Międzynarodowy Dzień Kobiet i Dziewcząt w nauce

W tym roku po raz dziewiąty obchodzimy Międzynarodowy Dzień Kobiet i Dziewcząt w Nauce.
Jako życzenia dla wszystkich Pań zajmujących się nauką niech posłużą słowa polskiego fizyka Mariana Smoluchowskiego, wypowiedziane w 1912 roku:
„Kobietom, które wstępują na drogę naukową, powinno się ułatwiać ich powołanie; powinny nareszcie zniknąć wszelkie zewnętrzne przeszkody, owe śmieszne przesądy, owe przestarzałe poglądy, które zamykają dostęp kobietom do niektórych instytucyj naukowych, które im utrudniają kształcenie się, pracę naukową, dostęp do katedr uniwersyteckich. Niech tu (jak na każdem innem polu) panuje zasada wolnej konkurencji. Oby ta konkurencja była jak najżywsza.”
Bieżącym celem ONZ i UNESCO jest zapewnienie kobietom i dziewczętom pełnego i równego dostępu do nauki oraz uczestnictwo w badaniach naukowych. Więcej o tym przeczytacie Państwo stronie http://www.unwomen.org/en.
Międzynarodowy Dzień Kobiet i Dziewcząt w Nauce został ustanowiony przez Zgromadzenie Ogólne ONZ rezolucją A/RES/70/212 (22 grudnia 2015) na wniosek ONZ do Spraw Oświaty, Nauki i Kultury (UNESCO), UN Women, ITU i innych właściwych organizacji, które wspierają i doceniają dostęp kobiet i dziewcząt do nauki, techniki, matematyki, ich kształcenia i badań naukowych na wszystkich szczeblach edukacji. Po raz pierwszy święto obchodzono 11 lutego 2016 roku.

106. rocznica urodzin Gertrude Bell Elion

Przez całe życie walczyła o poprawę ludzkiego życia. Cicha, spokojna i niezwykle skromna uczona spędziła większą część życia w laboratorium oddając się swojej największej pasji – poszukiwaniu nowych związków chemicznych, które o szerokim spektrum aktywności farmakologicznej. Dzięki jej pracom ludzkość otrzymała leki zwalczające między innymi białaczkę, gościec, malarię czy wirusy grupy Herpes. Trudno się nie zgodzić z opinią Jamesa Burchalla, że Gertrude Belle Elion żyła w świecie nauki i tworzenia leków. Uważała, że jest to wielkie wyzwanie, fascynacja i wielki cel jej życia. To jej wyzwanie i jej radość.

 

Uczona urodziła się 23 stycznia 1918 roku w Nowym Jorku. Jej rodzicami byli żydowski imigrant z Litwy Robert Elion i polska imigrantka Bertha Cohen. We wspomnieniach Gertrude pisała:

 

Gertude w wieku 5 lat, [za:] www.nobelprize.org
          Urodziłam się w Nowym Jorku w zimną styczniową noc, w trakcie której w naszym mieszkaniu rury z wodą zamarzły i pękły. Na szczęście moja matka była wtedy w szpitalu, a nie w domu. Mój ojciec wyemigrował z Litwy do Stanów Zjednoczonych w wieku 12 lat. Studia wyższe ukończył w 1914 r. w New York University School of Dentistry. Moja matka w wieku 14 lat wyjechała z części Rosji, która po wojnie była częścią Polski; miała dopiero 19 lat, kiedy wyszła za mąż za mojego ojca. Pierwsze siedem lat spędziłem w dużym mieszkaniu na Manhattanie, gdzie mój ojciec miał gabinet dentystyczny, który przylegał do naszego mieszkania.

Mój brat [Herbert] urodził się około sześć lat po mnie, a wkrótce potem przeprowadziliśmy się do Bronxu, który wówczas był uważany za przedmieście Nowego Jorku. Wciąż było tam wtedy wiele otwartych przestrzeni, w których dzieci mogły się bawić – w tym duże parki z ogrodem zoologicznym na czele, gdzie spędzałam sporo czasu. Mój brat i ja mieliśmy szczęśliwe dzieciństwo. Poszliśmy do pobliskiej naszego mieszkania szkoły publicznej, do której chodziliśmy spacerem. Nasze sale lekcyjne były na ogół dość zatłoczone, ale otrzymaliśmy dobre wykształcenie podstawowe.

 

Gertrude jako absolwentka szkoły średniej, 1933, [za:] http://musings-on-science-and-math.blogspot.com/2012/09/gertrude-belle-elion-nobel-prize-winner.html
Elion była doskonałą uczennicą. W wieku piętnastu lat ukończyła z wyróżnieniem szkołę średnią. Wówczas też w jej życiu wydarzyła się tragedia – po długich cierpieniach na raka żołądka zmarł ukochany dziadek. Uczona wspominała:

Byłam dzieckiem z nienasyconym pragnieniem zdobywania wiedzy i pamiętam, że prawie tak samo cieszyłem się wszystkimi moimi kursami. Kiedy przy końcu szkoły średniej przyszedł czas, aby wybrać naukę, w której mam się specjalizować, byłem w rozterce. Gdy miałam piętnaście lat mój dziadek, którego bardzo kochałem, zmarł na raka. Sądzę, że było to jednym z decydujących czynników decydującym o wyborze mojej kariery naukowej. Byłam bardzo zmotywowana do zrobienia czegoś, co ostatecznie może doprowadzić do wyleczenia tej strasznej choroby. Kiedy wstąpiłam do Hunter College w 1933 roku, zdecydowałam się na nauki ścisłe, w szczególności na chemię.

 

Gertrude Elion ok. 1940 roku, [za:] https://amazingwomeninhistory.com/gertrude-b-elion-biochemist/
Dyplom summa cum laude otrzymała w 1937 roku. Po ukończeniu studiów Gertrude nie mogła znaleźć płatnej pracy naukowej. Początkowo pracowała jako sekretarka i nauczycielka fizyki i chemii w szkole średniej. Później znalazła nieodpłatny etat w laboratorium chemicznym. Zaoszczędziła wystarczająco dużo pieniędzy, aby studiować na New York University i ukończyć studia w 1941 roku jako magister inżynier. Podczas drugiej wojny światowej Elion pracowała w laboratorium kontroli artykułów żywnościowych w przedsiębiorstwie Quaker Maid. Później pracowała też w laboratorium farmaceutycznym Johnson & Johnson. Wcześniej odmawiano uczonej etatu podając jako argument między innymi jej urodę, która miałaby rozpraszać innych pracowników. Wojna wszystko zmieniła. Wszystkie zastrzeżenia co do zatrudniania kobiet w laboratoriach po prostu się ulotniły – wspominała.

 

W 1944 roku za sugestią ojca złożyła podanie w firmie farmaceutycznej Burroughs-Wellcome (obecnie GlaxoSmithKline). Podczas rozmowy kwalifikacyjnej natrafiła na biochemika i kierownika działu badawczego Georgeʼa H. Hitchingsa. Był on zwolennikiem innowacyjnego sposobu prowadzenia badań. Uważał, że poszukiwanie nowych leków powinno opierać się na podobieństwie strukturalnym do ich naturalnych pochodnych. Twierdził ponadto, że syntetyczne leki powinny hamować przemianę materii mikroorganizmów, przez co powinny być skutecznymi w walce z wieloma chorobami. Hitchings zlecił Elion prace nad purynami (zasadami azotowymi wchodzącymi w skład kwasów nukleinowych DNA i RNA) – adeniną i guaniną. Gertrude oddała się pracy z nieopisaną wręcz pasją. Pracowała w weekendy, wakacje, zostawała po godzinach, każdą wolną chwilę poświęcała chemii i biochemii. Przez krótki czas podjęła się studiów doktoranckich, ale gdy dziekan wydziału oświadczył jej, że powinna zrezygnować dla nich ze swojej pracy i uczestniczyć w zajęciach w pełnym wymiarze godzin Elion zrezygnowała. Wykluczone, nigdy nie zrezygnuję z mojej pracy. Wiem doskonale, kiedy mam to co jest dla mnie najlepsze i czego pragnę – powiedziała. Gertrude Elion nigdy nie zrobiła doktoratu i nie miała formalnego stopnia doktora. We wspomnieniach pisała:

Z biegiem lat moja praca stała się zarówno moim powołaniem, jak i przeznaczeniem. Ponieważ tak bardzo mi się podobała, nigdy nie czułam potrzeby wychodzenia na zewnątrz w celu relaksu. Mimo to zostałam zapaloną fotografką i podróżniczką. Być może moja miłość do podróży wynika z wczesnych lat, kiedy moja rodzina rzadko wyjeżdżała na wakacje. […] Podróżowałam dość dużo po świecie, ale wciąż jest wiele miejsc do odkrycia. Innym moim ważnym zainteresowaniem jest muzyka, nie dlatego, że jestem utalentowana muzycznie, ale dlatego, że uwielbiam jej słuchać. Jestem miłośniczką opery i jestem subskrybentem Metropolitan Opera od ponad 40 lat. Lubię też koncerty, balet i teatr.

Elion w swoim laboratorium ok. 1960 roku, [za:] Jewish Women’s Archive
Jednak najważniejsza była praca. Jej motywacja, aby poświęcić się i oddać swój twórczy geniusz pracy naukowej była jeszcze większa. W 1941 roku narzeczony uczonej Leonard Canter – znakomity statystyk w City College – zachorował na ostre bakteryjne zapalenie wsierdzia. Niestety choroba była na tyle inwazyjna, że spowodowała zatrzymanie akcji serca i śmierć ukochanego Trudy. To złamało mi serce i tak naprawdę nigdy w pełni ta rana się nie zabliźniła – wyznała bratu. Nigdy nie wyszła za mąż. Później na raka szyjki macicy zmarła matka Elion oraz na białaczkę umarł jej bliski przyjaciel. Natomiast po śmierci ojca uczona wyznała – Zupełnie jakby [jego śmierć] zawierała wiadomość skierowaną do mnie: »To jest choroba, z którą będziesz musiała walczyć«. Pierwszy sukces przyszedł w 1948 roku, kiedy Elion i Hitchings otrzymali w swoim laboratorium 2,6-diaminopurynę substancję, która hamowała rozwój białaczki. Niestety okazała się także dość toksyczna, dlatego Elion otrzymała inną pochodną puryny 6-merkaptopurynę. Ten związek hamował białaczkę, był mniej toksyczny, i co najważniejsze, można było go stosować w terapii u dzieci. Lek ten włączając się w szlak biosyntezy nukleotydów purynowych, powoduje zahamowanie replikacji DNA, co stanowi o jego wysokiej skuteczności w terapii. Wkrótce uczeni przeprowadzili syntezę 6-tioguaniny, która skutecznie hamowała rozwój leukocytów, co z kolei wiąże się z osłabieniem reakcji układu odpornościowego. Prace nad lekami pochodnymi puryn stanowiły krok milowy związany z przeszczepianiem narządów, bowiem niektóre z nich wywoływały cytotoksyczność limfocytów. Elion i Hitchings otrzymali serię związków, które służyły już nie tylko do walki z chorobami nowotworowymi, ale osłabiały także reakcję organizmu na odrzucenie przeszczepów.

Innym wielkim osiągnięciem uczonych było przeprowadzenie przez nich syntezy allopurynolu leku będącego inhibitorem oksydazy ksantynowej, który zmniejsza wytwarzanie ksantyn i kwasu moczowego. Powoduje on zahamowanie powstawania kwasu moczowego, a co za tym idzie, zmniejszenie jego stężenia we krwi i moczu. Największą radość Elion sprawił, za sprawą allopurynolu, powrót do zdrowia w 1963 roku pewnego stróża nocnego, który od lat zmagał się z dną moczanową.

Elion i Hitchings na Uniwersytecie Georga Washingtona, 1969, Jewish Women’s Archive

Z wielu innych sukcesów uczonych należy wymienić syntezę azatiopryny leku o silnym działaniu immunosupresyjnym i cytotoksycznym, pirymetaminy stosowanej w leczeniu malarii, toksoplazmozy i zapalenia płuc, trimetoprymu – chemioterapeutyku, będącego inhibitorem reduktazy kwasu dihydrofoliowego czy nelarabiny – cytostatyku, antymetabolitu, stosowanego w trzecim rzucie leczenia białaczki limfoblastycznej i chloniaka limfoblastycznego. Najtrafniej wspólnie spędzony czas w laboratorium ujął Hitchings:

            Badania, które rozpoczęliśmy w latach czterdziestych XX wieku, przyniosło także nowe terapie lekowe na malarię (pirymetaminę), białaczkę (6-merkaptopurynę i tioguaninę), dnę moczanową (allopurinol), przeszczepianie narządów (azatiopryna) i infekcje bakteryjne (kotrimoksazol). Nowa wiedza wniesiona przez nasze badania wskazała drogę do badań, które doprowadziły do opracowania głównych leków przeciwwirusowych stosowanych w zakażeniach opryszczki (acyklowir) i AIDS (azydotymidyna).

W 1967 roku Hitchings przeszedł na emeryturę, a Gertrude została mianowana kierowniczką wydziału doświadczalnej terapii w Burroughs Wellcome Department of Experimental Therapy. Oboje uczonych, poza przeszło trzydziestoma latami niezwykle owocnej współpracy, łączyły więzy szczerej i prawdziwej przyjaźni. Elion zaprzyjaźniła się również z żoną Hitchingsa Beverly Reimer i dziećmi. Często spędzali razem wakacje. Kilkadziesiąt lat później nadal odwiedzała jego dzieci i ich rodziny. Po śmierci Beverly w 1985 roku Hitchings ożenił się ponownie w 1989 roku z Joyce Carolyn Shaver-Hitchings, która także zaprzyjaźniła się z Trudy.

 

Wraz z objęciem funkcji kierowniczej Elion skierowała swoje zainteresowania na syntezę leków zwalczających choroby wywoływane przez wirusy. Ogromnym sukcesem uczonej była synteza acyklowiru leku hamującego rozwój herpeswirusów. Uczona założyła, że lek powinien być koniem trojańskim dla wirusa. Wirus powinien go aktywować i tym samym doprowadzać swojej dezaktywacji. W końcu udało nam się wykazać, że środki antywirusowe mogą działać selektywnie i że można wykorzystać różnice między enzymami komórki i wirusa – napisała uczona. Warto zaznaczyć, że jej podejście zostało także zastosowane w projektowaniu i syntezie AZT (3′-azydo-3′-deoksytymidyny) leku pomocnego w zwalczaniu wirusa HIV.

Gertrude Elion i George Hitchings — laureaci Nagrody Nobla, 1988, Domena Publiczna

Nie powinno dziwić, że o 6:30 rano 17 października 1988 roku Elion otrzymała telefon z informacją, że otrzymała Nagrodę Nobla z fizjologii i medycyny. Nagrodę dzieliła z Georgeʼm Hitchingsʼem i Jamesem W. Black’iem z University of London, który jako pierwszy opracował klinicznie użyteczny lek do blokowania receptorów beta. Elion i Hitchings zostali wyróżnieni za sformułowanie znaczących zasad leczenia farmakologicznego (w szczególności nad wytycznymi dotyczącymi chemioterapii) i stworzenie w oparciu o nie nowej generacji leków przeciwnowotworowych. Podczas ceremonii odebrania nagrody w Sztokholmie towarzyszyło Trudy jedenastu członków najbliższej rodziny. Z całą pewnością uczona należy do niewielkiego grona laureatów Nagrody Nobla bez formalnego doktoratu. Otrzymała natomiast co najmniej dwadzieścia doktoratów honorowych oraz ogrom innych wyróżnień.

 


George Herbert Hitchings zmarł 27 lutego 1998 roku w wieku dziewięćdziesięciu trzech lat. Rok później 21 lutego 1999 roku w Północnej Karolinie w wieku osiemdziesięciu jeden lat zmarła spokojnie Gertrude Belle Elion. Wielka uczona, której ludzkość zawdzięcza tak wiele, pod koniec życia napisała:

            Po moim oficjalnym przejściu na emeryturę z funkcji kierowniczki działu w Burroughs Wellcome, pozostałam tam jako emerytowany konsultant naukowy i starałam się brać czynny udział w dyskusjach, seminariach i spotkaniach personelu związanych z badaniami. Ponadto zostałam profesorem nauk medycznych i farmakologii na Uniwersytecie Duke’a i co roku pracuję z jednym studentem medycyny trzeciego roku, który chce prowadzić badania w dziedzinie biochemii i farmakologii nowotworów. To było bardzo stymulujące doświadczenie, które mam nadzieję kontynuować przez pewien czas. Zasiadam w wielu redakcjach i nadal wykładam i piszę. W pewnym sensie wydaje mi się, że moja kariera zatoczyła koło od wczesnych lat bycia nauczycielką do dzielenia się teraz moimi doświadczeniami badawczymi z nowymi pokoleniami naukowców.

 

Literatura zalecana:

[1] G. B. Elion, Autobiography, dostęp online 25-06-2020.

[2] R. Swaby, Upór i przekora. 52 kobiety, które odmieniły naukę i świat, Warszawa 2017.

[3] S. Mukherjee: Cesarz wszech chorób. Biografia raka, Warszawa 2015.

[4] S. B. McGrayne, Nobel Prize Women in Science: Their Lives, Struggles, and Momentous Discoveries: Second Edition, Joseph Henry Press 2001.

174. rocznica urodzin Zofii Kowalewskiej

 

Wielu, którzy mieli okazję dowiedzieć się czegoś więcej o matematyce, myli ją z arytmetyką i uważali ją za jałową naukę. W rzeczywistości jednak jest to nauka wymagająca ogromnej ilości wyobraźni.

(Zofia Kowalewska)

 

Zofia Kowalewska, b.d., domena publiczna.

Jedna z najwybitniejszych matematyczek świata urodziła się 15 stycznia (3 stycznia) 1850 w Moskwie. Jej ojciec Wasilij Wasiljewicz Krukowski był oficerem pochodzenia polskiego (pochodził z rodu Korwin-Krukowskich), natomiast matka Jelizawieta Fiodorowna Schubert wywodziła się z rodziny niemieckich imigrantów. Na uwagę zasługuje fakt, że pradziadkiem przyszłej uczonej był astronom i geograf Theodor von Schubert, zaś dziadkiem generał i kartograf Friedrich von Schubert. Z kolei jej starszą siostrą była Anna Jaclard (1843–1887) socjalistka i rewolucjonistka, która nieśmiertelność zyskała na kartach powieści F. Dostojewskiego Idiota jako Anna. Wczesne lata życia spędziła w posiadłości Palibino w gubernii Witebskiej. Sonia – jak ją nazywała rodzina oraz przyjaciele – wspominała, że dom był niezwykle piękny i nowoczesny. Na krótko przed zamieszkaniem w nowej posiadłości została ona całkowicie poddana modernizacji. Niestety jej pokój z prozaicznej przyczyny – niewystarczającej ilości tapety – został wyklejony papierem znalezionym na strychu. Jak się okazało papier zawierał litografie wykładów z zakresu rachunku różniczkowego i całkowego, na które uczęszczał Wasilij jako młody oficer. Był to niewątpliwe pierwszy wielki bodziec matematyczny, który zaczął działać na wyobraźnię przyszłej uczonej. Zwykłam całymi godzinami ślęczeć przed tymi ścianami, raz po raz na nowo odczytując spisane tam symbole – wspominała po latach Sofija. Niestety nie zawsze miała możliwość pełnego pochłaniania wiedzy, tym bardziej, że jej ojciec niespecjalnie była zadowolony z kształcenia kobiet. Trwałam w chronicznym stanie głodu książek – wspominała. W dużej mierze Sonia uczyła się samodzielnie – czytała książki, próbowała poznawać świat nauki. Jeden z zaprzyjaźnionych przyjaciół ojca, profesor fizyki Nikolai Nikanorowicz Tyrtov podarował mu swój nowy podręcznik. Dziewczynka bez wiedzy ojca przeczytała książkę i przy następnej wizycie profesora zaczęła z nim rozmawiać o optyce. Niewątpliwie był bardzo zdziwiony, gdy kilkuletnia dziewczynka dokładnie mu wyjaśniła czego nie rozumie, ale co wydaje jej się logiczne i powinno mieć takie a nie inne rozwiązanie. Tyrtov nazwał ją nowym Pascalem i zasugerował, aby dać jej szansę kontynuowania studiów matematycznych. Nie ulega wątpliwości, że dziewczynka była bardzo zdolna. Znała doskonale język angielski, francuski i niemiecki. W latach 1866-67 spędzała większość zimy z rodziną w Petersburgu, gdzie otrzymywała prywatne lekcje rachunku różniczkowego.

Jednak rozbudziło to tylko głód wiedzy dziewczyny. Jej marzeniem były studia, ale było to dość trudne, gdyż w carskiej Rosji kobiety nie mogły studiować, a wyjazd samotnej kobiety do innego kraju nie wchodził w grę. Salomonowym rozwiązaniem było zatem zawarcie w 1868 roku fikcyjnego małżeństwa ze starszym o osiem lat paleontologiem Włodzimierzem Kowalewskim. Należał on do radykalnego ugrupowania politycznego walczącego o równouprawnienie kobiet i zapewnienie im dostępu do edukacji. Sonia z mężem i siostrą wyjechała do Heidelbergu, gdzie studiowała między innymi u Hermanna von Helmholtza, Gustava Kirchhoffa i Roberta Bunsena. Później odbyła także podróż do Anglii, a następnie powróciła do Berlina, gdzie uczył ją Karl Weierstrass – jeden z najwybitniejszych matematyków niemieckich.

W 1874 roku Sofja Kowalewska przesłała z Berlina na uniwersytet w Getyndze rozprawę doktorską opartą o trzy prace związane z teorią równań różniczkowych cząstkowych, redukcji całek abelowych oraz postaci pierścieni Saturna. Dzięki staraniom Weierstrassa nie musiała zdawać egzaminów doktorskich i przyznano jej doktorat… in absentia. Została tym samym pierwszą Europejką posiadającą doktorat z matematyki!

Zofia Kowalewska, po 1880, domena publiczna

Sukcesy zawodowe szły w parze z prywatnymi. Pomiędzy Sonią i Włodzimierzem zaczęło rodzić się autentyczne uczucie. W 1874 roku powrócili do Rosji, a cztery lata później przyszła na świat ich córka Zofia nazywana Fufą. Po prawie dwóch latach poświęconych wychowaniu córki Kowalewska pozostawiła ją pod opieką krewnych oraz przyjaciół i chcąc wznowić pracę w dziedzinie matematyki opuściła Włodzimierza po raz ostatni. W wyniku namowy Weierstrassa w 1881 roku powróciła do Berlina, gdzie natychmiast powróciła do pracy naukowej. Zaowocowała ona opublikowaniem prac związanych z refrakcją światła w kryształach. Kiedy w 1883 roku przebywała w Paryżu otrzymała wstrząsającą wiadomość o śmierci męża. Włodzimierz zapadł na głęboką depresję związaną z poważnymi kłopotami finansowymi, w wyniku czego odebrał sobie życie.

W tym samym czasie uczona otrzymała propozycję pracy na uniwersytecie w Sztokholmie. Jej zdolnościami matematycznymi zachwycił się jeden z nielicznych w tamtych czasach zwolenników kobiet w nauce Magnus Mittag-Leffler. Po sześciu miesiącach pracy w Sztokholmie przyznano jej tytuł profesorski oraz etat redaktora w prestiżowym czasopiśmie matematycznym „Acta Mathematicaˮ. Co ciekawe w tym czasie biegle władała już językiem szwedzkim. W 1885 roku Kowalewska objęła funkcję dziekana Wydziału Matematyki. Początkowo zaproszono mnie w charakterze docenta. Przed upływem roku jednak mianowano mnie profesorem zwyczajnym, którym jestem od roku 1884. Poza wykładami spoczywa na mnie także obowiązek uczestniczenia w posiedzeniach rady i mam prawo głosu na równi z pozostałymi profesorami – wspominała uczona. Trzy lata później, w 1888 roku wygrała konkurs paryskiej Akademii Nauk – w temacie ścisłego rozwiązania równań ruchu bryły sztywnej, za co otrzymała Nagrodę Bordina. W 1889 roku wybrano ją na członkinią Petersburskiej Akademii Nauk. Poza matematyką była także zdolną pisarką. Napisała między innymi Uniwersytet chłopski w Szwecji, Wspomnienia z dzieciństwa, Nihilistka, Docent prywatny, Siostry Rejewskie i Rodzina Woroncowych, stąd nazywano ją nie tylko „Królową  Matematyki” ale także „Michałem Aniołem Konwersacji”.

Zofia Kowalewska, ok. 1880, Institut Mittag-Leffler, domena publiczna.

W 1889 roku uczona zakochała się w Maxie Kowalewskim dalekim krewnym zmarłego męża. Nie nalegała jednak na małżeństwo, gdyż wiedziała, że nie byłaby w stanie osiąść i zamieszkać z Maxem.

Sofja Kowalewska zmarła w kwiecie wieku, licząc zaledwie czterdzieści jeden lat, w Sztokholmie w lutym 1891 roku w wyniku powikłań po zapaleniu płuc. Została pochowana w mieście Solna na Cmentarzu Północnym, gdzie spoczywa wiele wybitnych i znanych ludzi.

Jeden z badaczy jej życia, Roger Cooke napisał: […] im bardziej zastanawiam się nad jej życiem i biorę pod uwagę ogrom jej osiągnięć, przeciwstawiając się ciężarowi przeszkód, które musiała przezwyciężyć, tym bardziej ją podziwiam. Dla mnie przyjęła bohaterską postawę osiągniętą przez niewielu innych ludzi w historii. Aby wejść, tak jak ona, do świata akademickiego, świata, którego prawie żadna kobieta jeszcze nie zbadała, i być konsekwentnie obiektem ciekawskiej analizy, podczas gdy wątpiące społeczeństwo patrzyło, na wpół oczekując, że je zawiedzie, zebrała ogromną odwagę i determinację. Aby osiągnąć, tak jak ona, co najmniej dwa główne wyniki o trwałej wartości stypendium, jest dowodem znacznego talentu, rozwiniętego dzięki żelaznej dyscyplinie […].

 

Zalecana Literatura:

  1. Z. Kowalewska, Wspomnienia z dzieciństwa, PIW, Warszawa, 1978.
  2. J. Navarro, Kobiety w matematyce: od Hypatii do Emmy Noether, RBA, Toruń, 2012, ss 84-91.
  3. R. L. Cooke, The life of S. V. Kovalevskaya, [w]: V. B. Kuznetsov, ed., The Kowalevski Property, American Mathematical Society, 2002, ss 1–19.
  4. P. Połubarinowa-Koczina: Zofia Kowalewska: Wielki matematyk rosyjski, Czytelnik, Warszawa, 1951.
  5. J. Spicci, Beyond the Limit: The Dream of Sofya Kovalevskaya, Forge Books, New York, 2002.

178. rocznica urodzin Julii Lermontowej

 

 

Julia Lermontowa, b.d., domena publiczna

 Julia Lermontowa była pierwszą kobietą na świecie, która uzyskała dyplom z chemii, pierwszą Rosjanką z doktoratem z chemii i trzecią kobietą w Europie posiadającą ten stopień naukowy. Była uważana za jedną z najważniejszych postaci w chemii. Mimo wielu naukowych zasług pozostawała zawsze w cieniu innych. Podobnie jak Maria Skłodowska-Curie, Lermontowa nie umiała być sławną. Przez całe życie Lermontowa stała w cieniu swojej przyjaciółki Zofii Kowalewskiej, matematyczki, która została pierwszą kobietą profesorem w Europie.

 

Uczona urodziła się w arystokratycznej rodzinie 21 grudnia 1846 roku (według kalendarza juliańskiego) lub 2 stycznia 1847 r. (według kalendarza gregoriańskiego) w Petersburgu. Jej matką była Elisawjeta Andrejewna Kossikowska, zaś ojcem generał Wsiewołoda Lermontow. Warto odnotować, że stryjkiem przyszłej uczonej był Michaił Lermontow, jeden z najważniejszych twórców romantyzmu.

Julia Lermontowa, b.d., domena publiczna

Julia była wychowywana zarówno w tradycji grecko-prawosławnej, jak i rzymskokatolickiej. Rodzice Julii zaliczani byli do moskiewskiej inteligencji, mieli też szeroki światopogląd. Uważali, że kobiety powinny mieć zapewnioną edukację na wysokim poziomie. Ich córka miała opiekę zagranicznych guwernantek, co sprzyjało nauce języków obcych. Dbano także, aby uczyli ją wysokiej klasy nauczyciele prywatni. Dziewczynce pozwalano czytać i w żaden sposób nie ograniczano jej intelektualnych potrzeb. Kiedy rodzice zorientowali się, że interesują ją nauki ścisłe zadbali by miała dostęp do literatury specjalistycznej, a co ważniejsze zezwolili jej na wykonywanie eksperymentów w domu. Lermontowa początkowo myślała o studiach medycznych, jednak przeraziły ją prace w prosektorium. Postanowiła więc podjąć studia na Państwowym Uniwersytecie Rolniczym w Moskwie. Niestety pomimo poparcia wielu profesorów jej kandydatura została odrzucona. Julia nie poddała się jednak i postanowiła wyjechać na studia za granicę. Z dzisiejszej perspektywy to nic nadzwyczajnego, ale jeśli uświadomimy sobie, że żyła ona w XIX wieku, pochodziła z Rosji to jej decyzja wymagała dużej odwagi, wytrwałości i silnej osobowości. Warto podkreślić, że Julia nie była odosobniona w swoim postanowieniu.

 

Sofja Kowalewska, domena publiczna

Dzięki kuzynce Annie Jewreinowej (pierwszej kobiecie doktor prawa), poznała Zofię Kowalewską [patrz: Tomasz Pospieszny, Sofja (Zofia) Kowalewska, PSN, 2 stycznia 2019]. To właśnie ona przekonała rodziców Julii, że w towarzystwie zamężnej kobiety będzie mogła czuć się bezpiecznie, a co ważniejsze będzie miała przyzwoitkę.

Jesienią 1869 roku Julia pojechała do Heidelbergu, gdzie rozpoczęła studia na tamtejszym uniwersytecie. Zamieszkała z Kowalewskimi. Dzięki wstawiennictwu Zofii, Julia została przyjęta do laboratorium kierowanym przez Roberta Bunsena. Bunsen słynął z wielkiego oddania dla chemii. Był świetnym naukowcem i wykładowcą. Wykłady uzupełniał ciekawymi doświadczeniami. Niestety słynął też z niechęci do kobiet. Pomimo tego uległ czarowi Zofii i zgodził się na uczestniczenie w jego zajęciach Julii. Karl Weierstrass – mentor Kowalewskiej – w jednym z listów do niej pisał:

 

On [Bunsen] planował nie przyjmować do swojego laboratorium siebie żadnych kobiet, zwłaszcza Rosjanek. Nie chciał, żeby panna Lermontowa pracowała u niego lub słuchała jego wykładów. Wówczas Ty [Kowalewska] poszłaś do niego i błagałaś go tak żarliwie, że nie mógł się oprzeć i sprzeniewierzył się swoim zasadom.

Robert Wilhelm Bunsen, domena publiczna

W laboratorium Bunsena Julia zaczęła badania związków platyny polegające na rozdzielaniu jej stopów i precyzyjnym wyznaczeniu ciężaru atomowego. Prawdopodobnie na polecenie Mendelejewa podjęła też prace związane z udoskonaleniem procesów separacji innych metali z grupy platynowców. Był to wstępny, ale niezwykle ważny warunek dla kolejnego etapu ich uporządkowania w układzie okresowym, nad którym pracował Mendelejew.

 

August Wilhelm von Hofmann, 1902, Wellcome Library, domena publiczna, CC BY 4.0

W 1871 roku Lermontowa wraz z Kowalewską przeniosła się do Berlina. Tutaj rozpoczęła badania w laboratorium Augusta Wilhelma Hofmanna, jednego z najwybitniejszych chemików organików epoki. Została jego studentką, a ich współpraca zaowocowała opublikowaniem prze Julię pracy dotyczącej struktury i syntezy 4,4′-diaminoazobenzenu. 24 października 1874 roku w Getyndze Julia Lermontowa przedstawiła tezy swojej rozprawy doktorskiej związane z analizą związków metylowych. Egzaminy nie należały do najłatwiejszych, jednakże profesorowie orzekli, że zdała je magna cum laude. Warto podkreślić, że jednym z egzaminatorów był Friedrich Wöhler, który jako pierwszy uczony przeprowadził syntezę mocznika – związku organicznego z substratów nieorganicznych.

Po obronie doktoratu Julia postanowiła powrócić do Rosji. W rodzinnym kraju podczas uroczystości związanych z jej sukcesem naukowym poznała osobiście Dmitrija Mendelejewa oraz innych uczonych należących do Rosyjskiego Towarzystwa Chemicznego m. in. Aleksandra Butlerowa zwolennika wyższego wykształcenia dla kobiet. Chemik zasugerował jej by dołączyła do jego grupy badawczej. Julia przyjęła zaproszenie znanego uczonego ochoczo i została jego asystentką. Do jej zadań należały między innymi badania związane z syntezą kwasu 2-metylo-2-butenowego.

Od 1876 roku rozpoczęła współpracę z prestiżowym naukowym czasopismem „Bulletin de la Société Chimique de Paris”. W tym samym roku Julia zaraziła się durem brzusznym, którego następstwem było ciężkie zapalenie mózgu. Na szczęście wyszła z choroby i mogła w pełni sił intelektualnych powrócić do pracy. W 1877 roku zmarł ojciec uczonej Aby pomóc rodzinie Julia przeniosła się do Moskwy, gdzie w laboratorium Władimira Markownikowa rozpoczęła badania ropą naftową. Opracowała zestaw laboratoryjny do ciągłej destylacji ropy naftowej, który były wysoko ceniony przez jej współczesnych. Prowadziła też badania nad węglowodorami alifatycznymi, czego efektem była m.in. synteza 1,3-dibromopropanu.

W 1878 r. na konferencji Rosyjskiego Towarzystwa Chemicznego A. P. Eltekow omówił nową metodę syntezy rozgałęzionych węglowodorów nienasyconych. Wiele eksperymentów przeprowadziła Julia. Dziś reakcja jest znana jako reakcja Butlerowa–Eltekowa–Lermontovej (Rysunek 1).

Rysunek 1. Reakcja Butlerowa-Eltekoawa-Lermontowej (R – część alkilowa; X – halogen np. jod, brom; MetO – tlenek metalu; Δ – temperatura).

 

Sofja Kowalewska z córką Fufą, b.d., [za:] E. Høyrup, Verdens føorste kvindelige, professionelle matematiker, Matilde: Nyhedsbrev for Dansk Matematisk Forening, 2004.
W uznaniu jej zasług w 1881 r. przyjęto Julię do Rosyjskiego Stowarzyszenia Technicznego. Została tym samym pierwszą kobietą należącą do towarzystwa.

Julia odziedziczyła rodzinną posiadłość Semenkowo, gdzie spędzała coraz więcej czasu. W końcu osiadła tam na stałe. Zainteresowała się rolnictwem, a jej praca nad udoskonaleniem produkcji sera sprawiła, że stał się on przysmakiem sprzedanym w całej Rosji i na Ukrainie. Wiosną 1889 r. poważnie zachorowała na obustronne zapalenie płuc. Jesienią tego samego roku pojechała do Sztokholmu, by odwiedzić Kowalewską. Nagła śmierć przyjaciółki w 1891 r. głęboko ją poruszyła. Julia przysposobiła córkę Zofii Fufę. W grudniu 1919 r. Julia Lermontowa doznała wylewu do mózgu, w wyniku którego zmarła. Nigdy nie wyszła za mąż. Jej pasierbica Fufa Kowalewska uznawała ją za matkę. Odziedziczyła jej cały majątek.

 

 

 

 

Literatura zalecana:

  1. M. Offereins, Julia Lermontova (1846-1919), [w] J. Apotheker, L.S. Sarkadi, European Women in Chemistry, Wiley-VCH Verlag GmbH & Co. KGaA, 2011, s. 27–30.
  2. M. Creese, Early Women Chemists in Russia: Anna Volkova, Iuliia Lermontova, and Nadezhda Ziber-Shumova, Bull. Hist. Chem., 1998, 21, s. 19–24.
  3. E. Roussanova, Julia Lermontowa – die erste promovierte Chemikerin, Nachrichten aus der Chemie, 2003, 51 (12), s. 1296–1297.
  4. A. H. Koblitz, Science, Women, and the Russian Intelligentsia: The Generation of the 1860s, Isis, 1988, 79 (2), s. 208–226.

Lise Meitner i rozszczepienie jądra atomowego

 

 

Ostatnie dni grudnia 1939 roku należały do Lise Meitner i Ottona Hahna, którzy wymieniając niezwykle intensywnie korespondencję rozpisywali się o jednym z najważniejszych wydarzeń w historii nauki. O rozszczepieniu jądra atomowego.

Zapraszamy do lektury fragmentu książki Tomasza Pospiesznego pt. Zapomniany geniusz. Pierwsza dama fizyki jądrowej, Novae Res, Gdynia 2016.

 

***

Teraz Hahn musiał się spieszyć. Wyniki były może do końca niezrozumiałe, a wyjaśnienie dalekie, ale trzeba było się spieszyć. W Paryżu ta „przeklęta baba”, Irène Joliot-Curie, mogła mieć rację z lantanem i dreptała tuż za Hahnem. Kto wie, może równo z nim. Na gotowy maszynopis Hahn naniósł szybkie poprawki. W ostatnim momencie, uzgadniając to z Fritzem, zmienił tytuł na „Odkrycie izotopów metali alkalicznych powstających przy napromieniowaniu uranu neutronami i ich zachowanieˮ. W tej subtelnej zmianie – izotopów metali alkalicznych – ujął rad i bar, bowiem oba pierwiastki należą do metali alkalicznych. 22 grudnia oryginalny maszynopis odebrał Paul Rosbaud (redaktor „Naturwissenschaften”), a Hahn wrzucił do skrzynki pocztowej kopię zaadresowaną do Lise Meitner. W ciągu doby tekst pracy Hahna i Strassmanna przeczytały tylko te dwie osoby:

 

[…]Gdy wykonaliśmy odpowiednie badania promieniotwórczych próbek baru, które nie zawierały żadnych produktów późniejszych rozpadów, wyniki były zawsze negatywne. Substancja promieniotwórcza rozłożona była równomiernie we wszystkich frakcjach baru. […]Doszliśmy do wniosku, że nasze „izotopy radu” mają właściwości baru. Jako chemicy właściwie powinniśmy stwierdzić, że nowe produkty nie są radem, lecz barem. Żadne inne pierwiastki oprócz radu i baru nie wchodzą w rachubę.  […]

[…]Jako chemicy powinniśmy w istocie zmienić podany wyżej schemat rozpadu i wstawić symbole Ba [bar] , La [lantan] , Ce  [cer] na miejsce Ra  [rad] , Ac [aktyn] , Th [tor]. Jednakże jako „chemicy jądrowi”, pracujący w dziedzinie bardzo zbliżonej do fizyki, nie możemy zdobyć się na podjęcie tak drastycznego kroku, który byłby sprzeczny z wszystkimi dotychczas obowiązującymi prawami fizyki jądrowej. Być może wskutek szeregu niezwykłych zbiegów okoliczności otrzymaliśmy fałszywe wskazania[1].

 

Artykuł autorstwa niemieckich uczonych musiał wzbudzać kontrowersje. Po pierwsze, praca ta potwierdzała przypuszczenia Idy Noddack, która głośno i samotnie kwestionowała wcześniejsze prace Fermiego oraz zespołu Hahn–Meitner–Strassmann. Po drugie, ostatecznie przyznawała rację trudnej i zawiłej interpretacji doświadczeń przeprowadzonych przez Irène Joliot-Curie i Pavlé Savića. Po trzecie, podważała wcześniejsze badania nad transuranowcami, które zaowocowały przecież wieloma publikacjami grupy berlińskiej. Wreszcie nikt nie miał pewności, a wręcz przeciwnie: całą masę wątpliwości, że atom uranu jakimś sposobem przekształca się w atom baru. Hahn cały czas rozmyślał o wynikach ostatnich doświadczeń. 27 grudnia zatelefonował do Rosbauda z zapytaniem, czy można jeszcze dodać krótki akapit uzupełniający wnioski.

Jeśli chodzi o „grupę transuranowców”, to pierwiastki te są chemicznie powiązane, ale nie identyczne z ich niższymi homologami renu, osmu, irydu i platyny. Nie zostały jeszcze wykonane eksperymenty, które by potwierdzały, że mogą one być chemicznie identyczne z jeszcze niższymi homologami mazurem [obecnie technet] , rutenem, rodem, palladem.  […]Suma mas atomowych Ba + Ma [mazur] , na przykład, 138+101 wynosi 239! [2]

 

I ponownie Hahn szukał poparcia dla swoich pomysłów u Lise Meitner. Dzień później napisał do niej i Frischa list[3] dotyczący dołączonego akapitu. Korespondencja była dynamiczna (skoro tak intensywnie pracowali na odległość, co mogłoby się wydarzyć, gdyby Lise nie musiała emigrować?).

 

28 grudnia 1938 roku

Chcę Ci jeszcze szybko napisać parę słów o moich fantazjach dotyczących Ba, etc. Może w Kungälv jest z Tobą Otto Robert i może omówicie ten problem przez chwilę. Wysłaliśmy Tobie rękopis naszej pracy*.  […]Czy byłoby możliwe, aby uran 239 rozpadł się na 1 Ba i 1 Ma? Ba 138 i Ma 101 dają razem 239. Nie musi być akurat taka liczba masowa. Mogłoby też być 136 + 103, czy coś podobnego. Oczywiście nie zgadzają się liczby atomowe. Kilka neutronów musiałby się przemienić w protony, aby uzyskać takie ładunki. Czy to energetycznie jest możliwe? Wszystko inne jest udowodnione,  […]wówczas transuranowce „ausenium” i „hesperium” [pierwiastki 93 i 94] znikną. Nie wiem, czy to by mnie bardzo smuciło, czy nie*[4].

 

Było to intrygujące stwierdzenie. Jeśli Hahn miał rację, to odkrył zupełnie nowe zjawisko i jednocześnie przekreślił lata wspólnych badań z Meitner. Swoimi badaniami podważył istnienie transuranowców! Powodowało to znaczne zamieszanie w fizyce i chemii jądrowej. Przekreślało prace Fermiego i jego rzymskiej grupy, przekreślało prace Meitner i Hahna. Nieco oszołomiona Lise wyznała:

Nie mogliśmy tego zauważyć. To jest zupełnie niespodziewane. Hahn jest dobrym chemikiem i ufałam, że jeśli zidentyfikował jakieś pierwiastki, to miał rację. Kto mógłby pomyśleć, że chodzi o coś znacznie lżejszego?[5]

Kiedy Hahn i Strassmann przeprowadzali pierwsze doświadczenia z neutronami i uranem, Lise Meitner obchodziła pierwsze Boże Narodzenie na emigracji. Z dala od rodziny, przyjaciół. Z dala od domu. Jedyną bliską osobą, która mieszkała w Szwecji, była Eva von Bahr-Bergius, z którą Meitner zaprzyjaźniła się jeszcze w latach dwudziestych. Eva wspólnie z mężem Niklasem Bergiusem (1871–1947) wybudowała piękny dom w Kungälv, oddalonym około dwadzieścia kilometrów od Göteborga, do którego zaprosiła na święta bożonarodzeniowe Meitner. Uczona chyba z radością przyjęła zaproszenie, tym bardziej że miała się tam spotkać z ukochanym siostrzeńcem Ottonem Robertem. Frisch – podobnie jak ciotka – był uchodźcą pracującym w Kopenhadze pod opieką Nielsa Bohra. Niestety święta 1938 roku były dla nich obojga bardzo przykre i smutne. Spędzali je z dala od rodziny i nie wiedzieli, czy osoby bliskie ich sercom nadal żyją. Od czasu aresztowania ojca Frischa nie było także kontaktu z jego matką.

Meitner zatrzymała się w przytulnym pensjonacie i z niecierpliwością oczekiwała na swojego siostrzeńca. Pojawił się wieczorem, zmęczony podróżą. Nazajutrz podekscytowana Meitner zaczęła relacjonować siostrzeńcowi doświadczenia Hahna. Frisch początkowo był bardzo sceptyczny wobec opowieści ciotki. W tym czasie zajmował go problem magnetycznych właściwości neutronów i miał nadzieję, że przedyskutuje go z Lise. Ta jednak nie dawała za wygraną. Zmusiła siostrzeńca, by przeczytał list Hahna z 19 grudnia. Po pierwszej lekturze listu Frisch nie był nastawiony przychylnie:

Bar? Nie wierzę. Gdzieś jest jakiś błąd[6].

Nie, Hahn był zbyt dobrym chemikiem. Ale jak bar może tworzyć się z uranu?[7]

– Ale to niemożliwe! Nie można jednym uderzeniem odłupać od jądra stu cząsteczek. Nie można go nawet przeciąć. Wystarczy oszacować siły jądrowe, wszystkie te wiązania, które musisz naraz zerwać – to fantazja. To zupełnie niemożliwe, by coś takiego mogło się z jądrem zdarzyć[8].

Uczona była przekonana, że nie może być mowy o błędzie. Błędy mogła popełniać Irène Joliot-Curie, ale nie współpracownicy jej, Lise Meitner. Wybrali się na wspólny spacer. Frisch założył narty, a ciotka towarzyszyła mu pieszo. Kiedy siostrzeniec wyraził obawę, że Lise za nim nie nadąży, odpowiedziała, że szybkie chodzenie ją odmładza i utrzymuje w ruchu[9]. Po latach Frisch wspominał:

 

[…]Usiedliśmy oboje na pniu drzewa (wszystkie dyskusje miały miejsce, gdy szliśmy przez las w śniegu, ja na moich biegówkach, a Lise Meitner (zgodnie z wcześniejszym zapewnieniem, szła równie szybko bez nart) i zaczęliśmy wykonywać obliczenia na skrawkach papieru[10].

Jak może z uranu powstać bar? Nikomu nigdy nie udało się oderwać od jądra żadnych fragmentów większych niż protony czy jądra helu (cząstki alfa) i należało odrzucić myśl, że możliwe jest oddzielenie naraz wielu takich cząstek.  […]Wykluczone również, by jądro uranu po prostu pękło. Naprawdę, jądro to nie krucha bryłka, którą można rozłupać lub przełamać. Bohr podkreślał, że jądro bardziej przypomina kroplę cieczy[11].

Rzeczywiście model kroplowy jądra atomowego zaproponowany przez Bohra umożliwił wyjaśnienie zagadki Lise i Robertowi. Frisch podsumowywał:

Powoli zdaliśmy sobie sprawę z tego, że rozszczepienie uranu na dwie w przybliżeniu równe części… należy ująć z innej strony. Obraz byłby taki… jądro atomu zmienia stopniowo pierwotny kształt, wydłuża się, zwęża pośrodku, po czym dzieli się na dwie połowy[12].

 

Im większy ładunek w jądrze atomowym, tym większa jego niestabilność. Uran ma aż 92 protony, zatem jest niestabilny (protony odpychają się, przez co niestabilność jądra wzrasta). Dlatego w przyrodzie nie ma naturalnie występujących pierwiastków o liczbie protonów większej niż 92. Wystarczył jeden jedyny neutron, który powodował zwiększenie energii jądra, wskutek czego jądro zaczęło drgać i w efekcie pękać. Powstające dwa nowe jądra oddalają się od siebie z dużą prędkością. Ich masa było nieco mniejsza niż jądro macierzyste, a ów ubytek masy zgodnie z równaniem Einsteina E = mc2 przekształcał się w energię wynoszącą 200 MeV![13] Frisch wspominał:

Lise Meitner obliczyła, że dwa jądra powstałe w wyniku podziału jądra uranu będą lżejsze niż pierwotne jądro uranu o około jednej piątej masy protonu… Zgodnie z formułą Einsteina E = mc2… jedna piąta masy protonu jest równoważna 200 MeV[14].

24 grudnia 1938 roku w przepięknie zaśnieżonym lesie w odległej Szwecji Meitner wspólnie ze swoim siostrzeńcem wyjaśniła jedną z zagadek Matki Natury. Wszystko stało się jasne. Lise napisała do Hahna, ale jeszcze nie wyznała mu, że wspólnie z Frischem odkryła rozwiązanie.

 

29 grudnia 1938

Drogo Otto,

bardzo dziękuję za Twój list z 28… Wyniki Ra-Ba są bardzo ekscytujące. Otto R. i ja łamiemy sobie głowy; niestety nie dostałam jeszcze maszynopisu, ale właśnie posłałam po niego i mam nadzieję otrzymać go jutro. Wtedy będziemy mogli o tym lepiej pomyśleć.

1 stycznia 1939, godz. 12:30

Drogi Otto,

rok zaczynam listem do Ciebie. Może to być dobry rok dla nas wszystkich. Przeczytaliśmy i przemyśleliśmy bardzo dokładnie Twoją pracę, ale czy energetycznie byłoby możliwe, żeby takie ciężkie jądro pękało. Wprawdzie Twoja hipoteza o powstawaniu Ba i Ma jest niemożliwa z kilku powodów[15].

_____________________________________

[1] Ibidem, str. 228.

[2] P. Rife, „Lise Meitner…”, op. cit., str. 187.

[3] Profesor Sime podaje, że korespondencja pomiędzy Hahnem i Meitner dochodziła z dnia na dzień. Co za czasy!

 

[4] K. Hoffmann, „Wina i odpowiedzialność…”, op. cit., str. 141.

*Cytuję zdanie za: P. Rife, „Lise Meitner…”, op. cit., str. 192.

* Cytuję zdanie za: R. L. Sime, „Lise Meitner…”, op. cit., str. 239.

[5] R. Rhodes, „Jak powstała bomba atomowa”, op. cit., str. 232.

[6] Ibidem, str. 230.

[7] O. R. Frisch, „What Little I Remember”, op. cit., str. 115.

[8] R. Rhodes, „Jak powstała bomba atomowa”, op. cit., str. 230.

[9] Ibidem, str. 209.

[10] O. R. Frisch, „What Little I Remember”, op. cit., str. 116.

[11] R. Rhodes, „Jak powstała bomba atomowa”, op. cit., str. 230.

[12] R. Jungk, „Jaśniej niż tysiąc słońc”, op. cit., str. 62.

[13] 200 milionów eV (elektronovoltów). Energia z jednego atomu nie oszałamia, ale z jednego grama uranu już tak. Znajduje się w nim bowiem 2,53 x 1022 atomów!

[14] N.-T. H. Kim-Ngan, „Niedoceniony przez komitet Nagrody Nobla…”, op. cit., str. 20.

[15] R. L. Sime, „Lise Meitner…”, op. cit., str. 240.

125. rocznica odkrycia radu

 

Z okazji 125. rocznicy odkrycia radu zapraszamy do lektury fragmentu rozdziału Robaczki świętojańskie z książki Tomasza Pospiesznego pt. Maria Skłodowska-Curie. Zakochana w nauce, Wydawnictwo Sophia, Warszawa 2023.

 

 

***

Na kolejny sukces małżonkowie Curie nie musieli zbyt długo czekać. Po spędzonych wakacjach w Owernii na południu Francji z większym zapałem zabrali się do pracy. Ich wnuczka Hélène Langevin-Joliot uważa, że

[…] po ślubie Maria i Piotr oczywiście pracowali wspólnie. Tak urządzili swoje życie by móc dużo czasu poświęcić pracy. To badaniom naukowym podporządkowali wszystko. Ale chciałabym wspomnieć, że pomimo tak intensywnej pracy mieli czas na rozrywkę np. spędzali razem wakacje. Między odkryciem polonu i radu wyjeżdżają z rodziną Piotra do Owernii, a więc przerywają badania naukowe na całe dwa miesiące. Dziś to może się wydawać absolutnie niesamowite.[1]

 

W połowie listopada przeprowadzili serię doświadczeń, dzięki którym otrzymali bardzo promieniotwórczy produkt. Przy udziale Gustave Bémonta udało im się pozyskać próbkę zawierającą pierwiastek bar (symbol Ba, liczba atomowa 56) o promieniotwórczości dziewięćset razy większej niż uran! 26 grudnia 1898 roku wspólnie z asystentem Bémontem ogłosili, że odkryli drugi pierwiastek chemiczny – rad (symbol Ra, liczba atomowa 88)[2]. W komunikacie zatytułowanym O nowej silnie radioaktywnej substancji zawartej w blendzie smolistej[3] napisali:

 

Wyżej wyszczególnione fakty każą nam przypuszczać, że w tym nowym związku promieniotwórczym znajduje się nowy pierwiastek, który proponujemy nazwać radem. Nowy ten związek zawiera na pewno znaczną ilość baru, mimo to jednak jest on silnie promieniotwórczy. Promieniotwórczość radu musi być, zatem ogromna.[4]

Małżonkowie Curie na okładce czasopisma „Le Petit Parisien” z 10 stycznia 1904, archiwum Tomasza Pospiesznego

Maria będzie później żałowała, że rad przyćmił swą międzynarodową sławą polon. Poza tym polon bardziej strzegł swoich tajemnic. Jeden z pierwszych polskich współpracowników Marii, Mirosław Kernbaum, po latach powiedział o polonie – Dziwnym więc trafem dzieli on los narodu, ku czci którego otrzymał imię: egzystuje de facto, jako pierwiastek chemiczny, de iure jednak przez międzynarodową komisję chemików nie jest za taki uznawany.[5] Polska jeszcze długo nie będzie miała szczęścia…

Jaką rolę w odkryciu radu odegrał Bémont nie wiadomo do końca. Znakomita biografka Marii, Françoise Giroud, podaje, że uczestniczył w badaniach, ponieważ w zeszycie laboratoryjnym z maja 1898 roku istnieją notatki wykonane jego ręką.[6] Jego badania mogły jednak ograniczać się do drobnych prac laboratoryjnych. Nie mniej jednak jest współautorem komunikatu donoszącym o istnieniu radu.

Maria i Piotr Curie oraz Guastave Bemont w szopie przy ul. Lhomond 42, ok. 1898, domena publiczna

Polon i rad zostały zaobserwowane przez małżonków Curie dzięki dużej aktywności promieniotwórczej. Teraz uczeni potrzebowali dodatkowego dowodu, aby potwierdzić, że oba pierwiastki istnieją. Eugène Demarçay specjalista z zakresu spektroskopii emisyjnej wykonał widma nowo odkrytych pierwiastków. Demarçay rozgrzewał w płomieniu palnika substancje zawierające polon i rad do stanu gazowego, a następnie przeanalizował widma, które powstały w wyniku rozszczepienia światła przez nie emitowanego. Curie mieli dowód istnienia radu w postaci widma emisyjnego, na którym było widać słabą, ale wyraźną linię fioletową przy 381,48 nm odpowiadającą temu pierwiastkowi.[7] Niestety stężenie polonu w badanej próbce było zbyt słabe, żeby zaobserwować linię emisyjną. Dlaczego? Otóż trzy pierwiastki promieniotwórcze uran, tor i rad należą do pierwiastków długożyciowych, przez co uczeni prawie w ogóle nie obserwowali spadku ich promieniotwórczości. Z kolei polon należy do pierwiastków krótkożyciowych, dla których aktywność promieniotwórcza maleje wraz z upływem czasu. Ponadto jest też pierwiastkiem rzadkim. W jednej tonie blendy uranowej (w zależności od jej pochodzenia) znajduje się około 1,4 grama radu i tylko 0,1 miligrama polonu. Maria wysunęła hipotezę, że aktywność promieniotwórcza jest stała dla danego pierwiastka. Pojawiła się więc wątpliwość czy polon nie jest bizmutem, którego aktywność została wzbudzona przez rad. Dodatkowo przemawiała za tym faktem obecność w widmie emisyjnym tylko linii bizmutu. Z drugiej strony Maria wnioskowała, że ilość polonu w badanej próbce może być tak mała, że nie zauważono jego linii. Jedynym sposobem na potwierdzenie tej teorii było otrzymanie próbki o większym stężeniu polonu, przez co byłoby można dokładnie zbadać jego właściwości chemiczne. Niestety to zadanie przez długie lata było nieosiągalne. Dopiero w czerwcu 1902 roku niemiecki chemik pracujący w Berlinie, Willy Marckwald wydzielił wolny polon. Zanurzył on czysty bizmut w roztworze otrzymanym przez roztworzenie[8] bizmutu otrzymanego z odpadów po przerobie blendy uranowej w kwasie solnym. Bizmut jako aktywniejszy pierwiastek wyparł z soli polon, który osadził się na jego powierzchni[9]. W ten sposób roztwór stawał się nieaktywny, a powierzchnia bizmutu stawała się promieniotwórcza poprzez obecność cienkiej warstewki nowego ciała. Uczony sądząc, że odkrył nowy pierwiastek, który właściwościami zbliżony był do telluru, nazwał go radiotellurem. Maria Curie udowodniła, że radiotellur i polon mają te same właściwości fizyczne i chemiczne – są więc tą samą substancją. Koronnym argumentem było porównanie czasów połowicznego zaniku obu pierwiastków. Kiedy okazało się, że wynosi on w obu przypadkach 140 dni, Maria nie miała wątpliwości. W sprawozdaniu pt. O zmniejszeniu się radioaktywności polonu wraz z upływem czasu pisała: Polon Marckwalda wydaje się identyczny z naszym oraz nie ma wątpliwości […] że substancja przygotowana przez Marckwalda jest po prostu tą samą, którą odkryłam wcześniej i opisałam jako polon.[10] Maria zadbała, aby jej wyniki badań, wnioski i eksperymenty ukazały się także po niemiecku. Kiedy jest pewna swych racji potrafi być bezwzględna. W świecie mężczyzn to trudna sztuka, ale za to jak bardzo imponująca. Marckwald, uznając rację Marii, powołując się na Szekspira, napisał: Jeśli wonną różę nazwać inaczej, czyż przestanie pachnieć?* Proponuję w przyszłości zastąpić nazwę radiotellur przez polon.[11]

Widmo emisyjne było wystarczającym dowodem istnienia radu dla fizyków, nie przekonywało jednak chemików. Chemicy żądali właściwości chemicznych nowych pierwiastków, chcieli znać masę radu. Irena Joliot-Curie wspominała:

 

W tym czasie oznaczenie widma i ciężaru atomowego radu miało wielkie znaczenie dla przekonania chemików, że nowe radiopierwiastki były takimi samymi substancjami, jak inne, różniąc się jedynie posiadaniem właściwości promieniotwórczych.[12]

Maria i Piotr Curie w szopie przy ulicy Lhomond 42, ok. 1898, domena publiczna

Ażeby Maria mogła określić masę atomową radu potrzebowała dziesiątek ton smółki uranowej, a ta niestety po pierwsze zawierała bardzo małe ilości radu, a po drugie kosztowała fortunę. Z pomocą przyszła fabryka uranu z Czech, znajdująca się w Jachymowie. Wspaniałomyślnie rząd austriacki po namowach Franza Exnera – późniejszego nauczyciela fizyki eksperymentalnej Erwina Schrödingera i Mariana Smoluchowskiego – podarował małżonkom Curie najpierw sto kilogramów, a potem całą tonę ziemi, stanowiącą odpady po wydzieleniu uranu. W rozprawie doktorskiej Maria napisała:

 

To ta pozostałość zawiera substancje radioaktywne; jej czynność promieniotwórcza jest cztery i pół razy większa od aktywności uranu metalicznego. Rząd austriacki, do którego należą kopalnie blendy, uprzejmie zaoferował nam na cele naszych poszukiwań jedną tonę tych odpadków i upoważnił kopalnie do dostarczania nam większej ilości ton tego materiału.[13]

 

Odpady te zawierały drogocenny rad i polon. Wreszcie, fundacja barona Rothschilda za bardzo niską cenę odkupiła od rządu Austrii kilka ton ziemi. Maria rozpoczęła swoją przygodę z radem. Zaczęła rodzić się legenda.

Wnętrze laboratorium państwa Curie przy ul. Lhomond 42, 1898, Bibliotheque numerique du Cirad en agronomie tropicale, domena publiczna

 

Wejście do szkoły Fizyki i Chemii Przemysłowej przy ul. Lhomond 42 prowadzące na podwórze, gdzie mieściła się szopa-laboratorium małżonków Curie, ok. 1898. Musée Curie (Coll. ACJC)

W 1902 roku po serii bardzo żmudnych i ciężkich prac laboratoryjnych, udało się Marii pozyskać 1 decygram[14] chlorku radu (RaCl2) i wyznaczyć masę radu na 225±1 (dziś wiemy, że wynosi ona 226,025 u). Wszystkie prace małżonkowie Curie wykonywali w legendarnej, drewnianej szopie przy ulicy Lhomond 42 niedaleko Wyższej Szkoły Fizyki i Chemii Przemysłowej Miasta Paryża, gdzie wykładał Piotr. Nie było tam wentylacji, zimą było bardzo zimno, podczas deszczu przeciekał dach, a latem panował niewyobrażalny ukrop. Maria pisała:

 

Była to pozbawiona wszelkich sprzętów szopa z desek, o cementowej podłodze i oszklonym dachu, przez który miejscami przeciekał deszcz. Całe wyposażenie składało się ze zniszczonych drewnianych stołów, żelaznego pieca, dającego bardzo niedostateczne ciepło i z tablicy, na której Piotr chętnie pisał i rysował. Nie było tam wyciągu do robót, przy których wydzielają się szkodliwe gazy, trzeba było zatem wykonywać takie prace na podwórzu, gdy pogoda na to pozwalała. Podczas deszczu musieliśmy je prowadzić w szopie, przy otwartych drzwiach.[15]

 

________________________

[1] Maria, reż. A. Albrecht, Polska 2011.

[2] Rad leży w układzie okresowym pod barem. Oba pierwiastki należą do tej samej grupy berylowców.

[3] M. P. Curie, Mme. P. Curie, M. G. Bémont, Sur une nouvelle substance fortement radio-active, contenue dans la pechblende, CR 127, 1898, str. 1215–1217.

[4] E. Curie, Maria Curie, dz. cyt., str. 174.

[5] M. Skłodowska-Curie, Badanie ciał radioaktywnych, dz. cyt., str. <4>.

[6] F. Giroud, Maria Skłodowska-Curie, dz. cyt., str. 88.

[7] Linie w widmie emisyjnym są swoistymi odciskami palców pierwiastków chemicznych. Każdy z nich ma swoją własną, charakterystyczną dla siebie linię.

[8] Roztworzenie to zjawisko chemiczne, które polega na rozpuszczaniu ciała stałego przy jednoczesnej jego reakcji z rozpuszczalnikiem lub składnikiem roztworu. Po odparowaniu rozpuszczalnika nie powstanie substancja wyjściowa, ale produkt reakcji.

[9] Maria pisała: Można wydzielić radiopierwiastki z roztworu drogą elektrolizy lub osadzania na odpowiednio dobranym metalu, zanurzonym w roztworze. […] Tak np. w celu oddzielenia lub oczyszczenia polonu osadza się go zazwyczaj na miedzi lub srebrze. Zob. M. Skłodowska-Curie, Promieniotwórczość, reprint wydania z 1939, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa 2011, str. 340.

[10] S. Quinn, Życie Marii Curie, dz. cyt., str. 249–250.

[11] M. Fontani, M. Costa, M.V. Orna, The lost elements. The periodic table’s shadow side, Oxford University Press, New York, 2014, str. 472.

*W. Szekspir, Romeo i Julia, akt II, scena 3, przekład J. Iwaszkiewicz, Świat Książki, Warszawa 1999.

[12] I. Joliot-Curie, Naturalne pierwiastki, dz. cyt., str. 8.

[13] M. Skłodowska-Curie, Badanie ciał radioaktywnych, dz. cyt., str. 19.

[14] Decygram to 1/10 grama.

[15] M. Skłodowska-Curie, Autobiografia, dz. cyt., str. 117.

148. rocznica urodzin Milevy Marić-Einstein

 

W grudniu 2023 roku mija przypada 148 rocznica urodzin Milevy Marič. Odeszła w zapomnieniu i taką też pozostała przez wiele lat. Pochowano ją w obrządku prawosławnym w jej ukochanym Zurychu na cmentarzu Nordheim. Nagrobek Milevy Marič został usunięty w latach siedemdziesiątych ubiegłego stulecia przez władze cmentarza, gdyż przez wiele lat po jej śmierci nie była uiszczana opłata za grób. Z inicjatywy dra Ljubo Vujevicia z The Tesla Memorial Society w Nowym Yorku odnaleziono grób Milevy w 2004 roku. Zainicjowano także ponowne wzniesienie nagrobka kobiety, która była towarzyszką życia Alberta Einsteina.

Proponujemy Państwu lekturę fragmentu książki Tomasza Pospiesznego pt. Pasja i geniusz. Kobiety, które zasłużyły na Nagrodę Nobla opisujący życie Milevy Marič.

 

Pani Einstein-Marity

Niezwykle uporządkowana Mileva wprowadziła ład w życie Einsteina. W dzieciństwie nauczyła się szyć, a później także gotować. Nie tylko szyła swoje sukienki, ale także reperowała ubrania Alberta. Umiała trafić do jego serca przez swój intelekt, ale także przez jego żołądek. Roztargnienie, brak organizacji, bałaganiarstwo i zapominalstwo Einsteina była zdolna okiełznać jak nikt inny. Tak doskonale nam idzie wspólne zgłębianie naszych mrocznych dusz, picie kawy, jedzenie kiełbasek itd. – pisał Albert[1]. Jeden z biografów Einsteina Peter Michelmore napisał, że Mileva:

 

[…] potrafiła szybciej niż [Albert] wyrobić sobie zdanie na temat ludzi i była bardzo stała w swoich wyborach. W każdej sprawie zajmowała zdecydowany punkt widzenia. Z góry planowała zarówno przebieg swoich studiów, jak i rozkład każdego dnia. Próbowała również wprowadzić porządek w życie Alberta. I matematyka była tylko częścią tego wszystkiego. Namawiała go do regularnego spożywania posiłków i uczyła oszczędności. Często wściekała się na jego roztargnienie. Wtedy spoglądał na nią ze spokojem, jak tupie nóżką niczym mała dziewczynka, a w jego oczach pojawiały się łobuzerskie ogniki. Potem robił śmieszne miny lub opowiadał żarcik i jej złość powoli ustępowała[2].

 

Mileva,Albert i ich pierwszy syn Hans Albert, Berno, 1904, Instytut Leo Baecka, [za:] http://einstein-virtuell.mpiwg-berlin.mpg.de/VEA/SC-1668110491_MOD-736752543_SEQ1883770543_SL-110908586_en.html
Niestety nie wszyscy byli przychylni ich związkowi. Przyjaciele Milevy uważali, że Albert nie jest dla niej odpowiednim partnerem. Z kolei jego znajomi nie potrafili zrozumieć, co widzi w utykającej, humorzastej Milevie. Albert jednak podziwiał jej inteligencję. I był zakochany. Kiedy jeden z jego kolegów powiedział: Wiesz, nigdy nie odważyłbym się poślubić kobiety, która nie byłaby zupełnie zdrowa, Albert odpowiedział: Ale ona ma taki cudowny głos[3].

Tymczasem zbliżał się czas egzaminów: międzykursowego i końcowego. Einstein zdał egzamin międzykursowy w październiku 1898 roku, Mileva zaś musiała przygotowywać się do niego dłużej z racji pobytu na uniwersytecie w Heidelbergu. Przystąpiła do niego w październiku następnego roku, zdając z piątą lokatą. Latem 1899 roku, gdy Mileva przygotowywała się do egzaminów, Einstein przebywał na wakacjach wraz z matką i siostrą. Pokazał wówczas matce zdjęcie Milevy. W liście do ukochanej pisał, że wywarło ono na Paulinie Einstein wrażenie – moja stara matka pozdrawia Cię jak najserdeczniej[4]. Niestety kiedy Frau Einstein zorientowała się, że nie jest to kolejny romans syna, lecz związek poważny, jej zachowanie względem Milevy uległo radykalnej zmianie. Przeszkadzało jej, że jest Serbką, że nie jest Żydówką, że pochodzi z pospolitej rodziny, że jest starsza od Alberta, że jest ułomna fizycznie. Jednym słowem, była najgorszą z możliwych partii dla jej ukochanego syna. Pierwsze niepokojące wieści nadesłała Helena Kaufler, która na własne oczy widziała niechęć Pauliny do Milevy. Zrozpaczona Mileva pisała do niej:

 

Sądzisz, że ona w ogóle mnie lubi? Naprawdę się ze mnie tak strasznie naśmiewała? Wiesz, poczułam się głęboko nieszczęśliwa, ale potem się pocieszyłam, że w końcu ten najważniejszy dla mnie człowiek jest innego zdania, a kiedy on roztacza nade mną wspaniałą wizję naszej przyszłości, nie myślę już o moim nieszczęściu[5].

Mileva Marič, 1896, domena publiczna

Niestety najgorsze miało dopiero nadejść. Latem 1900 roku przystąpili do egzaminów końcowych składających się z części pisemnej i ustnej. Einstein zdał, Mileva nie. Jako jedyna uzyskała średnią poniżej pięciu. Tym samym jako jedyna nie otrzymała dyplomu. Być może miał na to wpływ egzamin ustny, który Mitza zdawała przed profesorami mężczyznami, z góry przeświadczonymi o braku zdolności kobiet do nauk ścisłych. Możliwe też, że nie opanowała całego materiału, przecież w tym samym roku zdawała także egzamin międzykursowy. Załamana wróciła do rodziców z mocnym postanowieniem przystąpienia do egzaminów w roku następnym. Albert zaś udał się na wakacje z rodziną. Niestety sytuacja pomiędzy nim i matką była bardzo napięta. Kiedy Paulina dowiedziała się, że Mileva oblała egzaminy, zapytała: No, i kim teraz będzie ta twoja Laleczka?. Z pewnością i wyzwaniem w oczach Albert odpowiedział: Moją żoną. Ona jest takim samym molem książkowym jak ty, a tobie potrzebna jest żona. Gdy ty będziesz miał trzydziestkę, z niej będzie już stara krowa! – krzyczała Paulina[6]. Jej wściekłość zmieniła się w histerię i bezradność:

 

Mama rzuciła się na łóżko, ukryła głowę w poduszkach i rozpłakała jak dziecko. Gdy tylko się opanowała, natychmiast przystąpiła do gwałtownego ataku: „W ten sposób rujnujesz swoją przyszłość i grzebiesz swoje szanse! Żadna porządna rodzina by jej nie chciała. Jeśli zajdzie w ciążę, dopiero będziesz się miał z pyszna!” Przy tym ostatnim wybuchu, przed którym było jeszcze wiele innych, w końcu straciłem cierpliwość. Zaprzeczyłem ostro, abyśmy żyli w grzechu, po czym zrugałem ją, na czym świat stoi […][7].

Akademia Olimpijska: Albert Einstein z przyjaciółmi: Conradem Habichem i Maurice’m Solovine’em, ok. 1903, domena publiczna

Wydaje się, że młody Einstein był na tyle uparty, że dążył do celu za wszelką cenę. Dopiero teraz widzę jak szaleńczo Cię kocham – pisał do Milevy[8]. Żywiołowe wręcz wyznania uczuć mogą świadczyć o buncie Alberta przeciw rodzinie, chociaż na pewno kochał Milevę. Napisał do niej:

 

Co będzie, to będzie, ale i tak będziemy mieć najpiękniejsze życie pod słońcem. Przyjemna praca i bycie razem – czegóż można jeszcze chcieć? Jak uciułamy trochę pieniędzy, kupimy sobie rowery i będziemy co parę tygodni jeździć na wycieczki[9].

Państwo Einsteinowie w Kacu w Serbii, ok. 1912, domena publiczna

Czy ta romantyczna deklaracja nie nasuwa skojarzeń z francusko-polską parą uczonych pędzących na bicyklach?

Niestety sytuacja materialna Einsteina z dnia na dzień się pogorszyła: chcąc go ukarać, rodzina przestała przekazywać mu pieniądze. Udzielał korepetycji, ale był to skromny dochód, który nie pozwalał na finalizację planów Alberta i Milevy. A przecież mieli marzenia. Jakże cudnie będzie wyglądał świat, gdy będę już Twoją małą żoną – pisała Mileva[10]. Niestety rodzice Einsteina robili wszystko, co tylko mogli, by utrudnić im życie. Zwłaszcza Milevie. Do Heleny pisała:

 

Ta kobieta najwyraźniej obrała sobie za cel życia, by zatruć życie nie tylko moje. Ale i swojego syna […]. Posunęli się nawet do tego, by napisać list do moich rodziców, w którym oczerniają mnie w stopniu wręcz skandalicznym[11].

 

Brak stabilności finansowej nie ograniczył jednak pracy twórczej Alberta. Pierwszą pracą, której się poświęcił, było padanie efektu kapilarnego, czyli podnoszenie się słupa cieczy w bardzo cienkiej rurce. 3 października 1900 roku, na dwa miesiące przed wysłaniem artykułu do redakcji „Annalen der Physikˮ, w liście do Milevy pisał:

 

Wnioski na temat efektu kapilarnego, do jakich doszedłem niedawno w Zurychu, wydają mi się całkiem nowe, choć są takie proste. Kiedy oboje będziemy już w Zurychu, spróbujemy zdobyć jakieś dane empiryczne na ten temat […]. Jeśli ujawnia się tu jakieś prawo przyrody, poślemy rezultaty do „Annalenˮ[12].

 

Walter Isaacson, autor doskonałej biografii Einsteina, podaje, że był to początek sporów dotyczących udziału Milevy Marič w badaniach i teoriach Einsteina. W tym jednak przypadku wydaje się, że jej rola ograniczała się do słuchaczki i być może dyskutantki. W liście do Heleny Savić (od 15 listopada 1900 roku żony Milivojea Savića) pisała:

 

Albert napisał artykuł z fizyki, który prawdopodobnie wkrótce zostanie opublikowany w „Annalen der Physik”. Możesz sobie wyobrazić, jaka jestem dumna z mojego ukochanego. Nie jest to taki zwykły artykuł, tylko bardzo ważny – dotyczy teorii cieczy. Wysłaliśmy kopię do Boltzmanna, gdyż chcielibyśmy wiedzieć, co on o tym myśli. Mam nadzieję, że nam odpisze[13].

Boltzmann nie odpisał, a artykuł Einstein z czasem uznał za mało znaczący. Pomimo pierwszego osiągnięcia naukowego nadal pozostawał bez pracy. Zmuszony przez rodzinę pojechał do Mediolanu. Miało to służyć rozdzieleniu kochanków.

Z listów można wnioskować, że im dłużej Albert nie widział Mitzy, tym bardziej szalał z miłości:

 

Bez Ciebie brakuje mi pewności siebie, przyjemności z pracy, przyjemności z życia – krótko mówiąc, bez Ciebie moje życie straciło swój sens[14].

 

Jakże mogłem przedtem żyć. […] Bez myśli o Tobie wolałbym umrzeć. […] Spośród wszystkich ludzi, Ty kochasz mnie najmocniej i najlepiej rozumiesz. […] Wieczorami myślę o tym, że [Ty] myślisz o mnie i całujesz w łóżku poduszkę. Wiem, jak to jest! […]. Moim szczęściem jest Twoje szczęście. […] Moje życie zyskuje prawdziwy sens tylko dzięki myślom o Tobie. […] Jak cudownie było ostatnim razem, gdy mogłem Cię obejmować, tak jak natura stworzyła[15].

 

W innym liście dodawał: Na zawsze pozostaniemy studentami i gówno będzie nas obchodził cały świat[16]. Niestety nie dane było im pozostać wiecznymi studentami. Mileva rozpoczęła przygotowania do ponownego podejścia do egzaminów końcowych i miała nadzieję, że uzyskanie dyplomu umożliwi jej przygotowanie rozprawy doktorskiej. Promotorem miał być profesor Heinrich Martin Weber (1842–1913). W marcu 1900 roku w liście do Heleny pisała:

 

Profesor Weber przyjął moją propozycję pracy dyplomowej i był z niej całkiem zadowolony. Szukam tematów dalszych badań, które będę musiała wykonać. E. [Albert] wybrał dla siebie bardzo interesujący temat[17].

 

Albert z kolei pisał:

 

Ja również cieszę się bardzo, że będziemy nad tym razem pracowali. Nie wolno Ci teraz przerywać Twoich badań – jakiż będę dumny, gdy moje małe kochanie zostanie już panią doktor, a ja wciąż będę zupełnie zwykłym człowiekiem![18]

 

Niestety współpraca nie układała się idealnie. Weber był autorytatywny i z czasem coraz mniej lubił zuchwałego Einsteina. Milevie dostawało się także. Wiosną następnego roku pisała:

 

Miałam kilka kłótni z Weberem, ale jestem już do tego przyzwyczajona[19]. Dzięki obawom Webera nie udało mi się jeszcze zdobyć doktoratu [pomimo ukończenia kursu]. Znosiłam zbyt wiele i w żadnym wypadku nie wrócę do niego ponownie[20].

 

Można z dużą dozą prawdopodobieństwa przypuszczać, że Mileva nie uzyskała dyplomu, gdyż Albert nie potrafił ukrywać niechęci do profesora Webera. Tymczasem życie Milevy uległo radykalnej zmianie.

W maju 1900 roku spędziła z Albertem piękne, romantyczne i namiętne wakacje nad jeziorem Como. Niebawem okazało się, że jest w ciąży. 28 maja Einstein w liście do ukochanej pisał: Jak się czujesz, kochana? Jak tam chłopiec? […] Jak tam nasz mały synek?[21]. Pomimo dolegliwości ciążowych Mileva starała się przygotować do egzaminu, który miała zdawać w lipcu. Niestety i tym razem się nie udało. Abraham Pais podkreśla: teraz, gdy już wiemy, że w tym czasie była w odmiennym stanie, tym bardziej winniśmy podziwiać jej odwagę i upór, by zdawać raz jeszcze[22]. Bez dyplomu, w ciąży, bez ukochanego przy sobie wróciła do Nowego Sadu. Musiała zmierzyć się sama z trudami ciąży i porzuconymi marzeniami o karierze naukowej. Co jednak najgorsze, była przekonana, że na zachodzie zostanie uznana za ladacznicę, która zrujnowała Albertowi życie, na wschodzie zaś za idiotkę[23]. Jesienią 1901 roku Einstein został prywatnym nauczycielem w Szafuzie nad Renem. Jednocześnie wiązał nadzieje z otrzymaniem posady w urzędzie patentowym w Bernie. Mileva czuła się osamotniona. W liście do Alberta pisała:

 

Gdybyś tylko wiedział, jak bardzo samotna i opuszczona się czuję, na pewno byś przyjechał. […] Żebyś wiedział, jak bardzo chcę Cię znowu zobaczyć! Myślę o tobie całymi dniami, a jeszcze bardziej nocami[24].

 

W grudniu 1901 roku Albert pisał:

 

Wyczekuję naszej drogiej Lieserl [córeczki], ale po kryjomu (tak aby Doxerl się nie dowiedziała) wyobrażam sobie, że jest to Hanserl […]. Istnieje tylko kwestia, jak moglibyśmy przyjąć naszą Lieserl; nie chciałbym jej oddawać […][25].

 

Kiedy kilka dni później dowiedział się, że otrzymał pracę w Bernie, przyszło ukojenie i spokój. W listach do Mitzy pisał:

 

Zurych, 30 kwietnia 1901 roku

Mój kochany kotku,

[…] Sama się przekonasz, jaki pogodny i radosny się stałem. Dawno zapomniałem o wszystkich moich troskach. I tak bardzo Cię znowu kocham! To tylko z nerwów byłem tak niedobry dla Ciebie […] i tęsknię bardzo do chwili, kiedy znowu Cię ujrzę. […]

Całuję Cię z dna mojego serca.

Twoje kochanie[26]

 

Winterthur, 9 maja 1901 roku

Kochany kotku,

[…] Gdybym tylko mógł przekazać Ci chociaż cząstkę własnego szczęścia, abyś już na zawsze była wolna od smutku i melancholii. […]

Najlepsze życzenia i całusy dla Ciebie.

Albert[27]

 

W styczniu 1902 roku otrzymał wiadomość, że został ojcem. Poród był długi i ciężki. Córeczce Mileva nadała imię Lieserl. Einstein pisał do ukochanej:

 

Berno, 4 lutego 1902 roku

Moje najdroższe kochanie,

Biedne, najdroższe kochanie; co musiałaś wycierpieć, jeśli nie możesz nawet samodzielnie do mnie napisać! Szkoda, że nasza droga Lieserl musi zostać przedstawiona światu w ten sposób! Mam nadzieję, że do czasu nadejścia mojego listu będziesz zdrowsza i weselsza. […] Więc faktycznie jest dziewczynka. Czy jest zdrowa i płacze jak trzeba? Jakiego koloru ma oczka? Skąd bierzesz mleko? Czy dużo je? Musi być kompletnie łysa. Kocham ją bardzo, a przecież nawet nie wiem, jak wygląda. […] Chętnie sam zmajstrowałbym taką Lieserl, to musi być fascynujące! Z pewnością umie już płakać, lecz śmiać nauczy się dopiero później. Jest w tym pewna głęboka prawda. […]

Dla Ciebie tysiące pocałunków od Twojej miłości,

Johnnie[28]

Albert Einstein na rok przed otrzymaniem Nagrody Nobla, 1920, domena publiczna

Niestety nie ma żadnych listów świadczących o tym, że Einstein widział swoją córkę. Trudno domniemywać, czy o istnieniu dziecka wiedziała także rodzina i najbliżsi przyjaciele Einsteina. Wprawdzie jego matka 20 lutego 1902 roku pisała: tej Marič zawdzięczam najgorsze chwile mojego życia; gdyby to leżało w mojej mocy, zrobiłabym wszystko, aby zniknęła z naszego horyzontu[29], ale nie ma pewności, że odnosi się tym samym do narodzin wnuczki. Nie wiadomo też nic pewnego o losie dziecka. Michele Zackheim w swojej książce o Lieserl twierdzi, że była niepełnosprawna fizycznie i zamieszkała z rodziną Milevy. Według niej prawdopodobnie zmarła na szkarlatynę we wrześniu 1903 roku[30]. Z kolei wieloletni badacz życia Einsteina Robert Schulmann wysunął hipotezę, że Lieserl adoptowała Helena Savić. Nadano jej imię Zorka i miała żyć aż do lat dziewięćdziesiątych ubiegłego wieku. W rzeczywistości Saviciowie mieli niewidomą od wczesnego dzieciństwa córkę o takim imieniu, która zmarła w 1992 roku. Jednakże wnuk Heleny, a siostrzeniec Zorki doktor Milan Popović, odrzucił możliwość, że była to Lieserl, i twierdził, że to dziecko zmarło we wrześniu 1903 roku. W swojej książce napisał: wysunięta teoria, jakoby moja babcia adoptowała Lieserl, jest pozbawiona jakichkolwiek podstaw, gdyż zostało to dokładnie sprawdzone w historii mojej rodziny[31]. Znajduje to potwierdzenie w korespondencji Milevy i Alberta. W sierpniu 1903 roku Mileva pojechała do Nowego Sadu, gdyż została poinformowana, że Lieserl zachorowała na szkarlatynę. Z podróży wysłała kartę Albertowi: Podróż upływa szybko, ale jest ciężka. Nie czuję się dobrze. Co porabiasz, mój Jonzile? Napisz do mnie prędko. Twoja biedna Laleczka[32]. Złe samopoczucie Milevy wynikało z tego, że była ponownie w ciąży. Albert odpisał:

 

Bardzo mi przykro z powodu tego, co się stało z Lieserl. Szkarlatyna pozostawia często trwałe ślady. Jak Lieserl została zarejestrowana urzędowo? Musimy bardzo uważać, bo inaczej dziecko będzie miało problemy w przyszłości[33].

Mileva i Albert Einsteinowie, ok. 1905, domena publiczna

10 października 1902 roku zmarł ojciec Alberta. Krótko przed śmiercią wyraził zgodę na ślub syna z Milevą[34]. 6 stycznia 1903 roku Einstein dotrzymał słowa i ożenił się z Mitzą. Ślub cywilny odbył się w Bernie w towarzystwie najbliższych przyjaciół. Rok później, 14 maja 1904 roku, Mileva urodziła syna Hansa Alberta. W liście do Heleny pisała, żeby przyjechała do Berna, gdyż chciała jej pokazać moje małe kochanie, które też ma na imię Albert. Nie umiem wyrazić, ile daje mi radości, gdy śmieje się po przebudzeniu albo fika nóżkami w kąpieli[35]. Ojciec Milevy przyjechał zobaczyć wnuka i zaoferował zięciowi pokaźną sumę pieniędzy. Einstein jednak ich nie przyjął, argumentując:

 

Nie poślubiłem twojej córki dla pieniędzy, ale dlatego, że ją kocham, potrzebuję jej, ponieważ oboje jesteśmy jednością. Wszystko, co zrobiłem i osiągnąłem, zawdzięczam Milevie. Jest moim genialnym źródłem inspiracji, moim aniołem ochronnym przeciwko pokusom w życiu, a tym bardziej w nauce. Bez niej nie rozpocząłbym pracy, nie mówiąc już o jej zakończeniu[36].

_______

[1] R. Highfield, P. Carter, Prywatne życie Alberta Einsteina, op. cit., s. 67.

[2] P. Michelmore, Einstein: Profile of the Man, Dodd, Mead and Company, New York 1962, s. 36.

[3] W. Isaacson, Einstein, op. cit., s. 59.

[4] R. Highfield, P. Carter, Prywatne życie Alberta Einsteina, op. cit., s. 76.

[5] Ibidem, s. 77.

[6] Ibidem, s. 79.

[7] Ibidem, s. 80.

[8] W. Isaacson, Einstein, op. cit., s. 67.

[9] Ibidem, s. 69.

[10] A. Pais, Tu żył Albert Einstein, Prószyński i S-ka, Warszawa 2005, s. 24.

[11] Ibidem, s. 24.

[12] W. Isaacson, Einstein, op. cit., s. 71.

[13] M. Popović, In Albertʼs Shadow, op. cit., s. 70.

[14] J. Renn, R. Schulmann, Albert Einstein/Mileva Marić, op. cit., s. 26.

[15] A. Pais, Tu żył Albert Einstein, op. cit., s. 24.

[16] D. Overbye, Zakochany Einstein, op. cit., s. 72.

[17] M. Popović, In Albertʼs Shadow, op. cit., s. 60.

[18] J. Renn, R. Schulmann, Albert Einstein/Mileva Marić, op. cit., s. 32.

[19] M. Popović, In Albertʼs Shadow, op. cit., s. 76.

[20] Ibidem, s. 78.

[21] J. Renn, R. Schulmann, Albert Einstein/Mileva Marić, op. cit., s. 54.

[22] A. Pais, Tu żył Albert Einstein, op. cit., s. 25.

[23] D. Overbye, Zakochany Einstein, op. cit., s. 127.

[24] W. Isaacson, Einstein, op. cit., s. 86.

[25] A. Pais, Tu żył Albert Einstein, op. cit., s. 25.

[26] J. Renn, R. Schulmann, Albert Einstein/Mileva Marić, op. cit., s. 46.

[27] Ibidem, s. 51.

[28] J. Renn, R. Schulmann, Albert Einstein/Mileva Marić, op. cit., s. 73.

[29] A. Pais, Tu żył Albert Einstein, op. cit., s. 25.

[30] M. Zackheim, Einsteinʼs Daughter: The Search for Lieserl, Riverhead Hardcover, New York 1999.

[31] M. Popović, In Albertʼs Shadow, op. cit., s. 11.

[32] W. Isaacson, Einstein, op. cit., s. 98.

[33] Ibidem, s. 98.

[34] A. Pais, Pan Bóg jest wyrafinowany… Nauka i życie Alberta Einsteina, Prószyński i S-ka, Warszawa 2001, s. 61.

[35] W. Isaacson, Einstein, op. cit., s. 100.

[36] D. Trbuhović-Gjurić, Im Schatten Albert Einsteins, op. cit., s. 76.

Świętuj z Uniwersytetem im. Adama Mickiewicza urodziny Marii Skłodowskiej-Curie 7 listopada 2023!

Projekt Gdy Nauka jest Kobietą UAM zaprasza na Konferencję Zostanę Noblistką. Kobiety w naukach ścisłych.
VI. Laboratorium Kobiet poświęcone będzie sytuacji kobiet w naukach ścisłych. Termin spotkania jest szczególny, bowiem 7 listopada przypada 156. rocznica urodzin Marii Skłodowskiej-Curie (1867–1934), 120. rocznica przyznania przyznania małżeństwu Curie Nagrody Nobla z fizyki i 112. rocznica samodzielnej Nagrody Nobla z chemii za odkrycie polonu i radu.

CiekaWizja o Marii Skłodowskiej-Curie

Serdecznie Państwa zapraszamy na rozmowę profesora Tomasza Pospiesznego i redaktora Wiktora Niedzickiego.

Dwukrotna laureatka 🏅🏅 Nagrody Nobla. Matka 👭dwóch córek. Kobieta niezwykła. Podziwiana na całym świecie. Maria Skłodowska Curie 💙
Jaka była naprawdę? Jak przeżywała straszną tragedię, śmierć męża?
Rozmowę o niezwykłych cechach Wielkiej Marii, o walce z najpoważniejszymi uczonymi, o niebywałej intuicji badaczki i wielu innych ważnych sprawach, a także o książkach 📚