysięcy wentylatorów, które miały również inne zastosowania, było używanych na froncie zachodnim.

 

Wentylatory pomysłu Herthy Ayrtonm [za:] https://www.allaboutcircuits.com

Hertha Ayrton miała zdecydowane lewicowe poglądy, dlatego bez wahania dołączyła do do powstałej Partii Pracy. Zawsze była zagorzałą zwolenniczką praw kobiet, podobnie zresztą jak jej mąż. Już w 1899 roku przewodniczyła sekcji naukowej drugiego spotkania Międzynarodowego Kongresu Kobiet. Odgrywała wiodącą rolę w ruchu sufrażystek, zwłaszcza po wojnie. Ayrton była mocno zaangażowana w ruch sufrażystek. W 1911 roku odmówiła udziału w powszechnym spisie ludności, pisząc na formularzu:

Jak miałabym odpowiedzieć na wszystkie te pytania, skoro rzekomo brak mi inteligencji, by móc samodzielnie wybierać kandydatów do parlamentu? Nie dostarczę żadnych tego rodzaju informacji do czasu, aż uzyskam prawa obywatelskie. Domagam się prawa wyborczego dla kobiet.

 

Barbara Ayrton w stroju „córki rybaka” promuje londyńską Wystawę Kobiecą w maju 1909 roku, fot. Christina Broom, [za:] http://historyinphotos.blogspot.com

Edward Ayrton zmarł 8 listopada 1908 roku. Hertha pozbawiona silnego wsparcia męża walczyła o prawa kobiet. Była niezwykle dumna, że jej córka Barbara należała do jednych z najbardziej wojujących sufrażystek.

Hertha Ayrton zmarła w Londynie 26 sierpnia 1923 roku w wieku 69 lat na posocznicę.

 

Literatura zalecana:

  1. Evelyn Sharp, Hertha Ayrton: A Memoir, Edward Arnold & Co., London 1926.
  2. Hertha Ayrton, The Electric Arc, Cambridge University Press, Cambridge 1912 (pierwsze wydanie 1902).
  3. Ioan James, Remarkable Engineers. From Riquet to Shannon, Cambridge University Press, Cambridge 2010.
  4. Rachel Swaby, Upór i przekora. 52 kobiety, które zmieniły naukę i świat, Wydawnictwo Agora, Warszawa 2017.

137. rocznica urodzin Stefanii Horovitz

 

 

Portret Stefanii Horovitz, prawdopodobnie namalowany przez ojca, b.d., [za:] https://www.geni.com/people/Stefania-Horowitz/6000000009579527822, dostęp z 17 lutego 2018
Odkrycie polonu i radu w 1898 roku przez Marię Skłodowską-Curie spowodowało prawdziwą lawinę odkryć kolejnych nowych pierwiastków. Profesor Józef Hurwic przedstawił to chyba najtrafniej:

Na początku drugiego dziesięciolecia naszego wieku znano około trzydziestu różnych substancji promieniotwórczych, które uważano za odrębne pierwiastki chemiczne, w układzie okresowym zaś między ołowiem i uranem było tylko kilka miejsc nie obsadzonych. Wydawało się więc, że prawo okresowości nie stosuje się do substancji promieniotwórczych. Ich zespół stanowił istną dżunglę.

Tajemnica Natury została wyjaśniona przez Fredericka Soddy’ego w 1913 roku. Uczony zauważył, że jeden pierwiastek chemiczny może mieć kilka odmian różniących się masą atomową. W prestiżowym czasopiśmie „Nature” napisał – Są one [pierwiastki] identyczne pod względem chemicznym, a także fizycznym, z wyjątkiem kilku właściwości zależących wprost od masy atomowej. Ponieważ właściwości chemiczne izotopów są takie same, można je jedynie rozdzielić metodami fizycznymi. Dzięki koncepcji Soddy’ego liczba odkrytych pierwiastków promieniotwórczych nagle zmalała i w układzie okresowym pozostały tylko polon (84Po), radon (86Rn), rad (88Ra), aktyn (89Ac), tor (90Th) i uran (92U). Osiem innych „różnych pierwiastków” (izotopów) tak naprawdę było odmianami umiejscowionych już w układzie okresowym czterech pierwiastków. W tej niezwykłej łamigłówce istotną rolę odegrała uczona urodzona w Warszawie – Stefania Horovitz. Była ona trzecią kobietą z Polski, która po Marii Skłodowskiej-Curie i Alicji Dorabialskiej odegrała istotną rolę w nauce o promieniotwórczości.

Leopold Horovitz, Autoportret, 1915, Domena Publiczna

Stefania Renata Horovitz urodziła się 17 kwietnia 1887 roku w Warszawie. Jej ojciec, Leopold Horovitz (1838–1917), był znanym i cenionym artystą skupionym wokół dworu cesarza Józefa I. Leopold słynął ze zdolności do malowania portretów. W 1873 roku w Wiedniu na międzynarodowej wystawie zdobył złoty metal za jeden ze swoich obrazów. Apogeum jego sławy przypadło na 1896 rok, kiedy został poproszony o namalowanie portretu cesarza Franciszka Józefa I. Dzięki tak szybko rozwijającej się karierze jego rodzina nie narzekała na niedostatki. Mniej więcej w tym samym czasie Leopold wraz z żoną Rozą z Londonów (1853–1920) oraz dziećmi Jerzym (1875–1948), Zofią (1877–1941), Arminem (1880–1965), Janiną (1882–1941) i najmłodszą Stefanią przenieśli się do Wiednia. Stefania pobierała nauki w domu. Nauka była jednak na najwyższym możliwym poziomie. W 1907 roku zainteresowała się chemią i zapisała na Wydział Filozoficzny Uniwersytetu Wiedeńskiego. Sukcesy przychodziły stosunkowo łatwo i już w 1914 roku ukończyła studia doktoranckie specjalizując się w chemii organicznej. Promotorem dysertacji był znany chemik organik profesor Guido Goldschmiedt (1850–1915). Do jego największych osiągnięć naukowych należało między innymi określenie struktury kilku związków pochodzenia naturalnego, w tym papaweryny i kwasu elagowego. Praca Horowitz dotyczyła przegrupowania chininy pod wpływem kwasu siarkowego. Dysertacja została oceniona bardzo dobrze, a jej wynik opublikowano w dwóch pracach naukowych. Po obronie pracy doktorskiej Stefania zwróciła uwagę na chemię jądrową.

Otto Hönigschmid, przed 1921, [za:] https://badw.de/en/community-of-scholars/deceased.html?tx_badwdb_badwperson%5Bper_id%5D=1374&_badwdb_badwperson%5BpartialType%5D=BADWPersonDetailsPartial&tx_badwdb_badwperson%5BmemberType%5D=&tx_badwdb_badwperson%5Baction%5D=show&tx_badwdb_badwperson%5Bcontroller%5D=BADWPerson, dostęp z 17 lutego 2018
Pod koniec 1913 lub na początku 1914 roku rozpoczęła pracę w Instytucie Radowym w Wiedniu pod kierunkiem Ottona Hönigschmida (1878–1945). W latach 1904–1906 uczony pracował w laboratorium odkrywcy fluoru Henriego Moissana w Paryżu, a później u Theodore’a Richardsa na Uniwersytecie Harvarda. Uczony specjalizował się w badaniach węglików, krzemianów i pomiarach masy atomowej. Według opinii Kazimierza Fajansa był on mistrzem w oznaczaniu mas atomowych. Horovitz została jego protegowaną prawdopodobnie na prośbę Goldschmiedta, który był nauczycielem Hönigschmida. Co niezwykle istotne Hönigschmid miał pozytywne nastawienie do kobiet studiujących i zajmujących się nauką.

Historia rozpoczęcia ich współpracy jest niezwykła. Hönigschmid poszukując współpracownika zwrócił się z prośbą do przebywającej w Berlinie Lise Meitner, czy nie zna kogoś w Wiedniu kto kwalifikowałby się do pomocy w jego projekcie związanym z określaniem masy atomowej pierwiastków. Dzięki jej rekomendacji poznał Stefanię. Meitner i Horovitz najprawdopodobniej spotkały się w 1907 roku. Kilka miesięcy później napisał do Meitner: Przesyłam Ci pozdrowienia od panny Horovitz, która nie wierzy, że ją pamiętasz. Właśnie się z nią o to spieram. Od czerwca 1914 roku Horovitz i Hönigschmid rozpoczęli ścisłą współpracę. Otto Hönigschmid napisał do Lise Meitner – Z panną Horovitz pracujemy jak dobrzy koledzy. W tę piękną niedzielę nadal siedzimy w laboratorium od godziny szóstej. Uczeni zajęli się izolowaniem i oczyszczaniem ołowiu ze 100 kilogramów z siarczanu ołowiu pozyskanego z materiałów z Jachimowa. Praca ta była niezwykle czasochłonna i skrupulatna. Wszystkie ważone substancje musiały być izolowane w stanie czystym, a eksperymentator powinien być w stanie określić nawet najmniejszą ilość substancji, która może zostać utracona podczas eksperymentu ilościowego. Wkrótce stwierdzili, że masa atomowa ołowiu powstającego w szeregu uranowo-radowym wynosiła 206,73. Wykazali tym samym, że ołów z rozpadu jest lżejszy niż „zwykły” ołów (207,21). 23 maja 1914 roku Hönigschmid zaprezentował wyniki na kongresie Bunsena w Lipsku. Pracę wysłali także do „Monatshefte für Chemie”, a później także do „Comptes Rendus”. Uczeni wspólnie wykazali także, że odkryty przez Boltwooda i Hahna w 1906 roku pierwiastek jon to de facto izotop toru-230. Było to niezwykle ważne spostrzeżenie, bowiem wykazało, że jon i tor-230 mają takie same właściwości spektroskopowe i chemiczne, a jedyną różnicą jest ich masa atomowa. W jednym eksperymencie Horovitz podważyła istnienie pierwiastka i znalazła drugi dowód na istnienie izotopów.

Stefania Horowitz w Instytucie Radowym w Wiedniu, listopad 1915, Austrian Cenral Library of Physics

Ze współpracy Stefanii i Ottona wynika, że Horovitz była dojrzałym naukowcem i bliskim współpracownikiem swojego mentora. Potrafiła wyciągać słuszne wnioski z przeprowadzonych eksperymentów, często sama inicjowała prace nad nurtującym ją problemem. W 1914 roku Hönigschmid w liście do Meitner pisał: Teraz izolujemy ołów z czystej smółki z Jachimowa… Mamy nadzieję, że w ciągu najbliższych dwóch tygodni przed świętami przeanalizujemy te przygotowane [próbki] ołowiu… W 1922 roku w wykładzie noblowskim Frederick Soddy również podkreślił udział Stefanii Horovitz w pracach nad izotopami. Powiedział między innymi – Jednocześnie prace nad ołowiem z minerałów uranowych były prowadzone przez T. W. Richardsa i jego studentów na Harvardzie, a także przez Hönigschmida i Mlle. Horovitz, którzy podali prawidłowe wartości [masy atomowej ołowiu]. Historyk nauki Lawrence Badash podkreślił, że Hönigschmid i Horovitz przedstawili najbardziej przekonujące dowody potwierdzające istnienia izotopów, a ich prace eksperymentalne potwierdziły jednocześnie pracę wykonaną w trzech innych laboratoriach.

Niestety pod koniec pierwszej wojny światowej współpraca uczonych została przerwana. Hönigschmid przyjął etat na Uniwersytecie w Monachium i opuścił Wiedeń. Z niejasnych dziś powodów Horovitz opuściła Wiedeń i na krótki czas porzuciła karierę naukową. Według opinii członków rodziny chciała pocieszyć matkę po śmierci ojca i w 1917 roku wróciła do Warszawy. Siedem lat później, w 1924 roku wróciła do Wiednia i zafascynowała się psychologią adlerowską. Wspólnie z Alice Friedman zaczęła organizować dom zastępczy dla dzieci z trudnościami w nauce. W 1937 roku, prawdopodobnie z powodów politycznych, Horovitz opuściła Wiedeń i po raz kolejny przeprowadziła się do Warszawy. Wybitny polski radiochemik Kazimierz Fajans w liście do Elisabeth Rona (jedna z uczonych pracujących w Instytucie Radowym w Wiedniu) pisał:

Prawdopodobnie nie otrzymałaś z Wiednia żadnych informacji o losie dr Stefanii Horovitz. Dowiedziałem się o tym od wspólnego krewnego z Warszawy. Stefania przeprowadziła się tam [do Warszawy] po I wojnie światowej i po tym jak jej rodzice zmarli w Wiedniu, aby dołączyć do swojej zamężnej siostry [Zofii Natanson]. Nie była aktywna w chemii, a obie [siostry] zostały zlikwidowane przez nazistów w 1940 roku.

Kiedy Warszawa została okupowana przez nazistów, Horovitz i jej siostra miały szansę ucieczki z getta. Jednak w obawie przed prześladowaniem ukrywających się Żydów obie zdecydowała się udać na Umschlagplatz. Były wśród tysięcy Żydów, którzy zostali przetransportowani do obozu zagłady w Treblince. Obie zginęły. Ich losy są nieznane.

Pod koniec drugiej wojny światowej 14 października 1945 roku Otto Hönigschmid wraz z żoną popełnili samobójstwo.

Reszta jest milczeniem…

 

Zalecana literatura:

  1. F. Rayner-Cnaham, G. W. Rayner-Canham, Stefanie Horovitz: A Crucial Role in the Discovery of Isotopes, [w]: A Devotion to Their Science: Pioneer Women of Radioactivity, red.: M. F. Rayner-Cnaham, G. W. Rayner-Canham, McGill-Queen’s University Press, Québec, 1997.
  2. M. Rentetzi, Stephanie Horovitz (1887–1942), [w]: European Women in Chemistry, red.: J. Apotheker, L. S. Sarkadi, Wiley, Verlag, 2011, str. 75–79.
  3. M. Rayner-Canham, G. Rayner-Canham, Stefanie Horovitz, Ellen Gleditsch, Ada Hitchins, and the Discovery of Isotopes, Bulletin for the History of Chemistry, 25(2), 2000, str. 103–108.
  4. B. Van Tiggelen, A. Lykknes, Celebrate the Women Behind the Periodic Table, Nature, 565, 2019, str. 559–561.

 

 

179. rocznica urodzin doktor Bronisławy Dłuskiej

Bronisława Dłuska znana jest zazwyczaj jako starsza siostra Marii Skłodowskiej-Curie. Bardziej wnikliwi kojarzą ją z Instytutem Radowym w Warszawie. Niewiele osób doda jeszcze, że zbudowała sanatorium i nowy budynek Muzeum Tatrzańskiego w Zakopanem. To wszystko prawda, ale nie cała. Albowiem doktor Bronisława Dłuska była przede wszystkim lekarką – ginekologiem i położnikiem.

 

Sala dla matek w szpitalu położniczym w Paryżu, pocz. XIX wieku. Fot. Agence de presse Meurisse, National Library of France

 

Bronisława Skłodowska, 1885, Warszawa, domena publiczna

Bronia – bo tak ją nazywali najbliżsi – od dziecka marzyła o medycynie. Śmierć chorującej na gruźlicę matki utwierdziła ją w przekonaniu, że chce być lekarzem i leczyć ludzi. Praktyka lekarska na wsi była celem jej życia, mimo że początkowo zarabiała jako nauczycielka. Wychowana w rodzinie nauczycielskiej, wierna ideałom pozytywizmu, chciała walczyć o dostęp do edukacji dla wszystkich i pracować na rzecz innych zarówno na polu medycyny jak i społecznym. Chciała być użyteczna dla społeczeństwa, bo tak widziała rolę wykształconej kobiety. Dziewczęta pod zaborem rosyjskim niestety nie mogły studiować (natomiast medycynę studiował w Warszawie od 1881 roku starszy brat – Józef). Przez cztery lata po ukończeniu gimnazjum walczyła o swoje marzenie – o studia we Francji – uzupełniając swoją wiedzę na Uniwersytecie Latającym, a także zarabiając korepetycjami (po pół rubla za godzinę) i prowadząc dom dla ojca, brata i sióstr Heleny i Marii.

Największe pragnienie Bronisławy Skłodowskiej spełniło się jesienią 1885 roku, kiedy udało jej się uzbierać sumę wystarczającą na wyjazd do Paryża i pierwszy rok studiów na wydziale medycznym Sorbony. Przez kolejne lata finansowo mieli jej pomagać ojciec i siostra Maria – późniejsza noblistka. Wydawałoby się, że największa przeszkoda została pokonana, ale przede wszystkim Bronka musiała zdać na miejscu w Paryżu egzaminy z chemii oraz języków: łaciny i greki (przedmiotów tych nie nauczano w gimnazjach państwowych żeńskich w pod zaborem rosyjskim). Także nastawienie kolegów i wykładowców z wydziału, który jeszcze do niedawna zastrzeżony był tylko dla mężczyzn, nie zawsze było przyjazne.

 

Madeleine Brès (1842–1921), pierwsza kobieta-lekarz we Francji; w 1875 roku obroniła pracę doktorską o sutkach i karmieniu piersią, domena publiczna

Pierwsze kobiety dopuszczono do studiowania medycyny na Sorbonie w 1866 roku i były to cztery cudzoziemki (ten trend będzie się utrzymywał przez kolejne kilka dekad, najwięcej będzie studentek z Rosji, w tym Polek, które z racji obywatelstwa zapisywane są w wykazach jako Rosjanki). Wcześniej kobiety mogły zajmować się akuszerką po ukończeniu specjalnych kursów, ale nie dawało im to statusu lekarzy. Prezes Francuskiego Towarzystwa Medycznego jeszcze w 1875 roku nazywał kobiety na studiach medycznych godnym ubolewania trendem i chorobą. Jednak na przestrzeni lat 1884–1894 odsetek kobiet na wydziale medycznym zwiększy się z 3,5 do 10 %. Początek studiów Bronisławy zbiegł się w czasie z objęciem funkcji dziekana przez Paula Brouardela, który sprzyjał studentkom na swoim wydziale i postulował, aby wzorem angielskim wprowadzić pojęcie „doctoresses” – kobieta-lekarz.

 

Studia medyczne nie były łatwe, bariera językowa stwarzała problemy, zwłaszcza słownictwo medyczne, ale Bronisława była zdeterminowana, żeby skończyć studia i nie zmarnować swojej szansy, a także ciężko zarobionych przez Marię pieniędzy. W 1890 roku – piątym roku pobytu w Paryżu – napisała do ojca chrzestnego w Krakowie: Medycyna moja idzie daleko lepiej niż się spodziewałam, ze względu na obcy język i uprzedzenia do kobiet. […] Zdrowie mi świetnie dopisuje, pomimo prosektorium i powietrza szpitalnego. Nawet oczy moje, dosyć słabe z natury, zupełnie dobrze się trzymają, pomimo nauki przy lampie. W tym samym roku, we wrześniu, poślubiła Kazimierza Dłuskiego – kolegę ze studiów. Połączyło ich oprócz uczucia, zgodne spojrzenie na pracę społeczną i świat.

 

Caroline Schultze w dniu obrony doktoratu, domena publiczna

Na specjalizację Bronisława wybrała ginekologię i położnictwo. Wybór nie był trudny. W drugiej połowie XIX wieku kobieta jako lekarz mogła wybrać zaledwie pomiędzy ginekologią, a pediatrią. Żaden szanujący się nawet ciężko chory mężczyzna nie przyszedłby się leczyć do kobiety i wybór innej specjalizacji z góry skazywał kandydatkę na lekarkę na niepowodzenie. Żadnej kobiecie nie pozwolono, żeby została chirurgiem – uważano powszechnie, że to zbyt ciężka fizycznie praca. Głośnym echem odbiła się praca doktorska Caroline Schultze (urodzonej w Warszawie jako Karolina Szulc) Kobieta lekarz w XIX wieku z 1888 roku. Wywołała debatę publiczną, gdzie głównym oponentem był lekarz Jean-Martin Charcot. Argumentował, że kobieta z natury zaliczana do „płci pięknej” nie jest na tyle silna psychicznie by podołać obcowaniu z „brzydotą” choroby. Z kolei dumna postawa i niechęć do zajmowania w medycynie pozycji drugorzędnej jest przejawem nadmiernej ambicji u kobiet, które chcą zajmować się medycyną. Bo gdyby było inaczej, zadowoliłyby się pracą jako pielęgniarki i położne.

 

Bronisława, mimo nieprzychylnego nastawienia opinii publicznej do kobiet-lekarek, cieszyła się z ukończenia studiów i zdobycia zawodu, który pozwolił jej być niezależną i użyteczną dla innych. Sama sobie wierzyć nie chcę – pisała w liście – że tak prędko już dojdę do zakreślonego celu. Cieszę się bardzo, że się na to zdecydowałam. Mam zajęcie użyteczne, które i we wszelkich warunkach będzie uprzyjemniać życie. Przyjemnie pomyśleć, że się coś na świecie będzie robić, zamiast odpoczywać z założonymi rękami.

 

Bronia skończyła studia już jako mężatka w lipcu 1891 roku. Ale dyplom ukończenia wydziału medycznego to za mało by mogła pracować jako lekarz. Konieczny był doktorat z medycyny. Regulowało to nowe prawo, które wprowadziła ustawa rządowa, a które służyło weryfikacji wiedzy i kompetencji kandydatów na lekarzy. Dłuska miała ogromne szczęście, że Kazimierz nie miał nic przeciwko temu, żeby skończyła studia i rozpoczęła pracę nad doktoratem, który dałby jej możliwość pracy zawodowej i swoistej emancypacji. Większość i tak nielicznych absolwentek studiów medycznych nie kontynuowała dalszej nauki, zadowalając się na przykład prowadzeniem salonu kosmetycznego.

 

Adolphe Pinard, fot. Pierre Petit, Wellcome Library, London, domena  publiczna, CC BY 4.0

Już na pierwszym roku studiów Bronka Skłodowska poznała swojego przyszłego mistrza – profesora Adolphe’a Pinarda – ginekologa, twórcę stetoskopu położniczego, ale przede wszystkim prekursora opieki perinatalnej i prenatalnej. Stworzył on w Paryżu przychodnię dla kobiet w ciąży, gdzie pacjentki przyjmowane były bezpłatnie. I propagował naturalne karmienie piersią! Mleko matki jest święte! — mawiał — i należy do jej dziecka. Młoda studentka chłonęła jego słowa podczas wykładów.

 

„Biberon Robert” – słynna francuska butelka z rurką, domena publiczna

Temat karmienia piersią budził liczne kontrowersje w XIX wieku. Bo oto wraz z rozwojem nauki i rewolucją przemysłową kobiety poszły do pracy w fabrykach. Dużo łatwiej było robotnicom utrzymać pracę, gdy mogły swoje niemowlęta powierzyć komuś innemu, ciotce, babce lub wynajętej do opieki nad dzieckiem osobie. A nawet jeśli kobieta nie pracowała, to karmienie butelką było nowoczesne, bardzo modne i wygodne. Ogromnym ułatwieniem były bogaty asortyment akcesoriów do karmienia. W latach 90. XIX wieku najmodniejszą i najpopularniejszą była „butelka Roberta” [biberon Robert] – szklana płaska butelka z długim gumowym i giętkim wężykiem, zakończonym czymś w rodzaju smoczka. Producent zainwestował w reklamę, zdobył kilka medali za innowacyjność na targach zagranicznych i szturmem podbijał serca matek. System karmienia, który ofiarował matkom i dzieciom Eduard Robert był bardzo wygodny – niemowlęta bez trudu same trzymały rączką wężyk, podczas gdy ciężka butelka z mlekiem leżała obok. Wadę systemu powodował przede wszystkim sam wężyk – zbyt wąski by dało się go umyć – namnażały się w nim liczne bakterie. Niemowlęta chorowały na biegunki i wiele z nich umierało. Świadomość konieczności dezynfekowania butelek i smoczków, a także gotowania mleka przed podaniem, była bardzo niska. Dopiero w 1892 roku francuski pediatra Pierre Budin udowodnił, że przyczyną nieżytów przewodu pokarmowego zabijającego niemowlęta są namnażające się w niemowlęcych butelkach bakterie. Minęło blisko 20 lat zanim zakazano oficjalnie użycia „butelki Roberta”.

Szpital Położniczy [La Maternité] przy bulwarze Port-Royal w Paryżu, gdzie Bronisława Dłuska odbywała praktyki, lipiec 1899. Fot. Eugène Atge, National Library of France
Bronisława zafascynowana poglądami głoszonymi przez Adolphe’a Pinarda wybrała temat pracy doktorskiej – Wkład do badań nad karmieniem piersią. We wstępie napisała:

Karmienie piersią jest jedynym racjonalnym; jest korzystne i konieczne dla matki i dziecka. Przeszkody, które są przeciwko niemu, muszą zatem zniknąć. […] obowiązkiem lekarza, który zbyt często jest obojętnym, jest rozpowszechnianie wśród kolegów tych prawd! Od niego zależy, czy karmienie piersią będzie niejako przedłużeniem i zwieńczeniem macierzyństwa. Co do mnie, w granicach moich ograniczonych środków, ale wypełniając moją role i obowiązki jako kobiety-lekarza, postaram się wprowadzić je w życie.

 

Zwłaszcza to ostatnie zdanie jest znamienne: Bronisława zaczynając swoje badania była w ciąży! 13 kwietnia 1892 roku urodziła pierwsze dziecko – Helenę. Zgodnie ze zdobytą wiedzą medyczną i przekonaniami na blisko rok została w domu i karmiła córeczkę piersią. Pracy naukowej poświęciła się ponownie dopiero na początku 1893 roku.

Jeden z pawilonów kliniki położniczej Baudelocque w Paryżu, pocztówka z przełomu XIX i XX wieku, National Library of Medicine US

Przedmiot badań stanowiła grupa 500 kobiet, które urodziły dzieci w paryskiej klinice położniczej Baudelocque. Od marca 1891 roku szefem kliniki został profesor Pinard i od samego początku wdrażał tam swoje nowoczesne procedury opieki okołoporodowej. Duży nacisk kładziono na aseptykę, co pozwoliło, począwszy od 1875 roku, na duże zmniejszenie liczby matek umierających na gorączkę połogową spowodowaną zakażeniem paciorkowcem. Był to jeden z najnowocześniejszych szpitali położniczych w Europie i z czasem wyznaczył standardy organizacji i pracy innych klinik tego typu. Posiadał m.in. osobny pawilon dla położnic chorych na gruźlicę.

 

Bronisława przez rok towarzyszyła grupie matek wytypowanych do badania, wypełniając dla każdej szczegółowe fiszki odnośnie porodów, pokarmu jaki produkują i przyrostu wagi ich dzieci. Każda dopuszczona do opracowania fiszka zawierała obserwacje prowadzone przez kolejne 10 dni. Również potem Bronisława starała się monitorować, jak długo dana kobieta karmiła piersią i jaki to miało wpływ na przerwę między kolejnymi ciążami. Zestawiła wiele danych statystycznych i wyciągnęła wnioski.

 

Rycina przedstawiająca oddział noworodkowy kliniki Bauderlocque, połowa XIX wieku, ze zbiorów National Medicine Library US

Wyniki badań były jednoznaczne: 82 % matek nie miało najmniejszego problemu z karmieniem piersią swoich dzieci. Pozostałe 18 % to albo chore na gruźlice, dla których karmienie jest niewskazane albo inne przypadki, które wymagały jedynie niewielkiej pomocy przy karmieniu. Tylko czternaście z badanych matek zdecydowało się praktycznie od razu powierzyć swoje dziecko wynajętym mamkom. Bronisława argumentowała, że mamki to rodzaj prostytucji. Najważniejsze powinno być dla matki dobro własnego dziecka, a nie karmienie dziecka cudzego – bogatego – kosztem własnego – biednego. Najwyższa śmiertelność była wykazywana wśród dzieci robotnic i służących – wśród badanych przez Bronisławę stanowiły 80 % matek. Kobiety te musiały szybko wrócić do pracy po porodzie i nie były w stanie karmić dalej same. Zwyczajem francuskim było oddawanie maleńkich dzieci na wychowanie do rodziny na wieś, co było według Bronisławy rodzajem klęski społecznej i jedną w głównych przyczyn wysokiej śmiertelności niemowląt. Walka o karmienie piersią była dla pani Dłuskiej problemem natury społecznej. Społeczeństwo nie doceniało roli matki i korzyści, które płynęły z faktu, że matka – zgodnie z naturalnym powołaniem – sama karmiła dziecko własnym mlekiem. Sprzyjało to zarówno jej zdrowiu jak i dobru dziecka, które tutaj powinno być najważniejsze.

 

„Gazeta Narodowa” zapowiadała – z młodych medyków w pierwszych dnach przyszłego miesiąca, bronić będzie w todze i birecie tezy swej pani Dłuska, żona zdolnego i wziętego tutejszego lekarza, w celu otrzymania stopnia doktora medycyny; wszystkie egzaminy złożyła już świetnie.

 

 

Strona tytułowa doktoratu Bronisławy Dłuskiej. Widać poprawkę ołówkiem w brzmieniu nazwiska z „Dluski” na „Dluska”, BIU Santé — Médecine Bibliotheque, Paris

 

Dedykacja Autorki w egzemplarzu doktoratu podarowanemu bratu – dr. Józefowi Skłodowskiemu z dedykacją: „Drogiemu Bratu i Koledze ofiaruje Br. Dłuska / 4. Lipca 1894”. Archiwum dr. inż. Piotra Chrząstowskiego

Madame Bronislas Dluski obroniła swoją tezę doktorską z powodzeniem we środę 4 lipca 1894 roku o godzinie trzynastej. „Kurjer Warszawski”: P. Bronisława ze Skłodowskich Dłuska, żona Kazimierza, doktora medycyny, zdała egzamin i broniła tezy doktorskiej przed fakultetem medycznym paryskim. Otrzymała stopień doktora i została zamianowana laureatką wydziału (laureate de la faculte). Warszawski „Przegląd Tygodniowy”: Jury, przyznając pani Dłuskiej stopień doktora medycyny, oceniło jej rozprawę wyrazami: „extrêmement bien”. Jeden ze 100 obowiązkowych egzemplarzy wydanej drukiem pracy doktorskiej podarowała bratu – Józefowi Skłodowskiemu (wtedy już od 10 lat praktykującemu w Warszawie lekarzowi) z dedykacją: Drogiemu Koledze i Bratu…

 

Warto zauważyć, że tym samym 1894 roku powstała francuska organizacja „Kropla mleka” Leona Dufoura, której celem było codzienne zaopatrywanie matek, które nie mogą samodzielnie karmić dzieci w sterylizowane mleko i bezpieczne butelki. Działanie tej organizacji będzie kolejnym krokiem do zmniejszenia śmiertelności niemowląt.

Nagłówek papieru firmowego z gabinetu dr Dłuskiej przy ulicy Chateaudun 39 bis, ze zbiorów Biblioteki Jagiellońskiej

Dr. dr-owa Dłuska ma zamiar poświęcić się leczeniu chorób kobiecych – pisała „Gazeta Narodowa” we Lwowie. Latem, po uzyskaniu tytułu doktora, Bronisława otworzyła samodzielny gabinet lekarski przy ulicy Châteaudun nr 39, w prestiżowej 9. dzielnicy Paryża (w pobliżu dworca Saint Lazaire). Pani doktor B. Dłuski — poniedziałki, środy i piątki — choroby kobiece i położnictwo — głosi nagłówek na papierze firmowym. Gabinet stał się miejscem, gdzie doktor Dłuska wdrażała swoje poglądy na opiekę nad kobietami w ciąży i karmienie piersią. W pozostałe dni pomagała mężowi – lekarzowi okręgowemu – w jego gabinecie w dzielnicy przemysłowej, gdzie zajmowała się przypadkami kobiet, w większości robotnic i ich licznymi porodami.

Jedna z serii 6 pocztówek z ok. 1900 roku. „Lekarka – studentka. Będę głównie lekarzem kobiet. Ile młodych dziewcząt jest leczonych dopiero wtedy, gdy jest już za późno, ze wstydu przed badaniem przez mężczyznę. Zapraszam do mnie, moje siostry”, z kolekcji Natalie Pigeard

Mimo dużego sukcesu doktoratu Bronisława przez kolejne cztery lata – do czasu urodzenia synka Jerzego – jedynie leczyła i nigdy nie powróciła już do pracy stricte naukowej. Sądzę, że wynikało to z dwóch zasadniczych powodów. Po pierwsze dla niej zawsze większe znaczenie miała praca społeczna. Gdy zgłębiła problemy związane z podejściem do karmienia piersią i wskazała rozwiązania, to jedyną drogą było dla niej wprowadzać je w życie. A to najprościej było robić w gabinetach lekarskich: we własnym namawiać zamożne paryżanki z „towarzystwa” do samodzielnego karmienia piersią swoich dzieci, a w mężowskim pracować u podstaw na rzecz zorganizowania lepszych warunków dla dzieci robotnic. Bronisława jako lekarz-kobieta bardziej mogła być użyteczna w codziennej pracy w gabinetach lekarskich i tak chciała swoją wiedzę, możliwości i umiejętności spożytkować.

Kolejna z serii pocztówek „Lekarka – studentka. Lekarka będzie pełna litości. Nie będzie się śmiała z twojego nieszczęścia. Wręcz przeciwnie — z całego serca będzie współczuć”, z kolekcji Natalie Pigeard

Drugi z powodów odejścia Dłuskiej od pracy naukowej to stosunek – wciąż nie ufny – mężczyzn do kobiet-lekarzy. Zawód lekarski był zdominowany przez mężczyzn, nawet w dziedzinie ginekologii i położnictwa. Osoby, które wymienia doktor Dłuska w podziękowaniach w swojej pracy doktorskiej to wybitni lekarze-mężczyźni: Adolphe Pinard, Ulysses Trélat, Leon Lefort, Lejars i Lepage oraz  jedyna kobieta, przełożona położnych – panna Leontine Roze. Można z dużym prawdopodobieństwem założyć, że to najwyższe stanowisko, jakie mogła w klinice zająć kobieta.

 

W roku 1898 Bronisława urodziła drugie dziecko – synka Jerzego, a także wraz z mężem przeniosła się do Zakopanego. W latach 1899–1902,  jako pierwsza kobieta na Uniwersytecie Jagiellońskim nostryfikowała swój dyplom lekarski z Paryża, uzyskując tytuł doktora wszech nauk lekarskich. Własna praktyka medyczna stanowiła jeszcze przez kilka zaledwie lat marginalny wycinek jej życia. Nie porzuciła co prawda medycyny, ale oddawała się coraz bardziej działalności społecznej i administracyjnej. Wraz z mężem zbudowała i prowadziła pierwsze zakopiańskie sanatorium przeciwgruźlicze, organizowała i współfinansowała sanatorium studenckie „Bratniak”, dzięki jej energicznym działaniom powstał nowy murowany gmach Muzeum Tatrzańskiego, była w komitecie organizacyjnym domu sierot „Helenówek” w Aninie pod Warszawą, pomogła zorganizować ośrodek kolonijny dla najuboższych „Olin” w Otwocku i wreszcie była motorem budowy i działania Instytutu Radowego w Warszawie.

 

 

Literatura:

 

  1. B. Dluski, Contribution a l’etude l’allaitement maternel, Thèse pour le doctorat en médicine de Paris n° 355, Paris 1894.
  2. N. Henry, Uczone siostry. Rodzinna historia Marii i Broni Skłodowskich, Wydawnictwo Dolnośląskie, Wrocław 2016.
  3. M. Lipinska, Histoire des femmes médecins, Thèse de médecine de Paris n° 613, Paris 1900.
  4. P. Moulinier, Les étudiants étrangers à Paris au XIXe siècle, Presses Universitaires de Rennes, Rennes 2012.
  5. N. Pigeard-Micault, Histoire de l’entrée des femmes en médecine, BIU Santé, Université de Paris, https://www.biusante.parisdescartes.fr
  6. E. Wajs-Baryła, Bronisława Dłuska. Doktor wszech nauk lekarskich, Warszawa 2018.
  7. C. Schultze, La femme médicin au XIXe siècle, Thèse de médecine de Paris n° 49, Paris 1888.

 

Jeszcze w tym roku nakładem Wydawnictwa Sophia ukaże się biografia pt. Bronisława Dłuska. Całe życie dla innych.

 

 

142. rocznica urodzin Emmy Noether

 

Z pewnością nie jest przesadą, by nazwać ją matką współczesnej algebry.

(Irving Kaplansky)

Jeden z czołowych matematyków niemieckich Edmund Landau oceniając geniusz Emmy Noether powiedział – Mogę potwierdzić tylko, że jest ona wybitną matematyczką, ale nie – że jest kobietą. Rzeczywiście uczona nigdy nie przykładała uwagi do swojego wyglądu. Liczyła się dla niej tylko matematyka.

Emmy Noether, b.d., Oberwolfach Photo Collection, sygn. 9267

Emmy Noether urodziła się 23 marca 1882 roku w Erlangen w rodzinie żydowskiej. Miała trzech młodszych braci Alfreda, Fritza i Roberta. Alfred, urodził się w 1883 roku był doktorem z chemii, zmarł w 1918 roku. Fritz urodził się w 1884 roku i był także znanym matematykiem, zaś Gustaw Robert urodził się w 1889 roku. Wiadomo, że był poważnie chory i zmarł w wieku trzydziestu dziewięciu lat. Uczona otrzymała imiona Emmy Amalia, ale będzie używał tylko pierwszego. Jej ojcem był Max Noether, którego rodzina zajmowała się hutnictwem. Mając czternaście lat zachorował na polio. Dzięki długotrwałej i ciężkiej rekonwalescencji odzyskał częściową sprawność, chociaż do końca życia poruszał się o lasce. Najprawdopodobniej zdolności matematyczne Emmy odziedziczyła po ojcu. Uczył się on matematyki samodzielnie, a w 1868 toku otrzymał doktorat na Uniwersytecie w Heidelbergu. W 1875 roku został profesorem Uniwersytetu Fryderyka i Aleksandra w Erlangen, gdzie poznał i poślubił Idę Amalię Kaufmann wywodzącą się z zamożnego rodu kupców niemieckich. Warto zauważyć, że Max był jednym z uczonych, którzy zajmowali się geometrią algebraiczną i teorią funkcji algebraicznych.

Emmy nigdy nie uchodziła za kanon piękna – była tęgawa, sepleniła, nosiła grube okulary, ale była niezwykle sympatyczna, bardzo lubiana. Uwielbiała łamigłówki i zagadki. Dużo czasu poświęcała na czytanie. Matka zadbała, aby Emmy umiała gotować, prowadzić gospodarstwo domowe. Nie były to jej ulubione zajęcia, chociaż lubiła grać na fortepianie i tańczyć. Wykazywała także duże zdolności językowe. W 1900 roku zdała egzamin umożliwiający jej nauczanie języka angielskiego i francuskiego w szkole dla dziewcząt.

Emmy Noether, ok. 1900, domena publiczna.

Noether nie zdecydowała się jednak na nauczanie. Postanowiła rozpocząć studia na Uniwersytecie w Erlangen. Zapisała się na kierunek pedagogiczny jako wolna słuchaczka. Kobieta na uczelni była nadal kimś wyjątkowym. Musiała otrzymać zgodę od poszczególnych profesorów, aby móc uczestniczyć w ich wykładach. Nie było to jednak szczególnie trudne z uwagi na pozycję jej ojca. 14 lipca 1903 roku Emmy zdała egzamin maturalny w Realgymnasium w Norymberdze. Następnie w semestrze zimowym 1903/1904 rozpoczęła studia na Uniwersytecie w Getyndze, gdzie słuchała wykładów między innymi fizyka i astronoma Karla Schwarzschilda oraz matematyków Hermanna Minkowskiego, Otto Blumenthala, Feliksa Kleina czy Davida Hilberta. Kiedy w 1904 roku powróciła do Erlangen zapisała się na uniwersytet jako pełnoprawna studentka matematyki. Pod opieką i kierunkiem przyjaciela Maxa Noethera Paula Gordana przedstawiła w 1907 roku pracę doktorską pt. O kompletnych układach niezmiennych dla trójskładnikowych form bikwadratowych. Umożliwiło jej to podjęcie pracy na uniwersytecie. Jak łatwo można się domyśleć pracowała nieodpłatnie, często była poniżana i dyskryminowana, chociaż jak się wydaje była absolutnie odporna na słowne uszczypliwości. Liczyło się dla niej to, że może pracować naukowo, zastępować ojca na wykładach. Z czasem studenci zaczęli uważać ją za doskonałego nauczyciela – być może dość ekstrawaganckiego, ale doskonale znającego wykładany przedmiot.

Emmy w towarzystwie braci: Alfreda, Fritza i Roberta, przed 1918, Oberwolfach Photo Collection, sygn. 3120

Emmy ściśle współpracowała z Gordanem, a kiedy przeszedł on na emeryturę w 1910 roku czasowo pracowała samodzielnie. Jego zastępca Erhard Schmidt niebawem wyjechał do Wrocławia, a jego miejsce objął Ernst Fischer, który miał istotny wpływ na życie i pracę Noether. Oboje czerpali niezwykła przyjemność z „uprawianiaˮ matematyki, dyskutowali o pracy w każdej wolnej chwili. Noether słynęła z tego, że wysłała pocztówki do Fischera, w których często rozwijała swój tok myślowy. Jednak co ważniejsze Fischer zapoznał Noether z pracami Davida Hilberta.

W roku 1915 roku Feliks Klein zaproponował jej, aby podjęła wykłady na wydziale matematyki Uniwersytetu w Getyndze. Miała podjąć pracę jako asystentka Hilberta. Hilbert i Klein starali się w Ministerstwie Edukacji o przyznanie Noether tytułu profesora, a co za tym idzie wynagrodzenia. Niestety większość tęgich męskich głów wyrażała sprzeciw wobec przyjęcia kobiety w kręgi akademickie. Wzburzony Hilbert miał powiedzieć – Ależ, proszę panów, to, że pani Noether jest kobietą, nie powinno stanowić przeszkody, ponieważ chodzi o jej wykłady, a nie obecność w łaźni.

Noether przyjechała do Getyngi pod koniec kwietnia 1915 roku. W maju otrzymała informację o nagłej śmierci matki. Jej ojciec zrezygnował z pracy i przeszedł na emeryturę. Emmy przerwała więc pracę i wróciła na kilka tygodni do Erlangen. Kiedy wróciła na uniwersytet nie otrzymała pensji, dlatego nadal pozostawała na utrzymaniu rodziny, która także bardzo ją wspierała i mobilizowała w podjętych pracach. Wkrótce udowodniła jedno z najbardziej fundamentalnych twierdzeń w fizyce, tzw. twierdzenie Noether, w myśl którego symetrie praw fizyki są powiązane z zasadami zachowania pewnych wielkości fizycznych np. energii czy pędu. Jednakże według specjalistów najbardziej innowacyjnym wkładem uczonej w matematykę był jej wpływ na rozwój algebry abstrakcyjnej, któremu poświęciła wiele artykułów i wykładów.

Emmy Noether, b.d., [za:] https://untoldstoriesofscience.files.wordpress.com/2015/09/emmynoether_pic.jpg
Po pierwszej wojnie światowej Noether miała już na tyle pewną pozycję w świecie matematyki, że pozwolono jej przedstawić habilitację. Egzamin ustny odbył się pod koniec maja 1919 roku, a wykład habilitacyjny w czerwcu. Jednak dopiero w 1923 roku otrzymała etat docenta prywatnego z prawem do wykładania i prowadzenia prac doktorskich. Niestety nadal nie otrzymywała wynagrodzenia. Praca była dla niej najważniejsza. Kiedy dyskutowała o matematyce zapominała o całym świecie. Podczas posiłków gestykulowała często rzucając jedzeniem i nie dbając o to, że plami ono jej sukienkę. Kiedyś w trakcie wykładu zsunęła się jej niedbale włożona halka. Emmy podniosła ją, wrzuciła do kosza i kontynuowała wywód jakby nic się nie stało. Często żartobliwie nazywaną ją Herr Noether. Ubierała się w długi płaszcz, chodziła bardzo energicznie zawsze z dużą czarną torbą, mrucząc coś pod nosem. Miała sporą nadwagę, ale absolutnie jej to nie obchodziło. Jeśli nie jem, nie mogę tworzyć matematyki – mawiała.

Emmy Noether, ok. 1930, domena publiczna.

Jej wpływ na rozwój idei współpracowników był niezwykle wyraźny – pozwalała im zdobywać uznanie i rozwijać karierę kosztem własnych osiągnięć. Wkrótce była u szczytu sławy – publikowała, miał uczniów dwa razy zaproszono ją do wygłoszenia referatów na Międzynarodowym Kongresie Matematyków, współredagowała także „Mathematische Annalen”. Była towarzyska i przyjacielska. Kiedy w 1926 roku przyjechał do Getyngi rosyjski topolog Paweł Aleksandrow bardzo szybko nawiązał współpracę z Noether. Uczeni stali się bliskimi przyjaciółmi. Aleksandrow zaczął ją nazywać „der Noetherˮ. Oboje spotykali się regularnie i czerpali radość z dyskusji na temat algebry i topologii. W przemówieniu dedykowanym pamięci uczonej Aleksandrow nazwał ją najwspanialszym matematykiem wszechczasów.

Zimą 1928/1929 Noether pojechała do Moskwy, gdzie kontynuowała pracę z Aleksandrowem oraz prowadziła serię wykładów. Niestety wyjazd na wschód przysporzył jej kłopotów, bowiem kiedy wróciła do Niemiec wiele osób skarżyło się, że mieszka w jednym budynku z marksistowską Żydówką. Uczona została zmuszona do opuszczenia pokoju. Najgorsze jednak miało nadejść.

Emmy Noether w gronie uczniów i współpracowników, b.d., Oberwolfach Photo Collection , sygn. 3097

W 1933 roku, kiedy naziści doszli do władzy, zwolniono wszystkich profesorów pochodzenia żydowskiego. Niewzruszona uczona zapraszała swoich studentów do domu, gdzie prowadziła dalej zajęcia. Miała podobno nawet nie zważać na jednego z nich, gdy przyszedł ubrany w nazistowski mundur. Wbrew wszystkiemu była ostoją dla innych. Hermann Weyl wspominał: Jej odwaga, szczerość, obojętność wobec własnego losu, jej pojednawczy duch były w samym środku całej tej nienawiści i podłości, rozpaczy i smutku wokół nas, moralnego pocieszenia … Jej serce nie znało złośliwości; nie wierzyła w zło, w rzeczy samej nigdy nie przyszło jej do głowy, że może odgrywać rolę wśród mężczyzn. Z czasem jednak sytuacja polityczna robiła się coraz bardziej niebezpieczna i Noether musiała zacząć myśleć o swoim bezpieczeństwie. Początkowo chciała wyjechać do Rosji, jednak przekonano ją aby wyjechała na Bryn Mawr College w Stanach Zjednoczonych, gdzie pojechała z końcem 1933 roku. Niestety trudno było jej się odnaleźć w innych warunkach prac. Była przyzwyczajona do wysokiego poziomu wiedzy doktorantów. Wkrótce zaczęła jeździć na twórcze dyskusje do Institute for Advanced Study w Princeton. W 1934 roku na krótko wróciła do Niemiec, gdzie po raz ostatni widziała się z bratem Fritzem, który wyjechał do Rosji, gdzie podczas czystek zginął.

Emmy Noether, b.d., Oberwolfach Photo Collection, sygn. 9245

W kwietniu 1935 roku lekarze zdiagnozowali w macicy Noether spory guz. Operacja była dość ryzykowna, ponieważ uczona cierpiała na wysokie ciśnienie. W trakcie zabiegu okazało się, że ma także torbiel na jajniku. Operacja przebiegła jednak pomyślnie. Wydawało się, że uczona szybko powraca do zdrowia. Niestety po trzech dniach dostała wysokiej gorączki, straciła przytomność i zmarła. Lekarze nie potrafili podać jednoznacznej przyczyny śmierci – podejrzewali udar lub infekcję pooperacyjną. Po jej śmierci Albert Einstein powiedział:

Kilka dni temu, w wieku pięćdziesięciu trzech lat, zmarła wybitna matematyczka, profesor Emmy Noether, związana z uniwersytetem w Getyndze, a przez ostatnie dwa lata z Bryn Mawr College. W opinii najbardziej kompetentnych współczesnych matematyków, Fräulein Noether była największym twórczym talentem matematycznym, jaki pojawił się od chwili, gdy zaczęło się wyższe wykształcenie kobiet. W dziedzinie algebry, którą od stuleci zajmują się najbardziej utalentowani matematycy, odkryła ona metody, które okazały się niezmiernie ważne dla osiągnięć obecnego młodszego pokolenia matematyków. Matematyka czysta jest na swój sposób poezją idei logicznych. Szuka się w niej najogólniejszych idei zdolnych do połączenia w prostej, logicznej i jednolitej formie jak najszerszego kręgu związków formalnych. W tym dążeniu do logicznego piękna odkrywa się uduchowione formuły konieczne, by głębiej przeniknąć prawa natury.

 

Zalecana literatura:

 

  1. S. Bertsch McGrayne, Nobel Prize Women in Science. Their Lives, Struggles, and Momentous Discoveries, 2nd Ed., Joseph Henry Press, Washington, 2006, ss 64–92.
  2. A. Dick, Emmy Noether, 1882–1935, Birkhauser, Stuttgart, 1981.
  3. A. K.Wróblewski, 300 uczonych prywatnie i na wesoło, Tom 2, Prószyński i S-ka, Warszawa, 2018.
  4. H. Hasse, E. Noether, Die Korrespondenz 1925–1935, Göttingen University Press
  5. M. B. Tent, Emmy Noether: The mother of modern algebra, A K Peters, Ltd. Natick, Massachusetts, 2008.